Answer:
1522 m
Explanation:
The ultrasound wave takes t=2.0 s to travel from the vessel to the ocean bottom, and then back to the vessel.
This means that the time the wave takes to travel from the vessel to the ocean bottom is just half of this:
[tex]t=\frac{2.0 s}{2}=1.0 s[/tex]
The wave travels at a speed of
v = 1522 m/s
So, we can find the distance between the vessel and the ocean bottom by using the equation of the uniform motion, and we find:
[tex]d=vt=(1522 m/s)(1.0 s)=1522 m[/tex]
Based on the free-body diagram, the net force acting
on this firework is
0N. The net force acting on this firework is 0.
The key to solve this problem is using the net force formula based on the diagram shown in the image. Fnet = F1 + F2.....Fn.
Based on the free-body diagram, we have:
The force of gases is Fgases = 9,452N
The force of the rocket Frocket = -9452
Then, the net force acting is:
Fnet = Fgases + Frocket
Fnet = 9,452N - 9,452N = 0N
Based on the free-body diagram, the net force acting on this firework is 0 Newton.
What is Newton's second law?Newton's Second Law states that The resultant force acting on an object is proportional to the rate of change of momentum.
The mathematical expression for Newton's second law is as follows
F = m*a
where F represents the force applied
m is the mass of the object
a is the acceleration of the object
By using the equilibrium of the forces
The net horizontal forces acting on the firework should be zero.
as well the net vertical forces acting on the firework should be zero.
As there is no horizontal force acting on the rocket then the net horizontal force is already zero and has no significance in this problem.
Fh=0
For balancing the vertical force, the net vertical force on the firework is zero as both the upward force and downward force are equal in magnitude but opposite in direction.
Net vertical force= Net upward force - net downward force
= 9452-9452
=0 N
Thus, we can conclude on the basis of the free-body diagram, that the net force acting on this firework is 0 Newton.
Learn more about Newton's second law, here
brainly.com/question/13447525
#SPJ6
Crucible
10.00 g
Crucible and hydrate before heating
15.32 g
Crucible and hydrate after first heating
15.10 g
Crucible and hydrate after second heating
14.65 g
Cindy and Blake performed and experiment in which they were evaporating water from a compound. Their teacher told them that the accepted value for the mass of water in the compound was 0.70 grams. Use the data from the table to calculate the percent error of their experiment.
A)
4.29%
B)
6.43%
C)
31.43%
D)
56.42%
Answer:
A) 4.29%
Percentage error is 4.29%
Explanation:
From the experiment results;
The mass of water = 15.32 g - 14.65 g
= 0.67 g
Therefore;
The percentage error in the experiment will be given by;
= (0.7-0.67)/0.7 × 100
= 0.03/0.7 × 100
= 4.29%
A: the period of the wave
B: frequency of the wave
Answer:
Period of the wave: [tex]T = 0.4 \text{ seconds}[/tex]
Frequency of the wave: [tex]f = 2.5 \text{ Hz}[/tex]
Explanation:
Period of the wave:To calculate the period of a wave from a displacement vs time graph we identify the amount of time it takes for one cycle to be completed. According to the graph, 1 cycle is completed in 0.4 seconds, so:
[tex]T = 0.4 \text{ seconds}[/tex]
Frequency of the wave: To find frequency we simply calculate the inverse of the period because we know the relationship [tex]T= \frac{1}{f}[/tex] or [tex]f = \frac{1}{T}[/tex]
[tex]f= \frac{1}{T}= \frac{1}{0.4 s}= 2.5 \text{ Hz}[/tex]
Which statement describes the energy that a transverse wave carries as its amplitude increases?
It increases and is perpendicular to the motion of the wave.
It decreases and is perpendicular to the motion of the wave.
It increases and is parallel to the motion of the wave.
It decreases and is parallel to the motion of the wave.
Answer:
It increases and is perpendicular to the motion of the wave.
Explanation:
- A transverse wave is a wave in which the oscillation occurs in a direction perpendicular to the motion of the wave (example of transverse waves are electromagnetic waves)
- A longitudinal wave is a wave in which the oscillation occurs in a direction parallel to the motion of the wave (example of longitudinal waves are sound waves)
- The amplitude of a wave is defined as the maximum displacement of the wave relative to the equilibrium position, and the energy carried by the wave is proportional to the square of the amplitude:
[tex]E\propto A^2[/tex]
Therefore, as the amplitude of the wave increases, the energy increases as well.
what happens to the resistance of a wire as its length increases
Answer:
Resistance increases with length because the electrons have further to go, so suffer greater collisions with atoms in the material. Look at these wires: Electrons moving through the short wire only feel resistance for a short time compared to the longer one. This means its resistance is less.
Explanation:
Answer:
A longer length leads to a higher resistance
Explanation:
At constant pressure, a sample of a gas occupies 420 ml at 220 K. what volume does the gas occupy at 250 K?
Answer:
480 mL
Explanation:
Ideal gas law states:
PV = nRT
At constant pressure, nR/P is constant. Therefore:
V / T = V / T
420 mL / 220 K = V / 250 K
V ≈ 480 mL
Which is the best example of natural selection
Answer:
the process whereby organisms better adapted to their environment tend to survive and produce more offspring. The theory of its action was first fully expounded by Charles Darwin and is now believed to be the main process that brings about evolution.
Explanation:
1. Different constellations are visible at different times of year because of?
A. The relative motion between Earth and the sun.
B. The relative motion between Earth and the moon.
C. The celestial equator.
D. The celestial sphere.
2. A galaxy is composed of stars and?
A. Interstellar medium.
B. Plasmatic medium.
C. Nebular medium.
D. Gaseous medium.
3. Once the Big Bang occurred, everything in the universe started to?
A. Live and thrive.
B. Expand.
C. Attach itself to each other.
D. Gravitate toward the sun
4. Which stars are the most common?
A. Red giants
B. White dwarfs
C. Low-mass main sequence
D. High-mass main sequence
5. Unlike Jovian planets, the terrestrial planets are small, dense, and?
A. Rocky
B. Gaseous
C. Metallic
D. Tilted
6. How does gravitational force of the moon affect earth?
A. The moons gravity is too small to affect earth
B. The moons gravity pulls on earths oceans, causing tides
C. The moons gravity is so large that it causes large tsunami waves.
D. The moons gravity is slowly pulling earth closer to the moon
1. A. The relative motion between Earth and the Sun
The Earth is constantly moving, be it around its own axis, or around the Sun. As it moves around the Sun over the course of one year, the Earth changes its relative position toward the constellations. This results in different positions of the constellations in different periods of the year, when it comes to viewing them from the Earth of course. It looks for the ordinary observer that the constellations are making lot of movement throughout the year and change their positions, and they do move, just not in that manner, but in fact it is the relative motion between the Earth and the Sun that gives that effect on the night sky.
2. A. Interstellar medium
The galaxies are composed of multiple basic things, with the stars and the interstellar medium being the dominant ones. Apart from these two there are also gases and dust. The galaxies are massive, and even the smallest of them are so big that we can not even imagine in our minds as we don't have a scale in our minds for something so large. They have trillions of stars in them, and the majority of the space between the stars is filled with interstellar medium.
3. B. Expand
The Big Bang theory is the most widely accepted theory about the formation of the universe, even though it doesn't really has proper explanations for certain things. This theory suggests that everything managed to get dragged into a single miniature spot and once the gravity became way to big, an explosion occurred. This explosion was so big, and everything moved so quickly, that in literary thousands of parts of a second millions of light years of space were filled in. Everything was practically expanding from the spot of explosion, expanding outwards, giving the basis for the formation of everything we see in the universe. The process of expanding is still continuing, as we can see with the quasars, and it is expected to do so in the future.
4. C. Low-mass main sequence
From what has been observed from the space until now, it seems that the low-mass main sequence stars are the once that dominate the universe by far, at least in numbers. These stars are also called red dwarfs. They are small stars, having reddish color, and their mass is also relatively low compared to the bigger stars. It is estimated that around three quarters of the stars are actually of this type. Unfortunately, because they are small and their low luminosity, individual stars of this type can not be seen from the Earth with naked eye.
5. A. Rocky
The terrestrial planets are planets that are small in size. They are closer to the Sun, thus they are warmer because of it. Unlike their Jovian counterparts, the terrestrial planets tend to be denser, but also what is a striking distinction is that they are rocky. These planets have rocky surfaces, thus their surfaces are solid, covered with numerous types of geologic features, while the Jovian do not have rocky surface, but instead it is gaseous or icy. The fact that these planets are rocky, also gave big advantage to them when it came to providing conditions for life, and the Earth was the lucky one that had all other things in place and boomed with life.
6. B. The Moon's gravity pulls on Earth's oceans, causing tides
The Moon is very close to the Earth, and it is actually a very large moon for the size of the Earth. It has its own gravity of course, and the sheer proximity means that it will influence on something. Since the gravitational pull of the Earth is stronger, the gravitational pull of the Moon can not do something spectacular, but at least it manages to pull the ocean waters. As it pulls the ocean waters, the Moon's gravity actually cause the high tides and low tides.
Final answer:
The different constellations visible during the year result from Earth's motion around the sun. Galaxies contain interstellar medium alongside stars. After the Big Bang, the universe began expanding. Low-mass main sequence stars are the most common. Terrestrial planets are rocky and affected by the moon's gravitational pull, which causes tides.
Explanation:
Different constellations are visible at different times of year because of A. The relative motion between Earth and the sun.
A galaxy is composed of stars and A. Interstellar medium.
Once the Big Bang occurred, everything in the universe started to B. Expand.
The most common stars are C. Low-mass main sequence stars.
Unlike Jovian planets, the terrestrial planets are small, dense, and A. Rocky.
The gravitational force of the moon affects Earth as B. The moon's gravity pulls on Earth's oceans, causing tides.
First to answer will be the brainliest
Answer:
medium. A medium is the intervening substance through which impressions are conveyed to the senses or a force acts on objects at a distance.
A train traveling at 18.2 m/s accelerates to 39.9 m/s over a distance of 1250 m. How long did it take the train to cover this distance?
Answer:
43.4 s
Explanation:
First of all, we can find the acceleration of the train by using the equation:
[tex]v^2 -u^2 = 2ad[/tex]
where
v = 39.9 m/s is the final speed
u = 18.2 m/s is the initial speed
a is the acceleration
d = 1250 m is the distance covered
Solving for a,
[tex]a=\frac{v^2-u^2}{2d}=\frac{(39.9 m/s)^2-(18.2 m/s)^2}{2(1250 m)}=0.50 m/s^2[/tex]
And now we can fidn the time taken, by using the formula:
[tex]a=\frac{v-u}{t}\\t=\frac{v-u}{a}=\frac{39.9 m/s-18.2 m/s}{0.50 m/s^2}=43.4 s[/tex]
If an airplane is moving at a constant speed of 500 miles per hour in a straight line is it accelerating?
You just said "constant speed", and "straight line" which means constant direction.
"Acceleration" means any change of speed or direction of motion. Since neither of those is changing, no acceleration is happening.
Acceleration is the rate of change of velocity. Constant velocity, means there is no change in velocity and hence the plane is not accelerating.
What is velocity?Velocity is a physical quantity used to measure the distance traveled per unit time. Thus, velocity is the ratio of distance to the time of travel. Velocity is a vector quantity and it is expressed in the units m/s, km/h, miles/hr, ft./s etc.
The rate of change of velocity is called acceleration. Acceleration is also a vector quantity thus having both magnitude and direction. As change in velocity per time difference is the acceleration and it is expressed in the unit m/s².
Here, the plane is moving through a straight line at a constant speed of 500 mph. Thus no change in velocity indicates the plane is not accelerating in any direction.
To find more on acceleration, refer here:
https://brainly.com/question/12550364
#SPJ5
DESCRIBE floods and droughts. What are their effects? EXPLAIN how they can be prevented
Answer:
EFFECTS: ( doughts)
There would be less water in the river for you and other people who live along the river to use. If we use too much water during times of normal rainfall, we might not have enough water when a drought happens.EFFECTS:( FLOODS)
The immediate impacts of flooding include loss of human life, damage to property, destruction of crops, loss of livestock, and deterioration of health conditions owing to waterborne diseases. power plants, roads and bridges are damaged and disrupted, some economic activities may come to a standstill, people are forced to leave their homes and normal life is disrupted.How to prevent from flooding is :
Construct buildings above flood levels. Tackle climate changeHow to prevent from droughts :
drought trends that may occur based on statistical and actual weather forecasts.In the U.S., the U.S. Drought Monitor provides a day-by-day visual of the drought conditions around the country.* Hopefully this helps:) Mark me the brainliest:)!!!
~234483279c20~
Anna applies a force of 19.5 newtons to push a book placed on a table. If the normal force of the book is 51.7 newtons, what is the coefficient of kinetic friction?
that would be given by
f=@N
@ representing coefficient of kinetic friction.
thus 19.5/51.7 = 0.377
A technique in which people use machines to learn how to control their bodies is known as __________.
A.
meditation
B.
sleep
C.
hypnosis
D.
biofeedback
Answer:
The technique in which people use machines to learn how to control their bodies is known as D, Biofeedback.
Explanation:
Biofeedback is a variety of different machines that help people learn how to control their bodies depending on their specific needs, varying from things like scalp sensors, electrocardiographs, electromyographs and more.
Answer:
biofeedback
Explanation:
A 1000kg car has a speed of 32m/s. If it takes 7s to stop the car, what is the impulse and the average force acting in the car
1) Impulse: -32,000 kg m/s
The impulse acting on the car is equal to the change in momentum of the car:
[tex]I= \Delta p = m (v-u)[/tex]
where in this problem we have
m = 1000 kg is the mass of the car
v = 0 m/s is the final velocity of the car
u = 32 m/s is the initial velocity of the car
Substituting values into the equation, we find
[tex]I=(1000 kg)(0-32 m/s)=-32,000 kg m/s[/tex]
2) -4751 N
The impulse exerted on the car is also equal to the product between the average force, F, and the duration of the collision, t:
[tex]I=Ft[/tex]
where in this situation we know
[tex]I=-32,000 kg m/s[/tex] is the impulse
t = 7 s is the duration of the collision
Solving the formula for F, we find the average force:
[tex]F=\frac{I}{t}=\frac{-32,000 kg m/s}{7 s}=-4,571 N[/tex]
and the negative sign means that the force is in the opposite direction to the motion of the car.
Alkali metals are extremely reactive because they a. have very small atomic masses. b. are not solids at room temperature.
c.have one valance electron that is easily removed to form a positive ion.
Answer:
a.
Explanation:
Alkali metals, including elements like sodium and potassium, are extremely reactive due to each having a single valence electron in their outermost shells. This electron is easily removed to form a relatively stable, singularly positive ion, thus making them highly reactive.
Explanation:Alkali metals, being part of Group 1 of the periodic table, are known for their high reactivity due to their atomic structure. This family includes elements like sodium and potassium. They all share an atomic feature which is having a single valence electron in the outermost shell (s electron in ans configuration). This specific feature is what makes alkali metals highly reactive.
The single valence electron is loosely held by the atom and can be easily removed. When this happens, the alkali metal atom forms a relative stable and singularly positive ion (cation). The ease of losing this valence electron, paired with the large atomic radii and the lowest first ionization energy in their periods, gives alkali metals their characteristic high reactivity.
A common trait within the group is that the reactivity increases with higher atomic numbers due to the decreasing ionization energy. In contrast to alkali metals, alkaline earth metals of Group 2 have a completed s subshell in outermost shell, making them less reactive, but still amongst the most reactive elements.
Learn more about Alkali Metals here:https://brainly.com/question/5063184
#SPJ6
A ray diagram is shown.
What does the letter X represent?
angle of incidence
angle of reflection
normal
medium
Answer:
Angle of incidence
Explanation:
The diagram shows the reflection of a light ray.
When a light ray undergoes reflection:
- The incident ray, the reflected ray and the normal to the surface all lie in the same plane
- The angle of reflection is equal to the angle of incidence
The two angles are defined as follows:
- The angle of incidence is the angle between the incident ray and the normal to the surface (1)
- The angle of reflection is the angle between the reflected ray and the normal to the surface
In the picture, we see that the angle marked with X corresponds to the angle defined in (1), so it is the angle of incidence.
CaCO3 is a compound found in cement. Which of the following elements are in CaCO3? calcium carbon oxygen nitrogen copper
Answer:
CaCo3 contains carbon, oxygen and calcium.
Explanation:
Calcium carbonate (CaCO3) is a compound made up of calcium, carbon, and oxygen in a 1:1:3 ratio. It consists of a metal (calcium) and nonmetals (carbon and oxygen), and is an example of an inorganic compound commonly found in materials like cement.
Explanation:The compound calcium carbonate is represented by the formula CaCO3. It is a compound, not an element, because it is made up of more than one type of atom chemically bonded together. The elements found in this compound are calcium, carbon, and oxygen.
In the chemical formula of calcium carbonate, the ratio of calcium (Ca) to carbon (C) to oxygen (O) atoms is 1:1:3, indicating that there is one calcium atom, one carbon atom, and three oxygen atoms.
The names of these substances are as follows:
a. Calcium, magnesium, iron, and carbon - these elements are all individual pure substances which aren't bonded with others in this context.b. Oxygen, calcium, iron, and nitrogen - Like 'a', these are elements.c. Sodium (Na), chloride (Cl), carbon (C), and hydrogen (H) - Found in sodium chloride (table salt), carbon compounds, and water, respectively.d. Oxygen (O), carbon (C), hydrogen (H), and nitrogen (N) - These are elements involved in various organic and inorganic compounds.The names of the compounds listed are:
a. Hydrogen cyanide (HCN)b. Carbon dioxide (CO2)c. Sodium carbonate (Na2CO3)d. Ammonium hydroxide (NH4OH)e. Barium sulphate (BaSO4)f. Copper (II) nitrate (Cu(NO3)2)Inorganic compounds often consist of a metal and nonmetals. For instance, calcium carbonate involves the metal calcium and the nonmetals carbon and oxygen.
The compound names for the given chemical formulas are:
Na2O - Sodium oxideCdS - Cadmium sulfideMg3N2 - Magnesium nitrideCa3P2 - Calcium phosphideAl4C3 - Aluminum carbideThe absolute index of refraction of medium Y is twice as great as the absolute index of refraction of medium X. As a light ray travels from medium X into medium Y, the speed of the light ray is
Answer:
The speed of the light ray is halved
Explanation:
The index of refraction of a medium is the ratio between the speed of light in a vacuum (c) and the speed of light in the medium (v):
[tex]n=\frac{c}{v}[/tex]
For medium X, we have
[tex]n_x=\frac{c}{v_x}[/tex] (1)
For medium Y, we have
[tex]n_y=\frac{c}{v_y}[/tex] (2)
Dividing (1) by (2), we find
[tex]\frac{n_x}{n_y}=\frac{v_y}{v_x}[/tex] (3)
In this problem, the index of refraction of medium Y is twice as great as the index of refraction of medium X:
[tex]n_y = 2 n_x[/tex]
Substituting this into eq.(3), we get
[tex]\frac{n_x}{2n_x}=\frac{v_y}{v_x}\\v_y = \frac{v_x}{2}[/tex]
So, as a light ray travels from medium X into medium Y, the speed of the light ray is halved.
From the calculation, the speed of the light ray is halved.
What is refractive index?
The term refractive index refers to the ratio of the speed of light in one medium to the speed of light in another medium. We are told that the speed of light in medium Y is twice as great as the absolute index of refraction of medium X.
Let;
refractive index of X be nx
refractive index of y be ny
speed of light in x by vx
speed of light in y be vy
nx/ny = vx/vy
But ny = 2nx
nx/2nx = vx/vy
1/2 = vx/vy
vy = vx/2
Hence, we can see that the speed of the light ray is halved.
Learn more about rays: https://brainly.com/question/11334504
Which condition is necessary for total internal reflection? A. The refracted ray should lie along the boundary of the two media. B. The refracted ray should turn toward the normal. C. Light in a medium is incident on a boundary with a faster medium. D. Light in a medium is incident on a boundary with a slower medium.
There are two conditions necessary for total internal reflection, which is when light hits the boundary between two mediums and reflects back into its original medium:
Light is about to pass from a more optically dense medium (slower) to a less optically dense medium (faster).
The angle of incidence is greater than the defined critical angle for the two mediums, which is given by:
θ = sin⁻¹([tex]n_{fast}[/tex]/[tex]n_{slow}[/tex])
Where θ = critical angle, [tex]n_{fast}[/tex] = refractive index of faster medium, [tex]n_{slow}[/tex] = refractive index of slower medium.
Choice C gives one of the above necessary conditions.
Answer:
C. Light in a medium is incident on a boundary with a faster medium.
Explanation:
what is the difference between transverse waves and longitudinal waves?
Answer:
What is the difference between Transverse and Longitudinal waves? Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave. ... Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.:
In transverse waves, displacement of the medium is perpendicular to the direction of propagation of the wave while in longitudinal waves, displacement of the medium is parallel to the direction of propagation of the wave.
What is sound wave?A sound wave is a result of compression and rarefaction, by which sound is propagated in a material medium such as air.
A sound wave can't be propagated without medium. Sound doesn't travel in vacuum.
When displacement of the medium is perpendicular to the direction of propagation of the wave is called transverse waves.
When displacement of the medium is parallel to the direction of propagation of the wave is called longitudinal waves.
Thus, the difference is only due to the direction of propagation.
Learn more about sound wave.
brainly.com/question/11797560
#SPJ2
metals can be described as
They tend to be lustrous, ductile, malleable, and good conductors of electricity, while nonmetals are generally brittle (for solid nonmetals), lack lustre, and are insulators.
A toy train has an acceleration of 1.2 m/s2. A net force of 3.0 N is acting on the train. What is the mass of the train?
Answer:
2.5 kg
Explanation:
We can solve the problem by using Newton's second law:
[tex]F=ma[/tex]
where
F is the net force acting on the train
m is the mass of the train
a is the acceleration
For the toy train in the problem,
F = 3.0 N
a = 1.2 m/s^2
So we can solve the formula for m, to find the mass of the train:
[tex]m=\frac{F}{a}=\frac{3.0 N}{1.2 m/s^2}=2.5 kg[/tex]
Answer:
2.5
Explanation:
Can anyone help??????????????
I think the answer should be the last one. Magnets attract magnets with unlike poles and repel magnets with like poles
Please help! 80 points will give brainiest!!!
A sound wave has a frequency of 250 Hz and a wavelength of 0.35 m?
1: Write out the equation
2: List out your known variables
3: Plug the numbers into the equations
4: solve
5: Write your solution statement that includes the answer with the units
Answer:
The frequency, f, is 250 Hz. Hz is cycles per second. Hence a number divided by seconds.
The wavelength, λ, is 1.5 m.
The speed is v. Which is frequency times wavelength.
v = f xλ
Hence 250Hz*1.5m= 375 meters per second or 375 m/s
Explanation:
hope this helps mark me brainliest pls
Explanation:
The expression for the speed of the sound in terms of frequency and the wavelength is as follows;
[tex]v=\nu \lambda[/tex]
Here, v is the speed, [tex]\nu[/tex] is the frequency of the wave and [tex]\lambda[/tex] is the wavelength of the wave.
It is given in the problem that a sound wave has a frequency of 250 Hz and a wavelength of 0.35 m.
Calculate the speed of the sound wave.
[tex]v=\nu \lambda[/tex]
Put [tex]\nu= 250 Hz[/tex] and [tex]\lambda= 0.35 m[/tex].
[tex]v=(250)(0.35)[/tex]
v= 87.5 m/s
Therefore, the speed of the sound wave is 87.5 m/s.
What type of population density dependence focuses on abiotic factors
Answer:Density-independent factors, such as weather and climate, exert their influences on population size regardless of the population's density. In contrast, the effects of density-dependent factors intensify as the population increases in size.
Explanation:
Answer:
Density independent.
Explanation:
Many factors which are physical or chemical in nature can influence the mortality of a population. They are occur by the inclusion of weather, natural disaster and pollution. A deer may be died in a forest due to fire and its chances of survival depends on the quantity of population density whether its high or low.
Density independent regulation can be affected by the various factors that affects the death rate or birth rates such as environmental factor and abiotic factors.
One positive effect of recycling aluminum cans
to manufacture new beverage containers is
(1) conserving Earth’s resources
(2) creating acid rain
(3) warming Earth’s atmosphere
(4) increasing the ozone layer
Your answer should be “1.”
MARK ME BRAINLIEST PLEASE!!!!!!!
Recycling aluminum cans conserves Earth's resources by requiring up to 95% less energy than producing new aluminum from bauxite ore. This energy-saving equates to significant conservation of gasoline and reduces harmful greenhouse gas emissions, thus benefiting the environment. Option 1 is correct .
One positive effect of recycling aluminum cans is conserving Earth's resources [ option 1 ] . Recycling is highly beneficial to the environment and is an important aspect of sustainability. When it comes to the recycling of aluminum, it is significantly more energy and resource-efficient compared to extracting and processing new aluminum from ore.
Producing new aluminum from bauxite ore requires temperatures above 900°C and a large amount of electricity. In sharp contrast, recycling aluminum requires up to 95% less energy than producing primary aluminum. This huge energy savings can be equated to the amount of energy in gasoline. For example, recycling just 40 aluminum cans can save the same amount of energy found in one gallon of gasoline. With this simple act, if all the aluminum cans used were to be recycled, it would result in an enormous energy conservation, potentially saving billions of gallons of gasoline each year.
Overall, the process of recycling aluminum not only conserves energy but also reduces the need for raw material extraction, which in turn protects ecosystems from potentially damaging mining operations. As such, recycling aluminum also aids in reducing greenhouse gas emissions, which contributes to mitigating global warming and climate change.
What is a process that returns to its beginning and repeat it self in the same sequence
It is also known as iteration. It is used mostly in computer programming with for and for each loops in which iteration is present. In mathematics there are some "interational operations" like product and sum for eg:
[tex]
J=\sum_{i=1}^{n}J_i\Longrightarrow J_1+J_2+\dots+J_{\infty}
[/tex]
The above equation describes the summation of J alike variables n times.
40 POINTS PLEASE ANSWER ALL CORRECTLY
Question 1 (10 points)
The flow of electrons through wires and components is known as:
Question 1 options:
Particle Current
Static Electricity
Electric Current
Positive Current
Question 2 (10 points)
The current flows from the positive terminal to the negative terminal of a cell such as in a battery.
Question 2 options:
True
False
Question 3 (10 points)
The two main types of circuits are:
Question 3 options:
Parallel and Current
Series and Parallel
Series and Current
Series and Component
Question 4 (10 points)
The type of circuit in which there is only one path for an electric current to flow is known as a _____ circuit.
Question 4 options:
Component
Parallel
Series
Light
Question 5 (10 points)
Which type of circuit would allow an electric current to continue to flow even if a single path is broken?
Question 5 options:
Series
Parallel
Open
Box
Question 6 (10 points)
Which diagram is an example of a series circuit?
Question 6 options:
Neither
Diagram B
Diagram A
Question 7 (10 points)
Four 3-Ω resistors placed in series would provide a resistance that is equivalent to one _____-Ω resistor.
Question 7 options:
3
6
9
12
Question 8 (10 points)
The purpose of fuses and circuit breakers is to
Question 8 options:
protect equipment by allowing more electric current through
protect equipment by stopping the flow of electric current
cause damage to equipment by allowing more electric current through
cause damage to equipment by stopping the flow of electric current
Question 9 (10 points)
The following symbol is used to represent ____ in a circuit diagram.
Question 9 options:
cell
switch
lamp
wires
Question 10 (10 points)
The purpose of a cell (battery) is to:
Question 10 options:
store chemical energy only when a circuit is connected
store chemical energy and transfer it to thermal energy when a circuit is connected
release chemical energy and absorb thermal energy when a circuit is connected
store chemical energy and transfer it to electrical energy when a circuit is connected
Answer:
1. Electric current
2. In fact it is electrons that flow through a metallic conductor, and they flow from the negative terminal to the positive terminal
3. Series and parallel
4. Series
5. Parallel
6.
7.
8.A fuse is a small, thin conductor designed to melt and separate into two pieces for the purpose of breaking a circuit in the event of excessive current. A circuit breaker is a specially designed switch that automatically opens to interrupt circuit current in the event of an overcurrent condition.
9.
10. The power of batteries in a circuit. The key functions of a battery and bulb in a circuit are explained. A battery is a source of energy which provides a push - a voltage - of energy to get the current flowing in a circuit. A bulb uses the electrical energy provided by the battery, but does not use current.
The flow of electrons through wires and components is known as electric current.
What is meant by electricity ?Electricity is defined as a form of energy occurring naturally due to motion and interactions of electrons.
Here,
1. The flow of electrons through wires and components is known as electric current. Or simply, electric current is the rate of flow of charge.
2. Since, the electrons are attracted to the positive terminal of the battery, they move from the negative to the positive terminal of the battery.
The direction of conventional flow of current is taken opposite to the flow of electrons. Thus electric current flows from positive terminal to the negative terminal of the battery. So, it is true.
3. The two main types of circuits are series and parallel.
4. The type of circuit in which there is only one path for an electric current to flow is known as a series circuit.
5. The type of circuit would allow an electric current to continue to flow even if a single path is broken is a parallel circuit.
6. The diagram of a series circuit is attached.
7. R' = 3 Ω
The equivalent resistance of the 4 resistors,
R(eff) = 4R' = 4 x 3
R(eff) = 12 Ω
8. The purpose of fuses and circuit breakers is to protect equipment by stopping the flow of electric current.
9. The symbol represents the cell in a circuit diagram.
10. The purpose of a cell (battery) is to store chemical energy and transfer it to electrical energy when a circuit is connected.
Hence,
The flow of electrons through wires and components is known as electric current.
To learn more about electricity, click:
https://brainly.com/question/17028207
#SPJ3
Your question was incomplete. Attaching the image here.
Lyndon is investigating whether putting plastic on her windows will help seal out cold winter drafts. She covers a window on the south side of her house with plastic and measures the inside temperature near the window. She also measures the inside temperature near a window without plastic on the north side of her house. The windows are the same size and design. Why is this not an ideal controlled investigation? A. The windows should be different sizes to introduce variation. B. The drafts at each window may be different because the windows aren’t near each other. C. Temperature isn’t a good indicator of cold winter drafts. D. Outside temperature is a better indicator of cold winter drafts than inside temperature. E. The type of plastic used in the investigation isn’t mentioned
Answer:
B. The drafts at each window may be different because the windows aren’t near each other.
Explanation:
The measurement is imprecise since the temperature will be lower in the window that receives the draft directly. that is, if the draft comes from the north, the north window will perceive lower temperatures than the south window.
Answer: B
Explanation: PLATO