Answer:
The enzyme shows 78% maximal activity at pH 7.5 and 8. 0
Explanation:
At pH 5.5 and 6.5 it has lower activity (one tenth more or less). If it mixes this enzyme with another protein, an activity enhancement only at low pH where the enzyme was not fully active. In other words, a protein that is interacting with enzyme and expands the pH spectrum at which the enzyme is fully active. The pH need is typical because of the side groups of the amino acids. An alteration in pH changes the protonation design and can, in extreme cases, outcome in protein denaturation. The protein stabilizes the enzyme structure, thus keeping it active at sub optimal pH values.Changes in pH may not only affect the shape of an enzyme but it may also change the shape or charge properties of the substrate so that either the substrate cannot bind to the active site or it cannot undergo catalysis.Learn more:
What biomolecules is an enzyme? what is the purpose of enzyme??brainly.com/question/2527143
What is enzyme, a substrate and competitive enzyme inhibition?brainly.com/question/12875789
Keywords: enzyme, pH, protein, amino acid, catalysis
What products of digestion are transported by the lymphatic system and enter the blood circulation without passing through the liver?
A heterogeneous mixture is a
Give one advantage of using enzymes in industrial manufacturing processes
Which lists the three major groups of primates in the proper order from earliest to most recent?
what does DNA stand for? also what does RNA stand for?
The nurse is caring for a patient who has coronary heart disease (chd). the nurse tells the patient, "your cholesterol levels are abnormal; you are at a high risk of having a heart attack." what did the nurse discover regarding the lipoprotein levels in the patient's blood report?
In considering the reactions between molecules unique to living systems—carbohydrates, lipids (fats), proteins, and nucleic acids—which molecule does not rely on hydrolysis reactions
Visible light represents a very small portion of the electromagnetic spectrum. Radiation to the left in the image, such as microwaves, has a longer wavelength than visible light. Radiation to the right has a shorter wavelength than is observable. Which radiation has a higher frequency than visible light?
The right answer is Ultraviolet, X-ray and gamma radiations.
The relation between the wavelength and the frequency is thus:
λ = c / f
Previous relationship involves that the wavelength is inversely proportional to the frequency, and therefore that it is even higher than the frequency is weak, and vice versa.
High frequency (low wavelength) waves correspond to Ultraviolet, X-ray and gamma radiations.
Which statements are true? Check all that apply. In eukaryotes, DNA is found in the cytoplasm of the cell. RNA is the nucleic acid that helps build proteins. DNA is the nucleic acid that carries genetic information. The structure of proteins is determined by DNA. A chromosome is made of RNA.
Genetic material is the factor that is responsible for transfer of traits from parent to offspring. Options B, C, and D are correct. DNA is the genetic material while RNA builds protein.
DNA:
DNA is the genetic material for all living organisms. It is the polymer of nucleotides. In Eukaryotes it is found inside the nucleus.
DNA is condensed to form chromosomes.DNA code for mRNA via the process of transcription.The mRNA has codons that code for amino acids (Protein) via the process of translation.Hence, Options A and E are incorrect.
Therefore, DNA carries the genetic information and is responsible for the structure of proteins.
To know more about Nucleic acid, refer to the link:
https://brainly.com/question/18375173
why is it important to keep a microscope at least 10 cm from the edge of thr table?
Keeping a microscope at least 10 cm from the edge of the table is essential in order to prevent accidental damage from falls, which can impair the device's ability to produce high-quality, magnified images. The delicate lenses and components of microscopes need to be protected and maintained properly, a factor which extends to the microscope's table positioning.
Explanation:The importance of keeping a microscope at least 10 cm away from a table edge lies in the delicate nature of the instrument's construction. Microscopes are comprised of delicate components like lenses and bulbs that can be easily damaged if the microscope falls or is knocked over. A fall can scratch or break the lenses, which are carefully designed to refract light, and subsequently degrade the quality of the image produced.
A microscope's purpose is to create magnified images of small objects for easy viewing and understanding. A damaged lens could inhibit the microscope's ability to effectively magnify an image, altering the final image represented to the observer. Thus, keeping the microscope away from the edge helps protect it from accidental falls and damage.
Additionally, proper microscope maintenance involves practices that protect it from damage. These include cleaning the lenses, avoiding rapid changes in focus, not pushing an objective into a slide, and storing the microscope in a safe location when not in use. Thus, the position of the microscope on the table is an important aspect of caring for the device.
Learn more about Microscope Maintenance here:https://brainly.com/question/6686502
#SPJ2
Keeping a microscope at least 10 cm from the edge of the table is crucial to prevent accidental falls or damage to the equipment.
Placing the microscope too close to the edge increases the risk of it being knocked over, potentially causing costly damage or injury. Additionally, microscopes are delicate instruments that require stability to function properly.
Placing them too close to the edge of the table increases the likelihood of vibrations or disturbances, which can affect the accuracy of observations.
Therefore, maintaining a safe distance from the table's edge ensures the microscope remains stable and secure during use, enhancing both safety and the longevity of the equipment.
Sperm cells have a very specialized structure, including a flagellum and very little cytoplasm. explain how the structure of a sperm cell contributes to its function.
Final answer:
The specialized structure of sperm, including the acrosome, mitochondria-packed mid-piece, and tail, significantly contributes to its functionality in reproduction by enabling mobility and efficiency in fertilizing the egg.
Explanation:
The structure of a sperm cell is highly specialized, contributing significantly to its function. The sperm consists of three main parts: the head, mid-piece, and tail. The head contains a compact haploid nucleus, with very little cytoplasm, to ensure a small size for better mobility. It is covered by the acrosome, a cap filled with lysosomal enzymes essential for penetrating the egg during fertilization.
The mid-piece is densely packed with mitochondria that produce ATP, powering the flagellum for motility. The tail, or flagellum, enables movement through the female reproductive tract, significantly increasing the chance of reaching and fertilizing the egg.
all lipids share what characteristics?
Final answer:
Lipids are hydrophobic and nonpolar molecules that do not dissolve in water. They include triglycerides, fatty acids, phospholipids, waxes, and sterols. Lipids serve multiple roles in cells, such as storing energy and forming cell membranes.
Explanation:
Lipids are a diverse group of compounds that share certain characteristics. They are hydrophobic (water-fearing) and do not dissolve in water. This is because they consist of nonpolar molecules, such as hydrocarbons that only have nonpolar carbon-carbon or carbon-hydrogen bonds. Examples of lipids include triglycerides, fatty acids, phospholipids, waxes, and sterols. Lipids have various functions in cells, including energy storage, insulation, and the building blocks of hormones.
When we say that something gives us “energy”, what does that mean? what is a biological definition of energy?
What is the role of the ozone?
Answer:
It protects earths surface from dangerous radiation is the correct answer.
Explanation:
ozone absorbs the ultraviolet rays and prevents the rays from reaching the earth's atmosphere.
ozone is present in the stratosphere region and the ozone present in this region is called the ozone layer and the about 10 percent ozone is present in the below region of the atmosphere called troposphere.
ultraviolet radiation is very harmful as it can cause cancer, damage to the crops and destroy some types of aquatic life.
ozone absorbs the ultraviolet rays and prevents the rays from reaching the earth's atmosphere.
ozone plays an important role in protecting the living things present on the earth as it acts as a guard to protect the earth from the harmful ultraviolet rays.
A 50-year-old client who has recently been diagnosed with a chronic degenerative illness has announced to the nurse the intention to commit suicide in order to prevent future suffering. which fact should underlie the nurse's response to this client?
Each water molecule can join to _____ other water molecules by ____ bonds.
At what age is a baby able to grasp with its thumb and fingers?
The ability to grasp objects with the thumb and fingers, known as the pincer grasp, typically develops around nine months of age. Before this, infants use a palmer grasp. Hence, the correct answer is around nine months. Option a is correct.
The ability to grasp objects with the thumb and fingers, is a significant developmental milestone for infants. This skill typically develops around nine months of age. Before this, infants use a palmer grasp, which involves using the whole hand to pick up objects. By nine to twelve months, infants refine their fine motor skills further, enabling them to pick up smaller objects using their thumb and index finger.Complete question as follows:
At what age is a baby able to grasp with its thumb and fingers?
a. around nine months
b. around 6 month
c. around 1 year
If a cell membrane were composed of only a phospholipid bilayer what properties would it have
____ can be metabolized for atp production.
Final answer:
Glucose, lipids, and glutamine can be metabolized to produce ATP, the main source of energy in cells. Glucose metabolism involves glycolysis and the Krebs cycle, lipids undergo β-oxidation, and glutamine feeds into the Krebs cycle. These processes are essential for cellular energy and biosynthesis.
Explanation:
Glucose, lipids, and glutamine can be metabolized for ATP production. Glucose is metabolized via glycolysis and oxidative phosphorylation (OxPhos), where each molecule of glucose can eventually lead to the generation of up to 34 ATP molecules. Glycolysis occurs in the cytosol and produces two molecules of ATP, while OxPhos takes place in the mitochondria, creating additional ATP by utilizing electrons from reduced cofactors like NADH and FADH2 which are produced during the Krebs cycle.
Lipid catabolism involves the process known as β-oxidation, which generates acetyl-CoA and reduced cofactors NADH and FADH2 that also contribute to ATP production through OxPhos. Glycerol, which stems from triglycerides breakdown, enters glycolysis as glyceraldehyde 3-phosphate. Lastly, glutamine can enter the Krebs cycle after being converted to α-ketoglutarate, participating in anabolic and catabolic reactions that eventually lead to ATP synthesis.
1. Why is it difficult to evaluate thresholds for toxic pollutants? a. Synergistic effects are difficult to account for. b. There is not enough research on the consequences of multiple exposures. c. Lack of knowledge on the effect of possible interactions of mutiple toxins. d. All of the above
What cellular components do some bacterial cells have that make them powerful pathogens? explain your answer. 2. why are penicillins often more effective against gram positive bacteria than gram negative bacteria? 3. why is it important to understand the structure of a bacterial cell when developing an antibioti 4. how do antibiotics work without harming the surrounding human cells? 5. what class of antibiotics would you prescribe for sue? explain your answer. 6. why are antibiotics not effective against viruses? (think back to what you learned about viruses in pbs.)?
Certain bacterial cell components, like capsules and pili, make bacteria powerful pathogens. Penicillins are more effective against Gram-positive bacteria due to the structure of their cell wall. It's crucial to understand bacterial cell structures when developing antibiotics to create treatments that can target bacteria without harming human cells. Antibiotics are ineffective against viruses due to their lack of cellular structures.
Explanation:Some bacterial cells possess components like a capsule, which protects them from the host's immune system, and pili, which enable attachment to host cells. Both increase their virulence as pathogens.
2. Penicillins are more effective against Gram-positive bacteria due to their thick peptidoglycan cell wall, which the drug can easily disrupt. Gram-negative bacteria, however, have an outer membrane that prevents the drug from reaching the cell wall.
3. Understanding the structure of a bacterial cell aids in developing antibiotics that can specifically target bacterial components without harming human cells.
4. Antibiotics work by targeting specific components of bacterial cells, such as the cell wall or protein synthesis machinery, which are not present in human cells. This specificity allows antibiotics to harm bacteria without affecting the host.
5. Without information on Sue's condition, a specific class of antibiotics cannot be prescribed. It is dependent on the type of bacteria responsible for her condition.
6. Antibiotics are ineffective against viruses as viruses lack cellular structures and metabolic processes that antibiotics can target. Viruses instead use host cells to replicate, making it difficult for antibiotics to differentiate between virus and host.
Learn more about Bacteria and Antibiotics here:https://brainly.com/question/32908716
#SPJ6
Imagine yourself in a dark classroom reading PowerPoint slides. If an audience member were to check the internet using her cell phone and causing her screen to light up, chances are that many people would notice the change in illumination in the classroom. However, if the same thing happened in a brightly lit classroom during a discussion, very few people would notice. The cell phone brightness does not change, but its ability to be detected as a change in illumination varies dramatically between the two contexts. This is an example of ________.
The scenario described is an example of Weber's Law. The ability to detect a change in a stimulus is proportional to the strength of the initial stimulus, according to Weber's Law, a psychophysical principle.
According to Weber's Law, a psychophysical principle, the ability to detect a change in a stimulus is proportional to the strength of the initial stimulus. In the example, the mobile phone screen's continual change in illumination is more obvious in the dark classroom due to the lower initial luminance.
Given that the relative change is more obvious in the darker setting, this illustrates Weber's Law. The same change is less obvious in a well-lit classroom since the relative change is smaller and the initial illumination level is higher. Weber's Law explains how the context and the stimulus's initial intensity affect how we perceive changes in stimuli.
To know more about Weber's Law here https://brainly.com/question/19021235
#SPJ12
With open-choice mate selection, the ensuing marriages are totally subservient to:
According to endosymbiosis theory, what is the most likely explanation for the origin of the two mitochondrial membranes
The endosymbiotic theory designates how a large host cell and consumed bacteria could simply become dependent on one different for survival, thus resulting in a permanent relationship. The explanation behind the origin of the two mitochondrial membranes is the inner membrane was derived from folding of the prokaryotic plasma membrane and the outer from folding in of the eukaryotic plasma membrane.
According to endosymbiosis theory, the most likely explanation for the origin of the two mitochondrial membranes is that mitochondria were derived from one cell engulfing another cell.
Explanation:The most likely explanation for the origin of the two mitochondrial membranes according to endosymbiosis theory is that mitochondria were derived from one cell engulfing another cell. The inner membrane of mitochondria is bacterial in nature, while the outer membrane is eukaryotic. This supports the idea that one membrane-bound organism was engulfed by another membrane-bound organism.
Learn more about Origin of mitochondrial membranes here:https://brainly.com/question/5442754
#SPJ12
If a person experiences rapid breathing, muscle twitches, and perspiration when trying to quit using illegal opiates, he or she has probably developed _____.
Tascha is on a medication that increases the pH of the stomach and makes it alkaline. What is the effect of this medication?
the answer is e on Plato
#PlatoFamily
Why? from the smallest single celled organism to the tallest tree, all life model 1?
Stitching of the large tissue that acts as a tendon and attaches muscles to bone is called
Which is the most accurate description of ionic and covalent bonding
A. Both bonds happen when valence electrons are shared between atoms
B. Both bonds happen when valence electrons are transferred between ions
C. ionic bonds happen when valence electrons are transferred between ions
D. ionic bonds happen when valence electrons are shared between atoms
Answer:
The correct answer is option C. "ionic bonds happen when valence electrons are transferred between ions".
Explanation:
Ionic and covalent bonding are among the most common chemical bonds that take place to form molecules in nature. One important difference between these two types of bondings are that ionic bonds happen when valence electrons are transferred between ions, while in covalent bonds the valence electrons are shared instead of transferred. This difference makes ionic bonds weaker than covalent bonding.
How can we address the growing scarcity of common minerals as the human population grows?
A. move communities to uninhabitated areas.
b. Use more energy to locate existing minerals.
c.Find uses for more plentiful minerals.
d. Construct more and larger landfills.
Answer:
c.Find uses for more plentiful minerals.
Explanation: