Chase answered 30 questions correctly and missed 10 questions.
Explanation:To find the number of questions Chase got right, multiply the fraction of questions answered correctly (3/4) by the total number of questions (40):
Number of questions answered correctly = (3/4) * 40 = 30
To find the number of questions Chase missed, subtract the number of questions he got right from the total number of questions:
Number of questions missed = 40 - 30 = 10
Learn more about Fraction here:https://brainly.com/question/10354322
#SPJ2
The height, h, of a falling object t seconds after it is dropped from a platform 300 feet above the ground is modeled by the function mc002-1.jpg. Which expression could be used to determine the average rate at which the object falls during the first 3 seconds of its fall?
Answer:
the answer on edge is D) h(3)-h (0)/3
And, the answer to the equation is 156.
A rectangle with a width of 2.5 cm and a length of 3 cm is dilated by a scale factor of 4. Which statements about the new rectangle are true?
Check all that apply.
The dimensions of the new rectangle will be 10 cm by 12 cm.
The dimensions of the new rectangle will be 40 cm by 48 cm.
The new perimeter will be 4 times the original perimeter.
The new perimeter will be 16 times the original perimeter.
The new area will be 4 times the original area.
The new area will be 16 times the original area.
The new perimeter will be 44 cm.
The new area will be 30 square cm
Answer:
The dimensions of the new rectangle will be 10 cm by 12 cm.The new perimeter will be 4 times the original perimeter.The new area will be 16 times the original area.The new perimeter will be 44 cm.Step-by-step explanation:
Given dimensions of original rectangle , length(l)=3 cm and width(w)=2.5 cm
We know that after dilation with scale factor (k), the dimension of new figure = k times the original dimensions.
Thus width of new rectangle=[tex]4\times2.5=10\ cm[/tex]
length of new rectangle=[tex]4\times3=12\ cm[/tex]
∴The dimensions of the new rectangle will be 10 cm by 12 cm.
Now, Perimeter of original rectangle=[tex]2(l+w)=2(3+2.5)=2(5.5)=11\ cm[/tex]
Thus, Perimeter of new rectangle=[tex]2(4l+4w)=2(12+10)=2(22)=44\ cm[/tex]
⇒ Perimeter of new rectangle=44 cm=[tex]4\times11\ cm[/tex]
∴The new perimeter will be 4 times the original perimeter.
Now, Area of original rectangle=[tex]lw=3\times2.5=7.5\ cm^2[/tex]
Thus, Area of new rectangle=[tex]4l\times4w=12\times10=120\ cm^2[/tex]
Area of new rectangle=[tex]16lw=16(lw)[/tex]
⇒The new area will be 16 times the original area.
Jackson's football team lost 6 yards from their starring position and then lost another 5 yards. What number represents a loss of 6 yards? A loss of 5 yards?
On the next play, the team gains 12 yards. Will the team ne at their original starting position? Explain
A loss of 6 yards is represented by -6, and a loss of 5 yards by -5. After losses of 6 and 5 yards, and a gain of 12 yards, the team will be 1 yard past their original starting position, not exactly back to the original position.
Explanation:A loss of 6 yards can be represented by the number -6, and a loss of 5 yards can be represented by the number -5.
When the football team on the next play gains 12 yards, we add this value to their previous position, which results from adding -6 and -5. To determine if the team returns to their original starting position, we calculate -6 + -5 + 12. The sum of -6 and -5 is -11, then adding 12 gives 1, which means the team advances 1 yard past the original starting position, not just back to it.
Therefore, the team will not be at their original starting position after gaining 12 yards, they will be 1 yard ahead.
Need help solving this equation please 5w+8-12w=16-15w
If one store is selling 3/4 of a bushel of apples for $9, and another store is selling 2/3 of a bushel for $9, which store has the better deal? Explain you answer
Ron is half as old as Sam, who is three times as old as Ted. The sum of their ages is 55. How old is Ron?
To find Ron's age, we set up equations based on their age relations and the total sum of their ages. After solving the system of equations, we determine that Ron is 15 years old.
The question deals with a basic age-related algebra problem. To solve for how old Ron is, we can set up a system of equations based on the information provided:
Let R represent Ron's age.
Let S represent Sam's age.
Let T represent Ted's age.
From the information:
Ron is half as old as Sam, so R = 1/2 * S
Sam is three times as old as Ted, so S = 3 * T
The sum of their ages is 55, so R + S + T = 55
Substituting the expressions for R and S in terms of T into the third equation gives:
1/2 * (3 * T) + 3 * T + T = 55
Simplifying and solving for T, we find that:
1.5T + 3T + T = 55
5.5T = 55
T = 10
Now we can find Sam's age:
S = 3 * 10 = 30
And Ron's age:
R = 1/2 * 30 = 15
Therefore, Ron is 15 years old.
Can you please help me
The diagonals of rhombus FGHJ intersect at point K. If side GH is equal to x + 9 and side JH is equal to 5x – 2, find x.
Answer:
x = 2.75
Step-by-step explanation:
5x - 2 = x + 9
5x = x + 11
4x = 11
red die and a black die are rolled at the same time. The probability of getting a 6 on the red die is 16, and the probability of getting a 3 on the black die is 16. Given that the two events are independent, what is their combined probability?
it should be 1/6 not 16
there are 6 numbers on a die so to get a number you have a 1/6 probability
so 1/6 x 1/6 = 1/36
the probability of getting both a 6 and a 3 is 1/36
Choose the correct simplification of (5xy7)2(y2)3.
The simplified form of the given expression is [tex]25 x^{2} y^{20}[/tex].
What is the simplified form of the expression?Simplifying expressions mean rewriting the same algebraic expression with no like terms and in a compact manner.
What are the exponent rules?The different Laws of exponents are:
[tex]x^{m} .x^{n} =x^{m+n}[/tex][tex]\frac{x^{m} }{x^{n} } = x^{m-n}[/tex][tex](x^{m} )^{n} = x^{m\times n}[/tex][tex]x^{0} =1[/tex][tex]x^{-1} = \frac{1}{x}[/tex]According to the given question.
We have an expression [tex](5xy^{7} )^{2}(y^{2} )^{3}[/tex]
To simplify the above expression we use the exponent rules.
Therefore,
[tex](5xy^{7} )^{2}(y^{2} )^{3}[/tex]
[tex]= 5^{2}x^{2} y^{7\times2} y^{2\times3}[/tex]
[tex]= 25 x^{2} y^{14} y^{6}[/tex]
[tex]= 25 x^{2} y^{14+6}[/tex]
[tex]= 25 x^{2} y^{20}[/tex]
Therefore, the simplified form of the given expression is [tex]25 x^{2} y^{20}[/tex] .
Find out the more information about the simplified form of the expression and exponent rules here:
https://brainly.com/question/14575743
#SPJ2
Huilan's age is two times Thomas's age. The sum of their ages is
54
. What is Thomas's age
Deon rented a truck for one day. there was a base fee of $16.95, and there was an additional charge of 75 cents for each mile driven. Deon had to pay $220.20 when he returned the truck. For how many miles did he drive the truck?
what is the ratio of x to y (simplest form)
x= 2 y=6
x=5 y=15
x=8 y=24
Find the value of a and z: (x^8)^3=ax^z
HELP PLEASE!!1!
Part A
First, take a look at Preston’s sequence. How does a 180-degree rotation about the origin change the coordinates of a shape?
How does a translation 7 units up change the coordinates of a shape?
Now look at Chanel’s sequence. How does a reflection across the x-axis change the coordinates of a shape?
please, help me
180° rotation about the origin change the coordinates from (x,y) to (-x,-y). In this exercise:
A = (-4, 5) -> (4, -5)
B = (-3, 1) -> (3, -1)
C = (-5, 2) -> (5, -2)
Translation 7 units up change the coordinates from (x, y) to (x, y+7). Continuing with the exercise:
(4, -5) -> (4, 2)
(3, -1) -> (3, 6)
(5, -2) -> (5, 5)
Which are not the coordinates of triangle DEF.
Reflection across the x-axis change the coordinates from (x, y) to (x, -y). In this exercise:
A = (-4, 5) -> (-4, -5)
B = (-3, 1) -> (-3, -1)
C = (-5, 2) -> (-5, -2)
In 180 rotation (x,y) becomes (-x,-y) , In translation 7 units (x, y) becomes (x, y+7) and in reflection across x-axis (x, y) becomes (x, -y).
180° rotation about the origin change the coordinates from (x,y) to (-x,-y). It means if an object having coordinates (3,4) then it will be (-3,-4).
Translation 7 units up change the coordinates from (x, y) to (x, y+7). It means if an object having coordinates (3,4) then it will be (3,4+7).
Reflection across the x-axis change the coordinates from (x, y) to (x, -y). It means if an object having coordinates (3,4) then it will be (3,-4).
Hence we can summarize the above phenomenon as in 180 rotation (x,y) becomes (-x,-y) , In translation 7 units (x, y) becomes (x, y+7) and in reflection across x-axis (x, y) becomes (x, -y).
For more details on Reflection, Rotation and Translation follow the link:
https://brainly.com/question/9475847
Let set A = {1, 3, 5, 7} and set B = {1, 2, 3, 4, 5, 6, 7, 8}
Which notation shows the relationship between set A and set B?
Answer:
A ⊆ B
Step-by-step explanation:
How do I solve this problem: -2(7-y)+4=-4?
9 1/4 - 6 2/3
Write answer as mixed number with fractional part in lowest terms.
To subtract the mixed numbers 9 1/4 and 6 2/3, first convert them to improper fractions, find a common denominator, and then perform the subtraction. The result is expressed as the mixed number 2 7/12 with the fractional part in lowest terms.
Explanation:Subtracting Mixed Numbers
The question involves subtracting mixed numbers, specifically 9 1/4 (nine and one quarter) from 6 2/3 (six and two thirds). First, we need to convert these mixed numbers into improper fractions for easier subtraction.
Convert 9 1/4 to an improper fraction: (9 × 4) + 1 = 36 + 1 = 37/4.Convert 6 2/3 to an improper fraction: (6 × 3) + 2 = 18 + 2 = 20/3.To subtract, we need a common denominator. Multiplying the denominators 4 and 3 gives us 12, the LCD.Adjust the fractions: 37/4 becomes 111/12 (since 37 × 3 = 111) and 20/3 becomes 80/12 (since 20 × 4 = 80).Now subtract the numerators: 111 - 80 = 31. So, the difference is 31/12.Finally, convert 31/12 back into a mixed number, which is 2 7/12 (since 31 divided by 12 is 2 with a remainder of 7).The answer is 2 7/12.
To subtract mixed numbers, find a common denominator. Subtract the fractional part by subtracting the numerators. Subtract the whole numbers as usual. The answer is 8 7/12.
Explanation:To subtract mixed numbers, we first need to find a common denominator. In this case, the common denominator is 12. Then, we can subtract the fractions by subtracting the numerators and leaving the denominator the same.
For the whole numbers, we simply subtract them as usual.
So, 9 1/4 - 6 2/3 = 8 7/12.
Jane Peter and Simon have $395 which they wish to divide between them Jane gets $20 more than Peter and Peter gets $15 more than Simon how much does each get
Please help
Thanks in advance
If sin Θ = negative square root 3 over 2 and π < Θ < 3 pi over 2, what are the values of cos Θ and tan Θ?
Answer: The values are
[tex]\cos\theta=-\dfrac{1}{2},~~\textup{and}~~\tan\theta=\sqrt3.[/tex]
Step-by-step explanation: For an angle [tex]\theta[/tex],
[tex]\sin \theta=-\dfrac{\sqrt3}{2},~\pi<\theta<\dfrac{3\pi}{2}.[/tex]
We are given to find the values of [tex]\cos\theta[/tex] and [tex]\tan \theta[/tex].
Given that
[tex]\pi<\theta<\dfrac{3\pi}{2}\\\\\\\Rightarrow \theta~\textup{lies in Quadrant III}.[/tex]
We will be using the following trigonometric properties:
[tex](i)~\cos \theta=\pm\sqrt{1-\sin^2\theta},\\\\(ii)~\tan\theta=\dfrac{\sin\theta}{\cos\theta}.[/tex]
The calculations are as follows:
We have
[tex]\cos\theta=\pm\sqrt{1-\sin^2\theta}\\\\\\\Rightarrow \cos \theta=\pm\sqrt{1-\left(-\dfrac{\sqrt3}{2}\right)^2}\\\\\\\Rightarrow \cos\theta=\pm\sqrt{1-\left(\dfrac{3}{4}\right)}\\\\\\\Rightarrow \cos\theta=\pm\sqrt{\left(\dfrac{1}{4}\right)}\\\\\\\Rightarrow \cos\theta=\pm\dfrac{1}{2}.[/tex]
Since [tex]\theta[/tex] is in Quadrant III, and the value of cosine is negative in that quadrant, so
[tex]\cos\theta=-\dfrac{1}{2}.[/tex]
Now, we have
[tex]\tan\theta=\dfrac{\sin\theta}{\cos\theta}=\dfrac{-\frac{\sqrt3}{2}}{-\frac{1}{2}}=\sqrt3.[/tex]
Thus, the values are
[tex]\cos\theta=-\dfrac{1}{2},~~\textup{and}~~\tan\theta=\sqrt3.[/tex]
Since the given theta lies in third quadrant, then you can use the fact that only tangent and cotangent are positive in third quadrant, rest are negative.
The value of cos and tan for given theta is:
[tex]cos(\theta) = -\dfrac{1}{2}\\\\ tan( \theta) = \sqrt{3}[/tex]
How to find if the angle given lies in third quadrant?If angle lies between 0 to half of pi, then it is int first quadrant.
If angle lies between half of pi to a pi, then it is in second quadrant.
When the angle lies between [tex]\pi[/tex] and [tex]\dfrac{3\pi}{2}[/tex], then that angle lies in 3rd quadrant.
And when it lies from [tex]\dfrac{3\pi}{2}[/tex] and 0 degrees, then the angle is in fourth quadrant.
Which trigonometric functions are positive in third quadrant?Only tangent function and cotangent functions.
In first quadrant, all six trigonometric functions are positive.
In second quadrant, only sin and cosec are positive.
In fourth, only cos and sec are positive.
We can continue as follows:
[tex]sin(\theta) = -\dfrac{\sqrt{3}}{2}\\ sin(\theta) = sin(\pi + 60^\circ)\\ \theta = \pi + 60^\circ[/tex]
Thus, evaluating cos and tan at obtained theta:
[tex]cos(\pi + 60^\circ) = -cos(60) = -\dfrac{1}{2}\\ tan( \pi + 60^\circ) = tan(60) = \sqrt{3}[/tex]
Learn more about trigonometric functions and quadrants here;
https://brainly.com/question/25952919
There are 42 boys and girls participating in an essay-writing competition. Of the competitors, 21 are in seventh grade, 14 are in eighth grade, and 7 are in ninth grade. What is the probability of an eighth grader winning the competition? Which simulation(s) can be used to represent this situation?
Answer: Our required probability is 0.34.
Step-by-step explanation:
Since we have given that
Number of seventh grade student s= 21
Number of eight grade students = 14
Number of ninth grade students = 7
Total number of boys and girls = 42
Probability of an eigthth grader winning the competition would be
[tex]\dfrac{14}{42}\\\\=\dfra{1}{3}\\\\=0.3333333..................\\\\\approx 0.34[/tex]
Hence, our required probability is 0.34.
A quadratic equation is shown below: 9x2 − 16x + 60 = 0
Part A: Describe the solution(s) to the equation by just determining the radicand. Show your work. (5 points)
Part B: Solve 4x2 + 8x − 5 = 0 by using an appropriate method. Show the steps of your work, and explain why you chose the method used. (5 points)
Find the balance in the account. $4,100 principal earning 4%, compounded monthly, after 10 years
$4100*(1+0.04/12)^(12*10)
4100*1.490832682=
$6112.41
Which of these is the algebraic expression for "eight less than some number?"
8 − b
b − 8
Fraction 8 over b
Fraction b over 8
best answer gets brainl;iest
How do you do 8.75 Times 38
A savings account earns 6% (APR) interest calculated monthly, paid into the account at the end of 6 months. Travis deposits $100 into the account at the beginning of the first month. At the end of each month, he deposits an additional $100 into the account. How much interest will Travis have earned after 6 months?
Find the area.
Square
A = s^2
s - side.
area = S^2
side = 12 miles
12^2 = 144
area = 144 miles
Find the volume of a cylinder with a diameter of 10 inches and a height that is three times the radius. Use 3.14 for pi and round your answer to the nearest tenth. (Hint: You may only enter numerals, decimal points, and negative signs in the answer blank)
The volume of the cylinder is 1177.5 cubic inches.
Given that the diameter of the cylinder is 10 inches, the radius r is half of that, so [tex]\( r = \frac{10}{2} = 5 \)[/tex] inches.
The height h is three times the radius, so [tex]\( h = 3r = 3 \times 5 = 15 \)[/tex] inches.
Now, we can substitute these values into the formula for the volume of a cylinder:
[tex]\( V = \pi r^2 h \)\\ \( V = 3.14 \times (5)^2 \times 15 \)\\ \( V = 3.14 \times 25 \times 15 \)\\ \( V = 3.14 \times 375 \)\\ \( V = 1177.5 \) cubic inches.[/tex]
Rounded to the nearest tenth.
Jean has 1/3 cup of walnuts for each serving of salad she makes. She has 2 cups of walnuts. How many serving can she make?