ANSWER
Brayden should have expanded the parenthesis first.
EXPLANATION
The expression Brayden is trying to simplify is
[tex]4n - {( n - 2)}^{2} [/tex]
To simplify this expression, the first thing to do is to expand the perfect square to obtain:
[tex]4n - {( n}^{2} - 4n + 4)[/tex]
We can now distribute the negative to the terms in the parenthesis.
[tex]4n - { n}^{2} + 4n - 4[/tex]
Answer:
He should have simplified [tex](n-3)^2[/tex] first then distribute the negative sign.
Step-by-step explanation:
Given that Brayden is simplifying the expression [tex]4n-(n-3)^2[/tex]. He begins by distributing the negative to the terms inside the parentheses. Which is basically the wrong step for the given problem.
Now we need to find about what should he have done instead.
According to order of operations, we should begin with exponent first.
So that means he should have simplified [tex](n-3)^2[/tex] first then distribute the negative sign.
Esther wants to be able to save $3,000 in 2 years, what fixed amount should she be putting into her savings each month of those 2 years?
Esther should save $125 each month to reach her goal of $3,000 in 2 years.
Esther wants to save $3,000 in 2 years and is determining the fixed monthly amount she should contribute to her savings. To find the monthly savings amount, we must divide the total savings goal by the total number of months in 2 years.
Total amount to save: $3,000
Total number of months: 2 years x 12 months/year = 24 months
Fixed monthly saving amount = Total savings goal / Total number of months
Fixed monthly saving amount = $3,000 / 24
Fixed monthly saving amount = $125
Please answer right away
Answer:
Final answer is 1/8.
Step-by-step explanation:
Total number cards in deck of cards = 52
Total number of cards with a letter = 16
Total number of cards with red King and letter both = 2
Then probability of getting card with letter P(L) = 16/52
Then probability of getting card with letter and king both P(K and L) = 2/52
Then required compound probability P(K|L) is given by formula:
P(K and L)= P(L)*P(K|L)
2/52= 16/52*P(K|L)
(2/52)*(52/16)=P(K|L)
2/16=P(K|L)
1/8=P(K|L)
Hence final answer is 1/8.
What is the value of x?
(As a decimal )
Answer:
x = 42.9 mStep-by-step explanation:
ΔNPM and ΔABM are similar (AAA). Therefore the corresponding sides are in proportion:
[tex]\dfrac{NM}{AM}=\dfrac{PM}{BM}[/tex]
We have
[tex]NM=67.2m,\ AM=67.2m-32m=35.2m,\ PM=81.9m,\ BM=x[/tex]
Substitute:
[tex]\dfrac{67.2}{35.2}=\dfrac{81.9}{x}[/tex] cross multiply
[tex]67.2x=(35.2)(81.9)[\tex]
[tex]67.2x=2882.88[/tex] divide both sides by 67.2
[tex]x=42.9\ m[/tex]
Ravi has 214 meters of rope. He gives 93 centimeters of the rope to his brother. How much rope does he have left?
A. 112
B. 125
C. 132
D. 148
After giving 93 centimeters (which is 0.93 meters) of his 214 meters of rope to his brother, Ravi has 213.07 meters of rope left.
Explanation:This question involves the concept of subtraction in the measurement unit of meters and centimeters. Initially, Ravi has 214 meters of rope. If he gives 93 centimeters of rope to his brother, keep in mind that 1 meter equals 100 centimeters. So, 93 centimeters is equal to 0.93 meters.
So, to find out how much rope Ravi is left with, you subtract the amount he gave to his brother from the original amount he had: 214 meters - 0.93 meters = 213.07 meters. This is the amount of rope Ravi has left after giving some to his brother.
Learn more about Subtraction here:https://brainly.com/question/20438352
#SPJ3
Expand each binomial. (2y-z)^5
[tex]
(2y-z)^5=(2y-z)^2\cdot(2y-z)^3 \\
(4y^2-4yz+z^2)\cdot(8y^3-12y^2+6yz-(-z)^3) \\
(4y^2-4yz+z^2)\cdot(8y^3-12y^2+6yz-z) \\
\boxed{32y^5-48y^4+24y^3z-4y^2z-32y^4z+48y^3z-24y^2z^2+4yz^2+8y^3z^2-12y^2z^2+6yz^3-z^3} \\
[/tex]
Mindy and Daisy are making necklaces using beads. Mindy uses 4 beads for every 5 white beads. daisy uses 6 red beads for every 7 white beads. Use tables of equivalent ratios to determine who will Use more white beads use more white beads when Mindy and Daisy each use 12 red beads
Answer:
Mindy uses more white beads
Step-by-step explanation:
For Mindy:
red : white = 4 : 5 = 12 : 15
For Daisy:
red : white = 6 : 7 = 12 : 14
When both use 12 red beads, Mindy uses 15 white beads and Daisy uses 14 white beads.
Mindy uses more white beads when both use 12 red beads.
When they each use 12 red beads, Mindy uses more white beads in her necklaces as per the given ratios. Mindy uses 15 white beads, while Daisy uses 14 white beads.
Explanation:Mindy uses a ratio of 4 red beads to 5 white beads, and Daisy uses a ratio of 6 red beads to 7 white beads. If they each use 12 red beads, we can equate their ratios. For Mindy, the equivalent ratio would be 12 red beads to 15 white beads because 4 red beads go into 12 red beads three times and three times 5 gives 15 white beads. For Daisy, the equivalent ratio would be 12 red beads to 14 white beads as 6 red beads go into 12 red beads twice and twice 7 gives 14. Therefore, when they each use 12 red beads, Mindy uses more white beads in her necklaces using beads.
Learn more about Ratios here:https://brainly.com/question/32531170
#SPJ3
The area of a circle with diameter of 11 feet is
The area of a circle with diameter of 10.5 inches is
The area of a circle with radius of 6.3 centimeters is
The area of a circle with radius of 3.25 yards is
1. The area of a circle is calculated using the formula:
[tex]Area = \frac{\pi \: {d}^{2} }{4} [/tex]
The diameter is d=11 feet.
This implies that,
[tex]Area = \frac{\pi \times {11}^{2} }{4} [/tex]
[tex]Area = \frac{121\pi}{4} = 95.03 {ft}^{2} [/tex]
2. For this second question the diameter is d=10.5 feet.
We substitute into the formula to get;
[tex]Area = \frac{\pi \times {10.5}^{2} }{4} [/tex]
[tex]Area = \frac{441\pi }{16} = 86.60 {in}^{2} [/tex]
3. The area of a circle is given by the formula,
[tex]Area =\pi \: {r}^{2} [/tex]
where the radius is r=6.3
This implies that,
[tex]Area =\pi \: {(6.3)}^{2} [/tex]
[tex]Area =36.69\pi = 124.69 {cm}^{2} [/tex]
4. The given circle has a radius of 3.25 yards.
[tex]Area =\pi \times {3.25}^{2} [/tex]
[tex]Area =10.5625 \pi = 33.18 {yd}^{2} [/tex]
Micaela is 2 years older than Sam. In 4 years, the sum of their ages will be 40. How old is Micaela now?
Describe and fix any errors in the solution.
Let m = Micaela’s age and s = Sam’s age.
m = s + 2 (s + 4) + (s + 2 + 4) = 40
s = 15
Answer:
The error is: The solution shows the Sam's age and the problem asked for Micaela's age.
Solution fixed: [tex]m=17[/tex]
Micaela is 17 years old now.
Step-by-step explanation:
The error is: The solution shows the Sam's age and the problem asked for Micaela's age.
To fix the error, you can set up these equations based on the information given:
[tex]m=s+2[/tex]
[tex](m+4)+(s+4)=40[/tex]
Solve for "s" from the first equation:
[tex]s=m-2[/tex]
Substitute this equation into the second equation:
[tex](m+4)+((m-2)+4)=40[/tex]
Now you need to solve for "m":
[tex]m+4+(m-2+4)=40\\m+4+m+2=40\\m+m=40-4-2\\2m=34\\m=\frac{34}{2}\\\\m=17[/tex]
Micaela is 17 years old now.
Answer:
The error is: The solution shows the Sam's age and the problem asked for Micaela's age.
Solution fixed: m=17
Micaela is 17 years old now.
Step-by-step explanation:
brainliest please?
the reverse of adding 3 is
Opposite of adding three is subtracting three or adding -3
The volume of a solid right pyramid with a square base is V units3 and the length of the base edge is y units
Answer with explanation:
Volume of a solid right pyramid with a square base = V (units)³
-------------------------------------(1)
The Solid right pyramid will be in the shape of Cube.
Length of edge of Right Pyramid = y units
So,Volume of Right Pyramid which is in the shape of Cube
= (Side)³
=y³ (Units)³
---------------------------------(2)
Equating (1) and (2)
[tex]\Rightarrow y^3=V[/tex]
Question is shown below ↓
[tex]\bf \stackrel{\textit{using the exponential model}}{N=2^D}~\hspace{7em}\begin{array}{ccll} \stackrel{days}{D}&\stackrel{\$}{N}\\ \cline{1-2} 1&2^1\implies 2\\ 2&2^2\implies 4 \end{array}[/tex]
so, using that exponential model, the 1st output value works, but the second value of 2² does not give us 8 as output.
let's check the linear model using slopes to get the equation.
[tex]\bf (\stackrel{x_1}{1}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{8})\qquad \impliedby \begin{array}{|cc|ll} \cline{1-2} D&N\\ \cline{1-2} 1&2\\ 2&8\\ \cline{1-2} \end{array}[/tex]
[tex]\bf slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{8-2}{2-1}\implies \cfrac{6}{1}\implies 6 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-2=6(x-1) \\\\\\ y-2=6x-6\implies y=6x-4[/tex]
now, using that model, x = 6, then y = 6(6) - 4, or y = 32.
What is the value of x in the equation 8x – 2y = 48, when y = 4?
6
7
14
48
Hello!
WORK SHOWN BELOW8x - 2y = 48, y =48x - 2(4) = 488x - 8 = 488x = 48+88x = 56x = 56/8 = 7x = 7
Answer:
x = 7
Step-by-step explanation:
Substitute y = 4 into the equation and solve for x
8x - (2 × 4) = 48
8x - 8 = 48 ( add 8 to both sides )
8x = 56 ( divide both sides by 8 )
x = 7
What is the volume of the pyramid
For this case we have by definition, that the volume of a square base pyramid is given by:
[tex]V = \frac {1} {3} * L ^ 2 * h[/tex]
Where:
L: It's the side of the base (square side)
h: It's the height of the pyramid
Substituting:
[tex]L = 6 \ ft\\h = 10 \ ft[/tex]
[tex]V = \frac {1} {3} * (6) ^ 2 * 10\\V = \frac {1} {3} * 36 * 10\\V = 120 \ ft ^ 3[/tex]
Answer:
[tex]V = 120 \ ft ^ 3[/tex]
solve system of equations for a 3=10a+b 2=20a+b
Answer:
[tex]\large\boxed{a=-\dfrac{1}{10}=0.1}[/tex]
Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}3=10a+b\\2=20a+b&\text{change the signs}\end{array}\right\\\\\underline{+\left\{\begin{array}{ccc}3=10a+b\\-2=-20a-b\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad1=-10a\qquad\text{divide both sides by (-10)}\\.\qquad-\dfrac{1}{10}=a\Rightarrow a=-\dfrac{1}{10}[/tex]
Answer:
this is in copy and paste form a = - 1/10 - 1.0
2x-3y=0
4x + 6y = 4
which of the following is the solution to this system?
(a) ; (3,2)
(b) ; 1/2 , 1/3 )
(c) ; all the points on the line 2x-3y=0
(d) ; there is no solution
pick one please, thank you !
Answer:
Option b (1/2,1/3)
Step-by-step explanation:
we have
2x-3y=0 ------> equation A
4x+6y=4 -----> equation B
Solve the system by elimination
Multiply equation A by 2 both sides
2(2x-3y)=2(0)
4x-6y=0 ------> equation C
Adds eqution B and equation C
4x+6y=4
4x-6y=0
-------------
4x+4x=4+0
8x=4
x=1/2
Find the value of y
2x-3y=0
2(1/2)-3y=0
1-3y=0
3y=1
y=1/3
the solution is the point (1/2,1/3)
Jason builds doghouses for a pet store. Each doghouse is a wooden structure with a rectangular base that has an area of 21 square feet and a length that is 4 feet more than its width.
If x represents the width of the doghouse, write an equation in the given form that can be used to determine the possible dimensions of the base of the doghouse.
Answer:
Square root of 21 + 4 = w
Step-by-step explanation:
Answer: [tex]x^2+4x-21=0[/tex]
Step-by-step explanation:
You need to remember that formula for calculate the area of a rectangle:
[tex]A=lw[/tex]
Where "l" is the lenght and "w" is the width.
You know that "x" represents the width of the doghouse, its rectangular base has an area of 21 square feet ([tex]A=21[/tex]) and its length is 4 feet more than its width ([tex]l=x+4[/tex])
Then, substituting into the formula, you get:
[tex]21=(x+4)(x)[/tex]
Simplifying, you get the following that can be used to determine the possible dimensions of the base of the doghouse:
[tex]21=x^2+4x[/tex]
[tex]x^2+4x-21=0[/tex]
Determine the coordinates of the y-intercept of 5x − 5y = 4
5(0)-5y=4
-5y=4
y=-4/5
the answer is 4/5
i hope this could help!!
ABC has vertices A(-4, 4), B(6, 0), and C(-4, 0). Is ABC a right triangle?
Check the picture below.
Answer:
It's a Right Triangle
PLEASE ANSWER IMMEDIATELY FOR 15 POINTS! FIRST CORRECT ANSWER GETS BRAINLIEST!
A triangle has vertices at S(1, 1), T(2, −3), and U(4, 0). The triangle is translated up 3 units. What are the coordinates of the vertices of the image?
A. S'(4, 1), T'(5, −3), and U'(7, 0)
B. S'(1, 4), T'(2, 0), and U'(4, 3)
C. S'(1, 4), T'(2, −3), and U'(4, 0)
D. S'(1, −2), T'(2, −6), and U'(4, −3)
Answer:
B
Step-by-step explanation:
A translation of 3 units up, means adding 3 to the y- coordinate of the original points while the x- coordinates remain unchanged, that is
S(1, 1) → S'(1, 1 + 3) → S'(1, 4)
T(2, - 3) → T'(2, - 3 + 3) → T'(2, 0)
U(4, 0) → U'(4, 0 + 3) → U'(4, 3)
Find the volume of the shaded area.
(15 POINTS)
(please help me)
Answer:
439cor.to 3 Sig. fig.
Step-by-step explanation:
(5+12)×6×14-(5÷2)²π×14
Frank has devised a formula for his catering business that calculates the number of meat balls he needs to prepare the formula is m=4a+2c where c= the number of children m=the number of meat balls a= the number of adults. how many meatballs are required for a party of 20 adults and 8 children? how many meatballs are required for a party of 20 adults and 8 children
Answer:
96 meatballs are required
Step-by-step explanation:
We know that the formula for he catering business is
[tex]m=4a+2c[/tex]
Where
c= the number of children, m=the number of meat balls, a= the number of adults
So if [tex]c = 8[/tex] and [tex]a = 20[/tex] then
[tex]m = 4(20) + 2(8)[/tex]
[tex]m = 80 + 16[/tex]
[tex]m = 96[/tex]
Finally 96 meatballs are required for the party
What is the equation of the line slope of 3 and passes through the point (-2, 3)?
Answer:
[tex]\large\boxed{y-3=3(x+2)}\qquad\text{point-slope form}\\\boxed{y=3x+9}\qquad\text{slope-intercept form}\\\boxed{3x-y=-9}\qquad\text{standard form}\\\boxed{3x-y+9=0}\qquad\text{general form}[/tex]
Step-by-step explanation:
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
We have the slope m = 3 and the point (-2, 3). Substitute:
[tex]y-3=3(x-(-2))\\\\y-3=3(x+2)[/tex]
the point-slope form
[tex]y-3=3(x+2)[/tex] use the distributive property
[tex]y-3=3x+6[/tex] add 3 to both sides
[tex]y=3x+9[/tex]
the slope-intercept form
[tex]y=3x+9[/tex] subtract 3x from both sides
[tex]-3x+y=9[/tex] change the signs
[tex]3x-y=-9[/tex]
the standard form
[tex]3x-y=-9[/tex] add 9 to both sides
[tex]3x-y+9=0[/tex]
the general form
what is the solution of log4(2x-6)=2
Answer: [tex]x=11[/tex]
Step-by-step explanation:
Remembert that, by definition:
[tex]log_b(x)=y[/tex] → [tex]b^y=x[/tex]
Then, you can rewrite [tex]log_4(2x-6)=2[/tex] in exponential form:
[tex]4^2=2x-6[/tex]
Now you can solve for the variable "x":
Add 6 to both sides of the equation:
[tex]4^2+6=2x-6+6[/tex]
[tex]22=2x[/tex]
And finally you must divide both sides of the equation by 2, then:
[tex]\frac{22}{2}=\frac{2x}{2}\\\\x=11[/tex]
X+2y=7 x-2y=-1 what is solution
x=3,y=2
lkajsdfvnkkkkkk
It's a system of linear equations; let me write it out more neatly for you:
[tex]\left \{ {x + 2y = 7} \atop {x - 2y = -1}} \right.[/tex]
Good. In order to solve a system of equations with two variables, we can find one variable and then use that variable to find the other. This wouldn't be the case if we just had one equation, note.
Let's work on the top one first. There's multiple ways of solving this one, but here's the most simple way: isolating a single variable. The goal is to get either just x or just y on one side.
[tex]x + 2y=7\\x = 7-2y[/tex]
Nice. Now that we have a value of x, we can just plug it into the other equation -- since we know that x is equal to another expression, we can replace x in the other equation with the expression.
[tex]x - 2y = -1\\(7-2y)-2y = -1\\7 - 2y - 2y = -1\\7 - 4y = -1 \\-4y = -8\\y = 2[/tex]
Now that we have y, we can do the same thing for x. This time, however, we have the actual value of y, meaning we can just plug that in.
[tex]x = 7 - 2y\\x = 7 - 2(2)\\x = 7 - 4 \\x = 3[/tex]
Our solution is
[tex]\left \{ {{x=3} \atop {y=2}} \right.[/tex]
We can check this by plugging the values back into the equation.
[tex]3 + 2(2) = 7\\3 + 4 = 7[/tex]
and
[tex]3 - 2(2) = -1\\3 - 4 = -1\\[/tex]
That's it. There's another (easier) way to handle this specific equation, but this is the simplest way to do it.
I need help please?!!):
Answer:
Step-by-step explanation:
This shows step by step
Hope this helps <3
What is the radius of a circle who’s circumference is 22.6?
the answer is 3.5987
How much food can this container hold ? Express your answers in terms of pi
Answer:
where is the questions
Step-by-step explanation:
Use the discriminante to determine the nature of the root of the following equation y^2-5y-3=0
Answer:
two distinct real roots
Step-by-step explanation:
The coefficients of the equation are ...
a = 1
b = -5
c = -3
So, the discriminant, b^2-4ac, has the value ...
(-5)^2 -4(1)(-3) = 25 +12 = 37
This number is positive, so the square root of it is non-zero and real. This means the two roots are real and distinct.
Find the value of y if angle 1 =2y+8
41° because it’s a right angle and if 90=2y+8, y=41
Answer:
41
Step-by-step explanation:
Simplify-3square root2+3square root 8
Step-by-step explanation:
3
√
2
2
⋅
2
Pull terms out from under the radical.
3
(
2
√
2
)
Multiply
2
by
3
.
6
√
2
The result can be shown in multiple forms.
Exact Form:
6
√
2
Decimal Form:
8.48528137
…
For this case we must simplify the following expression:
[tex]3 \sqrt {2} +3 \sqrt {8}[/tex]
We rewrite:
[tex]8 = 2 ^ 3 = 2 ^ 2 * 2\\3 \sqrt {2} +3 \sqrt {2 ^ 2 * 2} =[/tex]
For properties of potecnias and roots we have that:
[tex]\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]
Then, rewriting the expression:
[tex]3 \sqrt {2} + 2 * 3 \sqrt {2} =\\3 \sqrt {2} +6 \sqrt {2} =\\9 \sqrt {2}[/tex]
Answer:
[tex]9 \sqrt {2}[/tex]