Answer:
C₃H₄N₂ is the molecular formula
Explanation:
The molecular ion peak is obtained at 68 units, which is the molecular mass of the compound. The even number of nitrogen atoms gives even mass of the molecule. In this problem, the mass is even so there is an even number of nitrogen atoms. It can be either two or four, from which it must be two nitrogen, as four nitrogen atoms will give higher mass. Now, we know that 28 out of 68 units belongs to nitrogen
The number of carbon atoms can also be determined in the same manner. Only one or two carbon atoms will leave much of the remaining units (28 or 16 units respectively) to hydrogen atoms. This leaves the option of three carbon atoms as any number higher than it will give molecular mass more than 68 units.
For hydrogen atoms, only 4 units are remaining this means four hydrogen atoms are present in the molecule. This is possible, if we consider that the compound is cyclic and contains two double bonds.
PS: If we consider two carbon atoms then there will be 16 units left which means sixteen hydrogen atoms. The valency of two carbon and two nitrogen atoms will only allow a maximum of eight hydrogen atoms in the molecule (giving only 60 units).
Imidazole, with a molecular ion of 68, has the molecular formula C3H4N2, determined through understanding the application of the nitrogen rule in mass spectrometry.
Explanation:The molecular formula for the compound imidazole, which contains carbon (C), hydrogen (H), and nitrogen (N), and has a molecular ion of 68, is C3H4N2. According to the nitrogen rule in mass spectrometry, nitrogen contributes either +1 or -1 to the mass, depending on whether the number of nitrogens in the compound is odd or even. Imidazole has an even number of nitrogens, hence the even-mass molecular ion of 68. The makeup of the remaining 68 mass units results from the carbon and hydrogen in the molecule: 3 carbons (each with a mass of 12, for a total of 36) and 4 hydrogens (each with a mass of 1, for a total of 4), and 2 nitrogens (each with a mass of 14, for a total of 28). So, the total mass (36 + 4 + 28) equals 68, aligning with the M+ value.
Learn more about Imidazole here:https://brainly.com/question/34707106
#SPJ3
The production capacity for acrylonitrile (C3H3N) in the United States exceeds 2 million pounds per year. Acrylonitrile, the building block for polyacrylonitrile fibers and a variety of plastics, is produced from gaseous propylene, ammonia, and oxygen.
2C3H6(g) + 2NH3(g) + 3O2(g) → 2C3H3N(g) + 6H2O(g)
(a) What mass of acrylonitrile can be produced from a mixture of 1.14 kg of propylene (C3H6), 1.65 kg of ammonia, and 1.85 kg of oxygen, assuming 100% yield?
(b) What mass of water is produced?
Answer:
a) 1.44 kg
b) 1.47 kg
Explanation:
a) By the reaction given, the stoichiometry, the molar ratio, is:
2 moles of C3H6 : 2 moles of NH3 : 3 moles of O2 : 2 moles of C3H3N : 6 moles of H2O, or 2:2:3:2:6.
By the mixture given, one or two of the reactants may be in excess, so, we must found which of them is the limiting reactant, the reactant that will be totally consumed.
The molar masses of the compounds are:
C3H6 = 42.0 g/mol
NH3 = 17.0 g/mol
O2 = 32.0 g/mol
C3H3N = 53.1 g/mol
H2O = 18.0 g/mol
Thus, the mass ratio between the reactants will be the molar ratio multiplied by the molar mass:
2 moles of C3H6*42.0 g/mol --- 2 moles of NH3*17.0 g/mol -- 3 moles of O2* 32.0 g/mol
84.0 g of C3H6 -- 34.0 g of NH3 -- 96.0 g of O2
Thus, assuming C3H6 as limiting, let's use the rule of three to find out which would be the masses of the other reactants needed:
84.0 g of C3H6 -- 34.0 g of NH3
1.14 kg -- x
84.0x = 38.76 kg
x = 0.46 kg of NH3
Because there's more NH3 than it's required, NH3 is in excess, and C3H6 is limiting. Let's test using O2 as reference:
84.0 g of C3H6 -- 96.0 f of O2
1.14 kg -- x
84.0x = 109.44
x = 1.30 kg of O2
So, O2 is also in excess, and the limiting reactant is C3H6.
Thus, the molar ratio between C3H6 and C3H3N is 2:2, which is simplified by 1:1, and so the mass ratio is 42 g of C3H6 -- 53.1 g of C3H3N, so the mass of acrylonitrile can be found by a rule of three:
42 g of C3H6 -- 53.1 f of C3H3N
1.14 kg -- x
42x = 60.534
x = 1.44 kg
b) The molar ratio between C3H6 and water is 2:6, which can be simplified by 1:3, thus the mass ratio is 1*42g/mol of C3H6 -- 3*18 g/mol of H2O
42 g of C3H6 -- 54 g of H2O
By a rule of three the mass of water is:
42 g of C3H6 -- 54 g of H2O
1.14 kg -- x
42x = 61.56
x = 1.47 kg
Final answer:
The mass of acrylonitrile that can be produced from the given mixture of reactants is approximately 1437.73 g, and the mass of water produced is 1464.68 g, assuming a 100% yield and propylene as the limiting reactant.
Explanation:
Calculating Mass of Acrylonitrile and Water Produced
To answer your questions about the production of acrylonitrile and water, we first need to use the provided stoichiometry and the masses of the reactants. The balanced chemical reaction is:
2C₃H₆(g) + 2NH₃(g) + 3O₂(g) → 2C₃H₃N(g) + 6H₂O(g)
This informs us that two moles of propylene (C₃H₆) react with two moles of ammonia (NH₃) and three moles of oxygen (O₂) to produce two moles of acrylonitrile (C₃H₃N) and six moles of water (H₂O).
Firstly, we determine the number of moles of each reactant:
Propylene (C₃H₆): Molar mass = 42.08 g/mol, Moles = 1140 g / 42.08 g/mol = 27.11 moles
Ammonia (NH₃): Molar mass = 17.031 g/mol, Moles = 1650 g / 17.031 g/mol = 96.91 moles
Oxygen (O₂): Molar mass = 32.00 g/mol, Moles = 1850 g / 32.00 g/mol = 57.81 moles
Since the limiting reactant determines the amount of product formed, we can find it by comparing the mole ratios. In this case, propylene is the limiting reactant. Using the stoichiometry, we calculate the mass of acrylonitrile produced:
Moles of acrylonitrile produced = Moles of propylene used = 27.11 moles
Mass of acrylonitrile produced = Moles of acrylonitrile produced x Molar mass of acrylonitrile = 27.11 moles x 53.06 g/mol = 1437.73 g
For the mass of water produced:
Moles of water produced = 3 x Moles of propylene used = 3 x 27.11 mol = 81.33 moles
Mass of water produced = Moles of water produced x Molar mass of water = 81.33 moles x 18.015 g/mol = 1464.68 g
Assuming 100% yield, we can produce approximately 1437.73 g of acrylonitrile and 1464.68 g of water from the given reactants.
Alkanes with a branch coming off the straight chain are identified as substituted alkanes. What would be the name of a straight chain made of 8 carbons with -CH3 groups on the second and fifth carbons? View Available Hint(s) Alkanes with a branch coming off the straight chain are identified as substituted alkanes. What would be the name of a straight chain made of 8 carbons with -CH3 groups on the second and fifth carbons? 2-methyl-5-methyloctane 2,5-dimethyldecane 2,5-dimethaneoctane 2,5-dimethyloctane
Answer: 2,5-dimethyl octane.
Explanation:
The basic rules for naming of organic compounds are :
1. First select the longest possible carbon chain.
2. The longest possible carbon chain should include the carbons of double or triple bonds.
3. The naming of alkane is done by adding the suffix -ane, alkene by adding the suffix -ene, alkyne by adding the suffix -yne and carboxylic acid by adding the suffix -oic acid.
4. The numbering is done in such a way that first carbon of double or triple bond gets the lowest number.
5. The carbon atoms of the double or triple bond get the preference over the other substituents present in the parent chain.
6. If two or more similar alkyl groups are present in a compound, the words di-, tri-, tetra- and so on are used to specify the number of times of the alkyl groups in the chain.
Thus the name for straight chain made of 8 carbons with [tex]-CH_3[/tex] groups on the second and fifth carbons will be 2,5-dimethyl octane.
The state of system is changed isobarically until itjustbecomes saturated. What is thetemperature of the system?
Answer:
Explanation:Isobaric is a thermodynamic process in which the pressure of the system is zero. It is a process where there is no work done in the system. Therefore the temperature of the system according to the ideal gas law will vary linearly with pressure and inversely with volume.
When hydrogen sulfide reacts with oxygen, water and sulfur dioxide are produced. The balanced equation for this reaction is:
Answer:
2H2S + 3O2 → 2SO2 + 2H2O
Explanation:
Step 1: Data given
Hydrogen sulfide = H2S
Oxygen = O2
sulfur dioxide = SO2
water = H2O
Step 2: The unbalanced equation
H2S + O2 → SO2 + H2O
Step 3: Balancing the equation
H2S + O2 → SO2 + H2O
On the left side we have 2x O (in O2) and on the right side we have 3x O (2x in SO2 and 1x in H2O). To balance the amount of O, we have to multiply O2 (on the left side) by 3 and SO2 and H2O on the right side by 3.
H2S + 3O2 → 2SO2 + 2H2O
On the right side we have 4x H and on the left side we have 2x H. To balance the amount of H, we have to multiply H2S by 2.
Now the equation is balanced.
2H2S + 3O2 → 2SO2 + 2H2O
What happens to the temperature of a mixture of ice and liquid water as heat is applied at a constant rate?
A- The temperature of the mixture increases as the ice melts, and then continues to increase at the same rate once all the ice is melted.
B- It is impossible to predict how the temperature will change unless you know the amount of ice and water that is present before the heating begins
C- The temperature of the mixture slowly increases as the ice melts. Once all the ice has melted, the temperature of the liquid water continues to rise, but at a faster rate.
D- The temperature of the mixture does not change at all until all the ice has melted, at which point it increases at a constant rate.
Answer:
D is the true statement.
Explanation:
Recall that during a phase change the temperature remains constant until all the material has changed its phase. The energy put into the system is utilized to make the phase change, and afterward the temperature of the vliquid will start to increase.
In this case we have a mixture of liquid water and ice at 0ºC ( assume standard pressure) which is the temperature in which liquid water and ice coexist. The ice will melt until consumed at constant T = 0ºC, and then the temperature of the liquid water will start to increase at a uniform rate since we are heating at a constant rate.
Now we are in position to answer this question.
A- False the temperature does not increase as the ice melts.
B- False for the reasons given above.
C- False the temperature does not increase slowly as the ice melts, but remains constant.
D-True the temperature of the mixture does not change until all the ice has melted, and then the temperature of liquid water will start to increase uniformly.
Heat applied to a water-ice mixture initially goes into breaking the hydrogen bonds in ice (latent heat of fusion), without causing a temperature increase. Only after all the ice has melted, the added heat increases the water temperature.
Explanation:The correct option is D: The temperature of the mixture does not change at all until all the ice has melted, at which point it increases at a constant rate. This is because the energy from the heat being applied is first used to break the hydrogen bonds in ice, a process known as latent heat of fusion, which does not involve an increase in temperature. Only after all the ice has melted will the added heat then lead to an increase in the temperature of the water.
Learn more about Heat and Temperature here:https://brainly.com/question/21041726
#SPJ3
Draw the conjugate bases of pyrrole and cyclopentadiene. For pyrrole, please include the N lone pairs. Conjugate Base of Pyrrole: edit structure ... Conjugate Base of Cyclopentadiene
Answer:
Hi
A conjugate acid is a chemical compound formed by the reception of a proton by a base; therefore, it is a base with an added hydrogen ion. On the other hand, a conjugate base is what remains after an acid has donated its proton during a chemical reaction, so it can be said that a conjugate base is a species modified by extracting a proton from an acid.
In pyrrole, the electron pair can be relocated to the ring and its availability is very small. In addition, the concept of aromaticity comes into play.
In the attached file are the schemas of the conjugate bases.
Explanation:
A compound is known to contain only carbon, hydrogen, and oxygen. If the complete combustion of a 0.150-g sample of this compound produces 0.225 g of CO2 and 0.0614 g of H2O, what is the empirical formula of this compound
Answer: the empirical formula is C3H4O3
Explanation:Please see attachment for explanation
Answer:
The answer to your question is C₃H₄O₃
Explanation:
Data
CxHyOz
mass of sample = 0.150 g
mass of CO₂ = 0.225 g
mass of H₂O = 0.0614 g
Reaction
CxHyOz + O₂ ⇒ CO₂ + H₂O
Process
1.- Calculate the moles of C
44 g of CO₂ ----------------- 12 g of C
0.225 g ---------------- x
x = (0.225 x 12) / 44
x = 0.0614 g of C
12 g of C -------------------- 1 mol
0.0614 g of C --------------- x
x = 0.0051 moles of Carbon
2.- Calculate the moles of hydrogen
18 g of H₂O ------------------ 2 g of H
0.0614 g --------------- x
x = 0.0068 g of H
1 g of H ----------------------- 1 mol of H
0.0068 g --------------------- x
x = 0.0068 moles of H
3.- Calculate the mass of Oxygen
Mass of oxygen = 0.150 - 0.0614 - 0.0068
= 0.0818 g
16 g of O ------------------- 1 mol
0.0818 g -------------------- x
x = (0.0818 x 1) / 16
x = 0.0051 moles of O
4.- Divide by the lowest number of moles
Carbon 0.0051 / 0.0051 = 1
Hydrogen 0.0068 / 0.0051 = 1.33
Oxygen 0.0051 / 0.0051 = 1
Multiply these numbers by 3
Carbon 3
Hydrogen = 4
Oxygen = 3
5.- Write the empirical formula
C₃H₄O₃
Which of these is a general feature of the lipid bilayer in all biological membranes?
a) individual lipid molecules are free to diffuse laterally in the surface of the bilayer
b) individual lipid molecules in one monolayer of the bilayer readily diffuse (flip-flop) to the other monolayer.
c) polar, but uncharged, compounds readily diffuse across the bilayer
d) the bilayer is stabilized by covalent bonds between neighboring phospholipid molecules.
e) the polar head groups face inward toward the inside of the bilayer
A
Individual lipid molecules are free to diffuse laterally in the surface of the bilayer is a general feature of the lipid bilayer in all biological membranes
Explanation:
The inside of the bilipid layer of the cell membrane of cells is made of fatty acid chains and cholesterol which are nonpolar molecules. they are sandwiched between the polar (glycerol) ends of the chains because they are hydrophobic and cannot interact with the ‘watery’ extracellular fluids. Non-polar molecules like lipids can easily diffuse laterally, within this lipid layers of the membrane because non-polar molecules interact well with other nonpolar molecules.
Learn More:
For more on the bilipid layers of cells check out;
https://brainly.com/question/2011453
https://brainly.com/question/1457466
https://brainly.com/question/2011432
https://brainly.com/question/7435492
#LearnWithBrainly
In the arrangement of particles within any atom, the outermost sort of particle is always the:________
Answer:
In the arrangement of particles within any atom, the outermost sort of particle is always the electron.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other.
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e-
Mass= 9.10938356×10-31 Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
While neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P+
Symbol of neutron= n0
Mass of proton=1.672623×10-27 Kg
Mass of neutron=1.674929×10-27 Kg
In any atom, the outermost type of particle is the electron, specifically the valence electrons in the outermost shell. These electrons play a significant role in chemical reactions and bonding properties of the element. The organization of the Periodic Table reflects patterns in valence electron configurations that correspond to chemical behaviors.
Explanation:In the arrangement of particles within any atom, the outermost sort of particle is always the electron. Electrons are the smallest of the three types of sub-atomic particles, carrying a negative charge and occupying the space outside the atomic nucleus. Inside the nucleus, much larger particles—protons and neutrons—are found, with protons having a positive charge and neutrons being electrically neutral.
The outermost electrons are of particular importance because they are the valence electrons. These are the electrons that reside in the outermost shell, or valence shell, of an atom in its uncombined state, and they play critical roles in determining the chemical properties of an element as well as its ability to form bonds with other atoms. The electron configuration of an atom is notably important because atoms with the same outer electron configurations tend to show similar chemical behavior, as demonstrated in the organization of the Periodic Table.
The number of valence electrons in the outermost shell can define an element's chemical reactivity and the types of bonds it can form. The arrangement of electrons in atoms means that the electrons with the highest energy levels, which are the valence electrons, are more likely to interact in chemical reactions than the core electrons which are closer to the nucleus and have lower energy levels.
Which concepts can be used to explain the difference in acidicty between ethanol and 2-fluoroethanol?
Answer:
The answer is Inductive effect
Explanation:
To determine the acidity or alkalinity of an organic compound. We have to keep in mind that the whole analysis is based on the comparison between the compounds, and we must work with the conjugated base of the molecule. Keeping in mind, the more unstable the base, the less acidic the molecule is. Thus, to determine instability, the Inductive Effect of the molecule can be used.
This type of effect occurs when atoms of different electronegativities are linked or very close in the compound. The most electronegative atom has a tendency to bring electrons close to it, thus creating a dipole. This dipole can have a stabilizing effect on the molecule, as it “relieves” the excessive charge on some occasions, better accommodating the charges.
However, in some cases, instead of chains with chlorine radicals, we may have chains with methyl radicals. This has a major impact on the inductive effect, keeping in mind that alkyl groups are electron donors.
Suppose an EPA chemist tests a 250.0 ml sample of groundwater known to be contaminated with nickel(II) chloride, which would react with silver nitrate solution like this:
NiCl_2(aq) + 2AgNO_3 (aq) -------> AgCl (s) + Ni(NO_3)_2 (aq)
The chemist adds 58.0m silver nitrate solution to the sample until silver chloride stops forming. He then washes, dries, and weighs the precipitate. He finds he has collected of 3.6 mg of silver chloride.
1. Calculate the concentration of nickel(II) chloride contaminant in the original groundwater sample. Round your answer to 2 significant digits.
Final answer:
The concentration of the nickel(II) chloride contaminant in the groundwater sample is 5.0 x 10^-5 M, calculated by determining the moles of AgCl precipitate and its relation to NiCl2 through the stoichiometry of the reaction.
Explanation:
To calculate the concentration of nickel(II) chloride in the original groundwater sample, we need to use the information about the precipitate of silver chloride formed during the reaction. First, we must determine the moles of AgCl produced using its molar mass. The molar mass of AgCl is 143.32 g/mol, and we have 3.6 mg, or 0.0036 g of AgCl:
Moles of AgCl = mass (g) / molar mass (g/mol) = 0.0036 g / 143.32 g/mol = 2.51 x 10-5 moles
From the balanced chemical equation, we know that 1 mole of NiCl2 reacts with 2 moles of AgNO3 to produce 2 moles of AgCl. Therefore, the moles of NiCl2 present in the reaction will be half the moles of AgCl:
Moles of NiCl2 = 1/2 * Moles of AgCl = 1/2 * 2.51 x 10-5 moles = 1.255 x 10-5 moles
To find the concentration of NiCl2, we divide the moles of NiCl2 by the volume in liters:
Concentration of NiCl2 = moles / volume (L) = 1.255 x 10-5 moles / 0.250 L = 5.02 x 10-5 M
Therefore, the concentration of the nickel(II) chloride contaminant in the groundwater sample is 5.0 x 10-5 M, rounded to two significant digits.
Final answer:
The concentration of nickel(II) chloride in the original groundwater sample is calculated to be approximately 1.63 mg/L, based on the mass of the AgCl precipitate produced in the reaction with silver nitrate.
Explanation:
Calculating the Concentration of Nickel(II) Chloride
To calculate the concentration of nickel(II) chloride in the original groundwater sample, we first need to understand the reaction that takes place between nickel(II) chloride and silver nitrate to form silver chloride (AgCl) precipitate:
NiCl2(aq) + 2AgNO3(aq) → 2AgCl(s) + Ni(NO3)2(aq).
From the balanced equation, we see that one mole of NiCl2 reacts with two moles of AgNO3 to yield two moles of AgCl. The mass of the collected AgCl precipitate is given as 3.6 mg.
The molar mass of AgCl is 143.32 g/mol. Since we have 3.6 mg (or 0.0036 g) of AgCl, we can calculate the number of moles:
Moles of AgCl = mass (g) / molar mass (g/mol) = 0.0036 g / 143.32 g/mol ≈ 2.51 x 10-5 mol AgCl.
Since the ratio of AgCl to NiCl2 in the reaction is 2:1, there were half as many moles of NiCl2 as there were of AgCl in the original sample:
Moles of NiCl2 = 0.5 x Moles of AgCl = 0.5 x 2.51 x 10-5 mol ≈ 1.255 x 10-5 mol NiCl2.
The volme of the groundwater sample was 250.0 mL, or 0.250 L. The concentration (C) of NiCl2 in moles per liter (mol/L) is:
Concentration of NiCl2 = Moles of NiCl2 / Volume (L) = 1.255 x 10-5 mol / 0.250 L = 5.02 x 10-5 mol/L.
To convert this into mg/L (knowing that the molar mass of NiCl2 is 129.6 g/mol), we have
Mass (mg) = Moles x molar mass (g/mol) x 1000 mg/g = 1.255 x 10-5 mol x 129.6 g/mol x 1000 mg/g ≈ 1.63 mg.
Therefore, the concentration of NiCl2 in the groundwater sample is roughly 1.63 mg/L.
Calculate the volume in liters of a potassium iodide solution that contains of potassium iodide . Be sure your answer has the correct number of significant digits.
The volume of a potassium iodide solution with a concentration of 0.0380 M and containing 150 g of potassium iodide is 3.95 L, rounded to three significant digits.
To calculate the volume V of a solution, you can use the formula:
[tex]\[ V = \frac{\text{mass of solute}}{\text{molarity}} \][/tex]
Given that the molarity M is [tex]\(0.0380 \, \text{M}\)[/tex] and the mass of potassium iodide is [tex]\(150 \, \text{g}\)[/tex], substitute these values into the formula:
[tex]\[ V = \frac{150 \, \text{g}}{0.0380 \, \text{M}} \]\[ V = 3947 \, \text{mL} \][/tex]
Since the answer should have the correct number of significant digits, the volume is [tex]\(3.95 \, \text{L}\)[/tex] (rounded to three significant digits).
For more questions on potassium iodide:
https://brainly.com/question/2913015
#SPJ3
The complete question is:
Calculate the volume in liters of a 0.0380M potassium iodide solution that contains 150 g of potassium iodide. Be sure your answer has the correct number of significant digits.
At 25 oC, the vapor pressure of water is 23.8 torr and the heat of vaporization is 43.9 kJ/mol. Calculate the vapor pressure of water at 50. oC
Answer: The vapor pressure of water at [tex]50^0C[/tex] is 93.8 torr
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:
[tex]ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}(\frac{1}{T_1}-\frac{1}{T_2})[/tex]
where,
[tex]P_1[/tex] = initial pressure at [tex]25^oC[/tex] = 23.8 torr
[tex]P_2[/tex] = final pressure at [tex]50^oC[/tex] = ?
[tex]\Delta H_{vap}[/tex] = enthalpy of vaporisation = 43.9 kJ/mol = 43900 J/mol
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = [tex]25^oC=273+25=298K[/tex]
[tex]T_2[/tex] = final temperature = [tex]50^oC=273+50=323K[/tex]
Now put all the given values in this formula, we get
[tex]\log (\frac{P_2}{23.8}=\frac{43900}{2.303\times 8.314J/mole.K}[\frac{1}{298K}-\frac{1}{323K}][/tex]
[tex]\frac{P_2}{23.8}=antilog(0.5955)[/tex]
[tex]P_2=93.8torr[/tex]
Therefore, the vapor pressure of water at [tex]50^0C[/tex] is 93.8 torr
Calculate the pH of a polyprotic acid given and sketch the titration curves for the following reaction:
A 20.0-mL aliquot of 0.100M of a tartaric acid with 0.100M NaOH
pKa1 = 2.3 pKa2= 4.3
Please calculate the pH when:
1- initial, 0mL of NaOH added
2-pH at first 1/2 equivalence point
3-pH at first equivalence point
4-pH at second 1/2 equivalenec point
5-pH at second equivalence point
6-pH afteter the second equivalence point
Answer: (1). pH = 1.70
(2). pH = 2.3
(3). pH = 3.3
(4). pH = 4.3
(5). pH = 8.41
(6). pH = 10.22
Explanation:
we assume that the formula representation of acid is H₂A
the titration curve has reasonably sharp breaks at both equivalence points, corresponding to the reactions;
H₂A + OH⁻ → HA⁻ + H₂O
HA⁻ + OH⁻ → A²⁻ + H₂O
the volume of NaOH (V₀) at the first equivalent point is,
V₀ = (20.0 mL)(0.100M) / 0.100M = 20.0mL
where volume of NaOH at 1/2 equivalent point is,
V₀/2 = 10.0mL
also Volume of NaOH at the second equivalence (2V₀) point is 40.0mL
the volume of NaOH at 1/2 second equivalent point is,
V₀ + V₀/2 = 30.0mL
Volume of NaOH after second equivalence exceeds 40mL
therefore, at 0 mL NaOH addition;
where the extent of ionization is assumed to be x, we have
H₂A ⇆ HA⁻ + H⁺
where initial: 0.1 M - -
change: -x +x +x
Equili: 0.1-x x x
Kаl = [HA⁻][H⁺] / [H₂A]
10⁻²³ = (x)(x) / (0.1-x)
x = 0.020
[H⁺] = 0.020 M
pH = -log [H⁺]
pH = -log(0.020)
pH = 1.70
(2). at 10 mL NaOH addition
[H₂A]ini = 0.10 M * 20.0 mL = 2 mmol
[OH⁻] = 0.1 M * 10 mL = 1 mmol
after reaction:
[H₂A] = 1 mmol
[H⁻] = 1 mmol
pH = pKa₁ + log [HA⁻] / [[HA⁻]
pH = 2.3 + log 1mmol / 1mmol
pH = 2.3
(3). pH at the first equivalence point is,
pH = 1/2 (pKa₁ + pKa₂)
pH = 1/2(2.3 + 4.3) = 3.3
pH = 3.3
(4). pH at the second 1/2 equivalence point is
pH = pKa₂ = 4.3
pH = 4.3
(5). pH at the second equivalence point;
all H₂A is converted into A²⁻
[A²⁻] = initial moles of H₂A / total volume = (20.0 mL)(0.10 M) / (20.0 + 40.0) mL = 0.033 M
at equilibrium:
A²⁻ + H²O ⇆ HA⁺ OH⁻
0.033 - x
from the Kb₁ expression,
Kb₁ = [OH⁻][HA⁻] / [A²]
Kw/Ka₂ = x²/(0.0333 - x)
10⁻¹⁴/10⁻⁴³ = x²/(0.0333 - x)
x = 2.57 * 10⁻⁶
[OH⁻] = 2.57 * 10⁻⁶M
pH = -log Kw/[OH⁻] = 8.41
pH = 8.41
(6). pH after second equivalence point;
assuming the volume of NaOH is 40.10 mL
after second equivalence point OH⁻ in excess
[OH⁻] = 0.10 M * 0.10 mL / (20 + 40.10) mL = 1.66 * 10⁻⁴ M
pH = 0=-log Kw/[OH⁻] = 10.22
pH = 10.22
Calculate the mass of oxygen (in mg) dissolved in a 4.97 L bucket of water exposed to a pressure of 1.08 atm of air. Assume the mole fraction of oxygen in air to be 0.21 and the Henry's law constant for oxygen in water at this temperature to be 1.3 × 10-3 M/atm O2. (Enter your value using three significant figures.)
Answer:
46.9mg of oxygen
Explanation:
From Henry's law,
Concentration of oxygen (C) = Henry's constant (K) × partial pressure of oxygen in air (p)
K = 1.3×10^-3M/atm O2, p = mole fraction of oxygen in air × pressure of air = 0.21×1.08atm = 0.2268atm
C = K×p = 1.3×10^-3 × 0.2268 = 0.00029484M of O2
Concentration (C) = number of moles of oxygen (n)/volume of water (V)
Volume of water (V) = 4.97L
n = CV = 0.00029484 × 4.97 = 0.001465mole
number of moles (n) = mass of O2/MW of O2
mass of O2 = number of moles of O2 × MW of O2 = 0.001465mole × 32g/mole = 0.0469g = 0.0469×1000mg = 46.9mg (to three significant figures)
All of the elements below can exist as network solids EXCEPT 1. As 2. B 3. Si 4. O 5. C
Answer:
4. Oxygen
Explanation:
Calculation of Molar Ratios of Conjugate Base to Weak Acid from pH For a weak acid with a pKa of 6.0, calculate the ratio of conjugate base to acid at a pH of 5.0.
Choice of Weak Acid for a Buffer Which of these com-pounds would be the best buffer at pH 5.0: formic acid (pKa 5 3.8), acetic acid (pKa 5 4.76), or ethylamine (pKa 5 9.0)? Briefly justify your answer.
Explanation:
According to the Handerson equation,
pH = [tex]pK_{a} + log \frac{\text{salt}}{\text{acid}}[/tex]
or, pH = [tex]pK_{a} + log \frac{\text{conjugate base}}{\text{acid}}[/tex]
Putting the given values into the above equation as follows.
pH = [tex]pK_{a} + log \frac{\text{conjugate base}}{\text{acid}}[/tex]
5.0 = 6.0 + log \frac{\text{conjugate base}}{\text{acid}}[/tex]
[tex]log \frac{\text{conjugate base}}{\text{acid}}[/tex] = -1.0
or, [tex]\frac{\text{conjugate base}}{\text{acid}} = 10^{-1.0}[/tex]
= 0.1
Therefore, we can conclude that molar ratios of conjugate base to weak acid for given solution is 0.1.
The molar ratio of conjugate base to acid for a weak acid at pH 5.0 with a pKa of 6.0 is 0.1. Among formic acid, acetic acid, and ethylamine, the best buffer at pH 5.0 would be acetic acid due to its pKa being closest to 5.0.
Explanation:The calculation of molar ratios of conjugate base to weak acid from pH and the choice of a weak acid for a buffer can be accomplished by using the Henderson-Hasselbalch equation, which is pH = pKa + log([A-]/[HA]).
Firstly, for a weak acid with a pKa of 6.0 at a pH of 5.0, the ratio of conjugate base ([A-]) to acid ([HA]) can be calculated by rearranging this equation to [A-]/[HA] = 10^(pH-pKa) = 10^(5.0-6.0) = 0.1. So the ratio of conjugate base to acid is 0.1.
Secondly, the choice of weak acid for a buffer at pH 5.0 is ideally the one with a pKa closest to the desired pH. In this case, acetic acid with a pKa of 4.76 would be the best buffer since its pKa is closest to the pH of 5.
https://brainly.com/question/32396139
#SPJ3
A solution containing 500,000 units of polymyxin B sulfate in 10 mL of sterile water for injection is added to 250 mL of 5% dextrose injection. T he infusion is to be administered over 2 hours. If the administration set delivers 15 drops/mL, at what rate, in drops per minute, should the flow be adjusted to administer the infusion over the designated time interval?
Explanation:
It is given that the total units of polymixn B silfate are present as follows.
(10 + 250) ml = 260 ml
Therefore, total volume necessary to inject the whole volume is as follows.
[tex]260 \times 15[/tex] drops
= 3900
It is given that total time required to inject the solution is 2 hours. Converting it into minutes as follows.
[tex]2 hrs \times \frac{60 min}{1 hr}[/tex]
= 1200 minutes
Hence, rate of injection is calculated as follows.
Rate of injection (r) = [tex]\frac{\text{total drops}}{\text{total time}}[/tex]
r = [tex]\frac{3900}{120}[/tex]
= 32.5 drops/min
Thus, we can conclude that the rate of injection is 32.5 drops/min.
To infuse 260 mL of solution over 2 hours with a drop factor of 15 drops/mL, the flow rate should be adjusted to 32.5 drops per minute.
Explanation:We need to calculate the rate at which the solution should be administered in order to complete the infusion over 2 hours. First, we look at the total volume of the solution to be infused which is 250 mL of 5% dextrose injection plus the initial 10 mL, making it 260 mL in total. To calculate the rate, we'll use the formula:
Rate (drops/min) = Total volume (mL) × Administration set drop factor (drops/mL) ÷ Time (min)
Since we are told that the administration set delivers 15 drops/mL and that the infusion needs to be administered over 2 hours (which is 120 minutes), we can substitute the values into the formula:
Rate (drops/min) = (260 mL) × (15 drops/mL) ÷ (120 min)
After calculating, we find:
Rate (drops/min) = 32.5 drops/min
Note: This calculation is based on the student's given values and intended to demonstrate the process of determining the flow rate for an IV infusion.
Using the Bohr model, determine the energy, in joules, necessary to ionize a ground-state hydrogen atom. Show your calculations.
Answer:
The energy required to ionize the ground-state hydrogen atom is 2.18 x 10^-18 J or 13.6 eV.
Explanation:
To find the energy required to ionize ground-state hydrogen atom first we calculate the wavelength of photon required for this operation.
It is given by Bohr's Theory as:
1/λ = Rh (1/n1² - 1/n2²)
where,
λ = wavelength of photon
n1 = initial state = 1 (ground-state of hydrogen)
n2 = final state = ∞ (since, electron goes far away from atom after ionization)
Rh = Rhydberg's Constant = 1.097 x 10^7 /m
Therefore,
1/λ = (1.097 x 10^7 /m)(1/1² - 1/∞²)
λ = 9.115 x 10^-8 m = 91.15 nm
Now, for energy (E) we know that:
E = hc/λ
where,
h = Plank's Constant = 6.625 x 10^-34 J.s
c = speed of light = 3 x 10^8 m/s
Therefore,
E = (6.625 x 10^-34 J.s)(3 x 10^8 m/s)/(9.115 x 10^-8 m)
E = 2.18 x 10^-18 J
E = (2.18 x 10^-18 J)(1 eV/1.6 x 10^-19 J)
E = 13.6 eV
A binary compound created by reaction of chromium and an unknown element E contains 68.47% Cr and 31.53% E by mass. If the formula of the compound is Cr2E3, calculate the atomic mass of E.
Answer: The atomic mass of E is 16
Explanation:Please see attachment for explanation
Answer:
The molar mass of E = 15.96 g/mol
Explanation:
Step 1: Data given
The compound Cr2E3 contains 68.47 % Cr and 31.53 % E
The molar mass of Cr = 52 g/mol
⇒ 2*52 = 104 g/mol
The molar mass of Cr2E3 = 2*52 g/mol + 3X
Step 2: Calculate mass of Cr2E3
Cr is 68.47 %
Mass of Cr = 104 grams
Cr2E3 is 100%
Mass of Cr2E3 = 151.89 grams
Molar mass of Cr2E3 = 151.89 g/mol
Step 3: Calculate mass of E
Mass of E3 = mass of Cr2E3 - mass of Cr
Mass of E3 = 151.89 grams - 104 grams
Mass of E3= 47.89 grams
Mass of E = 15.96 grams
The molar mass of E = 15.96 g/mol
Calculate Δ G for ATP hydrolysis in liver at 18 °C. Use the liver concentrations from the first question.
This question is incomplete and the full question can be seen below:
b) Calculate ΔG for ATP hydrolysis in liver at 18° C. Use the liver concentration From part a.
The equation for the ATP hydrolysis is:
H₂0
ATP ------------> ADP + P₁ ΔG = -30.5 [tex]\frac{KJ}{mol}[/tex]
a) calculate ΔG for ATP hydrolysis to rank the following conditions from most favorable to least favorable. Assume a temperature of 37.0° C, R = 8.315 [tex]\frac{J}{mol.k}[/tex]
muscle: [ATP]= 8.1mM; [ADP]= 0.9mM; [P₁]= 8.1mM
liver: [ATP]= 3.4mM; [ADP]= 1.3mM; [P₁]= 4.8mM
brain: [ATP}= 2.6mM; [ADP}= 0.7mM; [P₁]= 2.7mM
b) Calculate ΔG for ATP hydrolysis in liver at 18° C. Use the liver concentration From part a.
Answer:
−45.8 KJ/mol
Explanation:
Equilibrium constant (k) is defined as a measure of the ratio of the equilibrium concentration of the products of a reaction, to the Equilibrium concentration of the reactants with each concentration raised to the power corresponding to the coefficient in the balanced equation of the reaction.
In the reaction in the question given above;
[tex]K=\frac{[ADP][P_1]}{ATP}[/tex]
For muscle;
ADP= 0.9 × 10⁻³
P₁= 8.1 × 10⁻³
ATP= 8.1 × 10⁻³
∴ K = [tex]\frac{(0.9*10^-3)(8.1*10^-3)}{(8.1*10^-3)}[/tex]
K = 0.9 × 10⁻³
For liver;
ADP= 1.3 × 10⁻³
P₁= 4.8 × 10⁻³
ATP= 3.4 × 10⁻³
∴ K = [tex]\frac{(1.3*10^-3)(4.8*10^-3)}{(3.4*10^-3)}[/tex]
K = 1.8 × 10⁻³
For brain;
ADP= 0.7 × 10⁻³
P₁= 2.7 × 10⁻³
ATP= 2.6 × 10⁻³
∴ K = [tex]\frac{(0.7*10^-3)(2.7*10^-3)}{(2.6*10^-3)}[/tex]
K = 7.3 × 10⁻⁴
b) Since we are concerned about calculating ΔG for ATP hydrolysis in liver at 18° C and we've already obtained the liver concentration from part a; we can therefore calculate ΔG as:
ΔG = ΔG° + RTInK
ΔG° = -30.5
R= 8.315 [tex]\frac{J}{mol.k}[/tex]
T= 18° C = 18 + 273.15k = 291.15k
K= 1.8 × 10⁻³
InK = In(1.8 × 10⁻³ )
≅ -6.32
∴ ΔG = -30.5 + 8.315 [tex]\frac{J}{mol.k}[/tex] × 291.15k × (-6.32)
ΔG = -30.5 + (−15.30016542)
ΔG = −45.80016542
ΔG ≅ −45.8 KJ/mol
Change in free energy for ATP hydrolysis at 18 degree Celsius is -45.8 kJ.
The equation for the ATP hydrolysis is,
[tex]\bold {ATP \rightarrow ADP + Pi }[/tex] ΔG = -30.5 kJ/mol at STP
Change in free energy for ATP hydrolysis in liver at 18° C can be calculated by the formula,
[tex]\bold {\Delta G = \Delta G^o + RT \times lnK}[/tex]
Where,
ΔG° - Free energy at STP = -30.5
R - gas constant = 8.315
T - temperature in Kelvin = 18° C = 18 + 273.15k = 291.15k
K - Equilibrium constant = 1.8 × 10⁻³
In K = In(1.8 × 10⁻³ ) = -6.32
Put the values in the formula,
[tex]\bold {\Delta G = -30.5 + 8.315 \times 291.15 \times (-6.32)}\\\\\bold {\Delta G = -30.5 + (- 15.3)}\\\\\bold {\Delta G = - 45.8 KJ}\\\\[/tex]
Therefore, change in free energy for ATP hydrolysis at 18 degree Celsius is -45.8 kJ.
To know more about Free energy,
https://brainly.com/question/15319033
What is the strongest intermolecular force present in SO2? (EN Values: S = 2.5; O = 3.5). Please explain!
Ion-Dipole force
Hydrogen-Bond
Dipole-Dipole force
Dispersion forces (London dispersion)
Covalent Bond
Answer:
Dipole-Dipole force
Explanation:
Dipole - Dipole force -
These are the force of attraction , that occurs between two dipole , i.e. ,a species with two poles , hence , the attraction between the delta positive charge of first species with the delta negative charge of the second species , arises to a dipole - dipole force of attraction.
Hence, from the question,
SO₂ , is a polar compound , where O is more electronegative in comparison to S , thus , O attains a delta negative charge and S attains a delta positive charge and therefore , generates a dipole , and interacts with the dipole of the second molecule of SO₂ , arising a dipole - dipole force of attraction .
Calculate the extinction coefficient where the concentration is in mg/ml and the path length is 1 cm. What dilutions of the stock are each of the prepared solutions (i.e., 1/x)?
The molecular weight of A is 290 g/mole.
Re-calculate the extinction coefficient with the concentration in mM. Note that the newly calculated extinction coefficient will contain an mM-1 term.
Complete Question
The complete question is show on the first uploaded image
Answer:
This is shown on the second,third , fourth and fifth image
Explanation:
This is shown on the second,third , fourth and fifth image
Which of the following correctly describes the nature of the transition state of the rate-determining step of the free-radical bromination of methane? a. the transition state resembles the products more than the reactants b. the transition state equally resembles products and reactants c. the transition state resembles the reactants more than the products
Answer:
the transition state will resemble the products more than the reactants
Explanation:
Since the free-radical bromination of methane involves the following reactions
Br₂ → 2 Br• , ΔH⁰ (per mole) = +192 kJ , Ea (per mole) = + 192 kJ
CH₄ +Br• → CH₃• + HBr , ΔH⁰ (per mole) = +67 kJ , Ea (per mole) = + 75 kJ
CH₃• +Br₂ → CH₃Br + Br• , ΔH⁰ (per mole) = -101 kJ , Ea (per mole) = -4 kJ
without considering the Br dissociation (initiation reaction) the rate-determining step is the second equation ( highest Ea) .
Then since the reaction is endothermic (ΔH⁰ (per mole) = +67 kJ) , the transition state will resemble the products more than the reactants ( Hammond postulate)
The free-radical bromination of methane's transition state resembles both the products and reactants equally. This similarity arises due to the formation and subsequent decay of the high-energy transition state that exists between reactants and products. The reaction's activation energy is always positive and its exothermic nature results in a decrease in system enthalpy.
Explanation:In the free-radical bromination of methane, the nature of the transition state of the rate-determining step is closest to option b. The transition state resembles both the products and reactants equally. This is because during the process, reactant molecules with enough energy collide to form a high-energy activated complex or transition state. This transition state then decays to yield stable products, maintaining similarities to both the initial reactants and final products.
As per chemical kinetics, the reaction diagram indicating this process highlights the activation energy, Eå, as the energy difference between the reactants and the transition state. The enthalpy change of the reaction, ΔH, is evaluated as the energy difference between the reactants and products. Here, the reaction is exothermic (ΔH < 0) as it results in a decrease in system enthalpy.
Understanding that the activation energy is always positive in these reactions, regardless of whether the reaction is exergonic (releases energy) or endergonic (absorbs energy), further supports the resemblance between the transition state and both reactants and products.
Learn more about Transition State here:https://brainly.com/question/32609879
#SPJ11
Devise a stepwise synthesis of the following compound from dicyclopentadiene using a Diels-Alder reaction as one step.You may also use organic compounds having ≤ 4 C's, and any required organic or inorganic reagents.
The desired compound using a stepwise approach from dicyclopentadiene and incorporating a Diels-Alder reaction .
Step 1: Diels-Alder Reaction
In the Diels-Alder reaction, dicyclopentadiene (DCPD) will react with a suitable dienophile to form the desired cycloadduct. The dienophile you choose should have a functional group that can be further manipulated to achieve the final compound. Let's select maleic anhydride (C4H2O3) as the dienophile, which can react with DCPD to yield a cycloadduct.
The reaction would look like this:
Dicyclopentadiene + Maleic Anhydride → Cycloadduct
Step 2: Functionalization of the Cycloadduct
The cycloadduct formed in the Diels-Alder reaction will contain the necessary functional groups for further manipulation. In this case, you want to introduce additional substituents or functional groups.
For example, you can introduce an alcohol group (-OH) through a nucleophilic addition reaction. You can do this by treating the cycloadduct with a strong base (e.g., sodium hydroxide, NaOH) and water (H2O) to open the anhydride ring and form a carboxylic acid intermediate. Then, you can reduce the carboxylic acid using a reducing agent (e.g., lithium aluminum hydride, LiAlH4) to obtain the alcohol group.
The reaction sequence would look like this:
Cycloadduct + NaOH + H2O → Carboxylic Acid Intermediate
Carboxylic Acid Intermediate + LiAlH4 → Alcohol Group
Step 3: Further Functionalization
Depending on your specific requirements, you can further modify the alcohol group by various organic reactions such as esterification, acylation, or oxidation, among others, to achieve the desired final compound.
This stepwise synthesis should allow you to obtain the desired compound from dicyclopentadiene, using a Diels-Alder reaction as one of the key steps. Keep in mind that the reaction conditions and reagents may need to be optimized based on the specific compound you are targeting. Always follow safety guidelines and consult relevant chemical literature for detailed reaction conditions.
Learn more about oxidation here:
https://brainly.com/question/25551544
#SPJ6
To synthesize the given compound from dicyclopentadiene, a stepwise approach involving a Diels-Alder reaction can be followed. First, dicyclopentadiene is converted to cyclopentadiene. Then, cyclopentadiene reacts with maleic anhydride to form the Diels-Alder adduct.
Explanation:A stepwise synthesis of the given compound from dicyclopentadiene using a Diels-Alder reaction as one step can be achieved as follows:
First, convert dicyclopentadiene to cyclopentadiene by removing one cyclopentane ring.React cyclopentadiene with maleic anhydride in the presence of a dienophile catalyst to form the Diels-Alder adduct.Finally, the Diels-Alder adduct can be subjected to various functional group transformations and modifications to obtain the desired compound.Note that the specific reagents and conditions for each step may vary depending on the desired compound and the available starting materials. Finally, the adduct can be further modified to obtain the desired compound.
Learn more about Diels-Alder reaction here:https://brainly.com/question/30751490
#SPJ6
Two beakers contain clear. colorless liquids. When the contents of the beakers are mixed a white solid is formed, (a) Is this an example of a chemical or a physical change? (b) What would be the most convenient way to separate the newly formed white solid from the liquid mixture-filtration, distillation, or chromatography.
Answer:
1) chemical change
2) filtration
Explanation:
A chemical change involves the formation of a new substance. In this case, the pure white solid formed is an entirely new substance, with a different chemical identity from those of the two solutions mixed to form it. The new solid is a precipitate. Precipitates are easily separated by filtration of the reaction mixture. Another name for chemical change is chemical reaction.
1) This is an example of chemical change.
2) The most convenient way to separate the newly formed white solid from the liquid mixture is filtration
What is a Chemical change?A chemical change involves the formation of a new substance. In this case, the pure white solid formed is an entirely new substance, with a different chemical identity from those of the two solutions mixed to form it. The new solid is a precipitate. Precipitates are easily separated by filtration of the reaction mixture. Another name for chemical change is chemical reaction.
The most convenient way to separate the newly formed white solid from the liquid mixture is filtration since precipitates are formed.
Find more information about Chemical change here:
brainly.com/question/1222323
"What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0"
Q: What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0 °C? (Lf = 3.34 x 105 J/kg)
Answer:
-3670.33 J/K
Explanation:
Entropy: This can be defined as the degree of randomness or disorderliness of a substance. The S.I unit of Entropy is J/K.
Mathematically, change of Entropy can be expressed as,
ΔS = ΔH/T ....................................... Equation 1
Where ΔS = Change of entropy, ΔH = heat change, T = temperature.
ΔH = -(Lf×m).................................... Equation 2
Note: ΔH is negative because heat is lost.
Where Lf = latent heat of ice = 3.34×10⁵ J/kg, m = 3.0 kg, m = mass of water = 3.0 kg
Substitute into equation
ΔH = -(3.34×10⁵×3.0)
ΔH = - 1002000 J.
But T = 0 °C = (0+273) K = 273 K.
Substitute into equation 1
ΔS = -1002000/273
ΔS = -3670.33 J/K
Note: The negative value of ΔS shows that the entropy of water decreases when it is changed to ice at 0 °C
The change in entropy for 3.0 kg of water changing into ice at 0 degrees Celsius is approximately 3658 J/K. This is calculated using the formula for entropy change and the known values for the heat of fusion for water and the temperature in Kelvin.
Explanation:The change in entropy during a phase transition, such as the one from water to ice, can be calculated using the formula ΔS = Q/T, where ΔS is the change in entropy, Q is the heat involved during the phase transition, and T is the temperature in Kelvin. For the given scenario, the phase change is from liquid to solid (freezing), and the heat involved (Q) is equal to the mass multiplied by the heat of fusion for water. The heat of fusion for water is 333.55 J/g and the temperature (T) at which this change occurs is 0 degrees Celsius or 273.15 Kelvin. The mass is 3.0 kg or 3000g. Therefore, Q = 3000g x 333.55J/g = 999150 J. Substituting these values in our formula, ΔS = 999150 J / 273.15 K ≈ 3658 J/K.
Learn more about Entropy Change here:https://brainly.com/question/32484278
#SPJ12
371. mg of an unknown protein are dissolved in enough solvent to make 5.00 ml of solution. The osmotic pressure of this solution is measured to be at 0.118 atm at 25 C
Calculate the molar mass of the protein.
Answer:
mm protein = 15365.8183 g/mol
Explanation:
∴ molar mass (mm) ≡ g/mol
osmotic pressure (π) = C RT∴ π = 0.118 atm
∴ T = 25°C ≅ 298 K
∴ concentration (C ) [=] mol/L
∴ mass protein = 371 mg = 0.371 g
∴ volume sln = 5.00 mL = 5 E-3 L
⇒ C = π / RT = (0.118 atm)/((0.082 atm.L/K.mol)(298 K))
⇒ C = 4.8289 E-3 mol/L
⇒ mol protein = (4.8289 E-3 mol/L)×(5 E-3 L) = 2.4145 E-5 mol
⇒ mm protein = (0.371 g)/(2.4145 E-5 mol) = 15365.8183 g/mol
Final answer:
To find the molar mass of the protein, we begin by converting mass to grams and volume to liters, and then apply the van 't Hoff equation for osmotic pressure. After rearranging the equation, we calculate the molar mass using the given osmotic pressure, volume, temperature, and ideal gas constant.
Explanation:
To calculate the molar mass of the protein using the osmotic pressure, we can use the van 't Hoff equation for osmotic pressure, Π = MRT, where Π is the osmotic pressure, M is the molarity of the solution, R is the ideal gas constant, and T is the temperature in Kelvin. In this scenario, the student provided the mass of the protein (371 mg), the volume of the solution (5.00 mL), the osmotic pressure (0.118 atm), and the temperature at which the osmotic pressure was measured (25 °C which is 298.15 K).
First, convert the mass of the protein to grams:
371 mg = 0.371 g
Next, convert the volume from mL to liters:
5.00 mL = 0.005 L
Now, calculate the molarity (M) of the protein:
Number of moles = mass (g) / molar mass (g/mol)
As we do not know the molar mass yet, let's call it 'Mm'. The molarity (concentration) of the solution is:
Molarity (M) = Number of moles / Volume (L) = (mass (g) / Mm (g/mol)) / Volume (L)
Convert the temperature to Kelvin:
25 °C = 298.15 K
Using the van 't Hoff equation, we solve for the molar mass (Mm):
Π = (mass (g) / Mm (g/mol)) / Volume (L) × R × T
0.118 atm = (0.371 g / Mm (g/mol)) / 0.005 L × 0.0821 (L·atm/K·mol) × 298.15 K
Rearranging the equation and solving for Mm gives us:
Mm = (0.371 g / 0.005 L) / (0.118 atm / (0.0821 L·atm/K·mol × 298.15 K))
After calculating, we find the molar mass of the protein.
Three different metabolic pathways are responsible for the production of ATP. What are they
Answer:
Explanation:
1) Glycolysis which occurs in the cytoplasm yield 2 ATP 2) Kreb cycle (critic acid cycle) yields 2 ATP per glucose molecule 3)electron transport chain yields the highest with 34 ATP both of which occurs in the mitochondria.
Write the formula unit equation for this reaction occurring in water: Potassium sulfate and barium chloride are mixed to form potassium chloride and barium sulfate.
1. K2SO4 (s) + BaCl2 (s) → 2 KCl (aq) + BaSO4 (s)
2. K2SO4 (aq) + BaCl2 (aq) → 2 KCl (aq) + BaSO4 (s)
3. 2 K3SO4 (aq) + 3 BaCl2 (aq) → 6 KCl (aq) + 2 Ba3(SO4)2 (s)
The correct formula unit equation for the reaction of potassium sulfate and barium chloride forming potassium chloride and barium sulfate in water is: K2SO4 (aq) + BaCl2 (aq) → 2 KCl (aq) + BaSO4 (s). This is because both potassium sulfate and barium chloride are soluble in water, but barium sulfate is not.
Explanation:The correct formula unit equation for the reaction of potassium sulfate and barium chloride forming potassium chloride and barium sulfate in water is: K2SO4 (aq) + BaCl2 (aq) → 2 KCl (aq) + BaSO4 (s).
This can be justified as when potassium sulfate (K2SO4) and barium chloride (BaCl2) are dissolved in water they dissociate into their respective ions, making them aqueous. The formation of potassium chloride (KCl) acknowledges that potassium ions and chloride ions can be attracted to each other in the water solution, so this is also aqueous. However, barium sulfate (BaSO4) is known to be insoluble in water, and hence, precipitates as a solid (s). Hence, option 2 is correct.
Learn more about Chemical Reaction here:https://brainly.com/question/34137415
#SPJ6