Which is an aspect of the kinetic-molecular theory and can be used to explain the behavior of plasmas?
Particles move independently of one another and are widely spaced.
If isotopes are chemically alike but physically different propose which subatomic particles are
All isotopes of the same element have the same number of protons. Number of neutrons in different atoms of the same element is free to vary. Since, different elements react differently, different elements have different numbers of protons. Atoms with the same number of protons and vary neutrons behave chemically similar. The number of electrons in a neutral atom depends on the number of protons. All chemical reactions involve transfer or sharing of electrons it stands to reason, neutrons are NOT responsible for chemical reactivity. It's arguable whether protons or electrons dictate chemical reactivity certainly the SUBATOMIC nuclear particle that dictates reactivity is the PROTON.
When an electric current passes through liquid water, hydrogen gas passes accumulates at one electrode and oxygen accumulates at the other. Which of the following is true? A) A physical change has occurred, with energy is being absorbed. B) A chemical change has occurred, with energy being given off. C) A physical change has occurred, with energy being given off. D) A chemical change has occurred, with energy being absorbed.
Answer: Option (D) is the correct answer.
Explanation:
A chemical change is defined as the change which occurs due to change in chemical composition of a substance. A chemical change always leads to the formation of a new compound or substance.
For example, when an electric current passes through liquid water, hydrogen gas passes accumulates at one electrode and oxygen accumulates at the other.
Since, atoms of water are separating out. As a result, chemical properties will change. This means that a chemical change has occurred.
Also, bonds of water, ([tex]H_{2}O[/tex]) are breaking down. Hence, energy will be absorbed to break the bonds.
Whereas energy is always released upon formation of bonds.
Thus, we can conclude that the statement a chemical change has occurred, with energy being absorbed, is true.
This is a model of a lithium atom. How likely is it that this atom would want to bond with another atom to fill it's outer shell?
A:This atom is very likely to bond with another atom.
B:This atom is only slightly likely to bond with another atom
C:This atom is not likely at all to bond with another atom.
And I Think The Answer Is A
Carl had four metal blocks.. Each block was a different type of metal, but it had the same size and volume. All four blocks were weighed on a balance and their masses recorded in the table below. Which one of these metals is the least dense?
Block 1: 65 grams
Block 2: 32 grams
Block 3: 100 grams
Block 4: 79 grams
options:
Block 1
Block 2
Block 3
Block 4
Answer is: Block 2 is the least dense.
d(metal) = m(metal) ÷ V(metal).
Volume is the same for all metals, so density only depends on mass of the block of the metal.
Smaller the mass of the block, smaller is the density:
d(block 1) = m(block 1) ÷ V.
d(block 1) = 65 g/V.
d(block 2) = 32 g/V.
d(block 3) = 100 g/V.
d(block 4) = 79 g/V.
The average density of whole milk is 1.034 g cm ^3. What is it’s density in lb gal ^-1?
Answer:
The average density of whole milk is 8.6291 lbs/gal.
Explanation:
The average density of whole milk is [tex]1.034 g/cm ^3[/tex].
1 g = 0.00220462 lbs
[tex]1 cm^3=0.000264172 gallons[/tex]
[tex]1.034 g/cm ^3=\frac{1.034\times 0.00220462 lbs}{1\times 0.000264172 gal}[/tex]
[tex]=8.6291 lbs/gal[/tex]
The average density of whole milk is 8.6291 lbs/gal.
What is the mass of 0.28 mol of iron
The mass of 0.28 mol of iron is 15.638 grams.
To find the mass of 0.28 mol of iron, we need to use the molar mass of iron. The molar mass of iron, as given in the periodic table, is 55.85 g/mol. This means that 1 mole of iron weighs 55.85 grams.
Step-by-Step Calculation:
1. Find the molar mass of iron:
According to the periodic table, the molar mass of iron (Fe) is 55.85 g/mol.2. Calculate the mass of 0.28 mol of iron:
We will use the formula:Mass = Number of moles × Molar massSo,
Mass = 0.28 mol × 55.85 g/molMass = 15.638 gTherefore, the mass of 0.28 mol of iron is 15.638 grams.
PLEASE HELP !!!
A) state the number of atoms of each element present.
B) Give the total number of atoms present in each compound.
which light packs the highest energy per photon
How many helium atoms are there in a helium blimp containing 537 kg of helium? express the number of helium atoms numerically?
To find the number of helium atoms in a blimp with 537 kg of helium, first, calculate the mass of one helium atom. Then determine the number of atoms in 1 kg of helium, and multiply by 537 to get the total number of helium atoms in the blimp.
Explanation:To calculate the number of helium atoms in a helium blimp containing 537 kg of helium, we must first know the mass of a single helium atom. A helium atom contains 2 protons, 2 neutrons, and 2 electrons. The mass of a helium atom can be approximated by considering the mass of the protons and neutrons, as the mass of electrons is negligible. This gives us a mass of about 4 atomic mass units (u) per helium atom. Since 1 u is approximately 1.66 × 10-27 kg, the mass of a helium atom is 4 × 1.66 × 10-27 kg.
To find the number of atoms in 1 kg of helium, you can divide 1 kg by the mass of one helium atom. Then, for 537 kg, multiply the number of atoms in 1 kg by 537. The Avogadro's number (6.022 × 1023 atoms/mol) is used as a conversion factor to convert moles of helium to atoms of helium. Conversely, to convert atoms to moles, you would divide the number of atoms by Avogadro's number, not multiply as stated incorrectly by the friend.
Here is the calculation in steps:
Calculate the mass of one helium atom: Mass of helium atom = 4 × 1.66 × 10-27 kg.Find the number of atoms in 1 kg of helium: Number of atoms in 1 kg = 1 kg / Mass of one helium atom.Find the number of atoms in 537 kg of helium: Number of atoms in 537 kg = Number of atoms in 1 kg × 537.An atom of calcium loses two electrons. What is the charge on an ion of calcium?
Question 6 options:
A.0
B.–2
C.+2
D.+3
What is the formula mass of beryllium chloride , becl2?
What is the smallest particle that has all the properties of a specific element?
A wooden object has a mass of 10.782 g and occupies a volume of 13.72 ml. what is the density of the object determined to an appropriate number of significant figures?
Answer:
7.859 × 10^-1 g/mL
Explanation:
D=mass/volume
10.782g/13,72ml= 0.78586 g/ml
7.859 x 10^-1 g/ml
Chemistry Help Please? 20 points?
Since each element produces a characteristic spectrum, what can you conclude about the location of the electron?
The characteristic spectrum an element produces indicates the location of its electron as each unique spectral line indicates the electron's movement between specific energy levels or shells in the atom.
Explanation:The location of an electron can be determined based on the spectrum that an element produces. When an electron absorbs energy, it moves to a higher energy level or shell, also known as an excited state. When it falls back to its original energy state, it emits energy in the form of electromagnetic radiation, producing a unique spectral line. This spectral line or pattern is characteristic of the element, and it can hint at an electron's location in a specific energy level or shell around the nucleus.
Learn more about Electron locations here:https://brainly.com/question/13179344
#SPJ2
Is household ammonia a heterogeneous mixture?
What is the substance produced by iron reacting with oxygen in the air?
A student has a sample of a mineral that is too big to fit in a graduated cylinder. The density of the sample is known. How can the student determine the volume of the sample?
The formula for density is given as:
density = mass / volume
So given the density and the mass, we can get the volume. The mass can simply be measured using a weighing scale therefore the student can now determine the volume by rearranging the formula:
volume = mass / density
what tools can scientists use to measure the volume of liquid
An isotope contains 16 protons 18 electrons and 16 neutrons. what is the identity of the isotope
Answer:
Sulfur ₁₆S³²
Explanation:
The sulfur have sixteen protons sixteen neutrons and sixteen electrons. The sum of neutrons and protons is equal to atomic mass. So the given element have sixteen protons and sixteen electron, the atomic mass would be 32 and the element with atomic mass 32 is sulfur.
The number of electrons are equal to the number of protons. In the given element two electrons are more than number of protons. It means element gain two extra electron from another element and it is present in ionic form.
It is present in given form:
S²⁻
Electronic configuration:
S₁₆ = [Ne] 3s² 3p⁴
To complete the octet sulfur gain two electrons from other element and get stable.
Answer:
[tex]^{32}_{16}S^{2-}[/tex]
Explanation:
Atomic number : It is defined as the number of electrons or number of protons present in a neutral atom.
However, when we talk about the atomic number of the ion, it is not equal to the number of electrons as electron can be gained or loosed.
This is why, more appropriately, the number of the protons which are present in the nucleus of the atom is called the atomic number.
Thus, number of protons = atomic number = 16
The element must be sulfur.
Since, number of protons is not equal to the number of electrons, thus the isotope will not be neutral.
There are 2 more electrons than the number of protons and thus, the isotope will be having a charge of -2.
Mass number is the number of the entities present in the nucleus which is the equal to the sum of the number of protons and electrons.
Mass number = Number of protons + Number of neutrons = 16 + 16 = 32 neutrons
The identity is:- [tex]^{32}_{16}S^{2-}[/tex]
What are the advantages of using structural composite lumber rather than solid lumber?
PLZZ HELP ME I'M STUCK!!!!!! 90pts I'M DESPERATE!!!!!!!!!!!
Describe what would happen to both air temperature and soil temperature if cold weather were to pass through the area.
What can you learn about soil and air from looking at your graphs and your answers above?
What does the data mean for people involved in farming and agriculture?
I have the same assignment rn witht he graph but i only have 4 points plotted and connected by lines am i doing it wrong plzzz???
The air temperature would drop quickly compared to the soil because the difference between solid and gas. But the ground will stay cooler longer than the air because it contains it better than the air.
Which would have the highest concentration of h+ ions acetic acid or sodium hydroxide?
A gold atom is a sphere with a diameter of 272 pm and a mass of 3.27 x 10-13 ng. Calculate the density of one gold atom (in g/cm3). Note the Vsphere = 4/3 π r3.
The density of one gold atom is approximately 19.34 g/cm³, calculated by dividing its mass by its volume.
To calculate the density of one gold atom, Need to find its volume and then divide its mass by that volume.
Step 1: Calculate the volume of the gold atom.
The volume of a sphere can be calculated using the formula:
[tex]V_{sphere} = (4/3)\pi r^3[/tex]
Given that the diameter (d) of the gold atom is 272 pm (picometers), you can find the radius (r) by dividing the diameter by 2:
r = 272 pm / 2 = 136 pm = 1.36 x [tex]10^{-8} cm[/tex] (since 1 pm = [tex]10^{-10[/tex] cm)
Now, plug this radius into the formula for the volume of the sphere:
[tex]V_{sphere[/tex] = (4/3)π(1.36 x [tex]10^{-8[/tex] cm)^3 ≈ 1.69 x [tex]10^{-23[/tex] cm^3
Step 2: Calculate the density of one gold atom.
Now that you have the volume of one gold atom, you can calculate its density using the given mass of 3.27 x [tex]10^{-13[/tex] ng (nanograms). First, convert the mass to grams:
1 ng = [tex]10^{-9[/tex] g, so 3.27 x [tex]10^{-13[/tex] ng = 3.27 x [tex]10^{-22[/tex] g
Now, use the formula for density, which is density (ρ) = mass (m) / volume (V):
ρ = (3.27 x [tex]10^{-22[/tex] g) / (1.69 x [tex]10^{-23[/tex] cm^3) ≈ 19.34 g/[tex]cm^3[/tex]
So, the density of one gold atom is approximately 19.34 g/[tex]cm^3[/tex].
Will give BRAINLIEST!
Which is more active (a) iron or copper, (b) iron or silver, (c) silver or copper? Arrange the three metals in order of decreasing activity.
When scientists make measurements in the laboratory, they use the system?
metric is the answer
The density of gold is 19.3 g/cm3. What is the mass of 15cm3 of gold?
Final answer:
The mass of 15 cm³ of gold, with a density of 19.3 g/cm³, is 289.5 g when calculated using the formula m = d × V.
Explanation:
The density of gold is 19.3 g/cm³.
To find the mass of 15 cm³ of gold, you can use the formula for density, which is mass divided by volume (d = m/V).
Since we know both the density and the volume, we can rearrange the formula to solve for mass (m = d × V).
In this case, the mass (m) would be 19.3 g/cm³ times 15 cm³, which equals 289.5 g.
Which solute produces the highest boiling point in a 0.15 m aqueous solution?
Final answer:
The solute that increases the boiling point the most in a 0.15 m aqueous solution is one that dissociates into the most particles, like NaCl, because it has a larger effect on boiling point elevation than a non-dissociating substance like glucose.
Explanation:
The solute that produces the highest boiling point in a 0.15 m aqueous solution is determined by the number of particles it provides in the solution upon dissolving. According to the colligative property known as boiling point elevation, the more particles a solute generates, the higher the increase in the boiling point. Salts such as NaCl dissociate into ions, thereby increasing the boiling point of the solution more than non-dissociating molecules like glucose. Therefore, a solute like NaCl, which dissociates into two separate ions Na+ and Cl- would generate a higher elevation than glucose at the same molality because the ionization of NaCl results in twice the number of particles in the solution.
Using the formula ΔT = Kb × m (where ΔT is the increase in boiling point, Kb is the molal boiling-point elevation constant, and m is the molality), we can calculate the boiling point elevation. With a given Kb for water of 0.51°C/m, a 0.15 m solution of NaCl would lead to a higher boiling point than a 0.15 m solution of a non-electrolyte like glucose. This is because each mole of NaCl provides 2 moles of particles, doubling the ΔT value compared to glucose which does not dissociate.
Which tools would be necessary to determine whether or not a large regular block will float, without using water?
Answer:
Explanation:
To determine if the bock will float you need:
A scale to calcualte the weight of the blockA ruler or metric tape to measure the block and calculate its volumeThe block has 3 dimmentions: lenght, wide and height, its volume is:
[tex]V=wide*lenght*height[/tex]
Once calculated it and measured the weight, you calculate the density:
[tex]\rho=\frac{m}{V}[/tex]
If the density of the block is smaller than the density of water (arroung 1000 kg/m3) the block will float.
If 28 ml of 5.8 m h2so4 was spilled, what is the minimum mass of nahco3 that must be added to the spill to neutralize the acid?
First we have to refer
to the reaction between the acid and the base:
H2SO4 + 2 NaHCO3 ---> 2 H2O + 2 CO2 + Na2SO4
From this balanced equation we can see that for every 1 mol
of acid (H2SO4), we need 2 mol of base (NaHCO3) to neutralize it. Given 28 ml
of 5.8 M acid, we need to find out how many mols of acid that is:
28mL * (1L/1000mL) * 5.8 mol/L = 0.1624 mol H2SO4
Since we need 2 mol of base per mol of acid, we need:
2*0.1624 mol = 0.3248 mol NaHCO3
MolarMass of NaHCO3 is 84.01 g/mol
0.3248 mol*(84.01g/mol) = 27.29 g NaHCO3
Answer: The mass of sodium hydrogen carbonate that must be added is 27.28 g
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex]
Molarity of sulfuric acid solution = 5.8 M
Volume of solution = 28 mL
Putting values in above equation, we get:
[tex]5.8M=\frac{\text{Moles of sulfuric acid}\times 1000}{28mL}\\\\\text{Moles of sulfuric acid}=0.1624mol[/tex]
The chemical equation for the reaction of sulfuric acid and sodium hydrogen carbonate follows:
[tex]H_2SO_4(aq.)+2NaHCO_3(aq.)\rightarrow Na_2SO_4(aq.)+2CO_2(g)+H_2O(l)[/tex]
By Stoichiometry of the reaction:
1 mole of sulfuric acid reacts with 2 moles of sodium hydrogen carbonate.
So, 0.1624 moles of sulfuric acid will react with = [tex]\frac{2}{1}\times 0.1624=0.3248mol[/tex] of sodium hydrogen carbonate
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Molar mass of sodium hydrogen carbonate = 84 g/mol
Moles of sodium hydrogen carbonate = 0.3248 moles
Putting values in above equation, we get:
[tex]0.3248mol=\frac{\text{Mass of sodium hydrogen carbonate}}{84g/mol}\\\\\text{Mass of sodium hydrogen carbonate}=(0.3248mol\times 84g/mol)=27.28g[/tex]
Hence, the mass of sodium hydrogen carbonate that must be added is 27.28 g