Answer: synthesis
Explanation:the answer given earlier does have a comment on it correcting but I missed that the first time I visited this question.
In general, which properties are common to elements within a single group on the periodic table?
A balanced chemical equation shows the proportions of reactants and products necessary for
Which of the following is a product formed when K reacts with Cl2?
KCl
K2Cl
KCl2
K2
Answer: KCl
Explanation: Potassium [K] has an atomic no of 19 and the electronic configuration is:
[tex]K :1s^22s^22p^63s^23p^64s^1[/tex] tends to get stable by losing one electron and forming [tex]K^+[/tex]
Chlorine [Cl] has atomic no of 17 and thus the electronic configuration is :
[tex]Cl :1s^22s^22p^63s^23p^5[/tex] tends to get stable by gaining one electron and forming [tex]Cl^-[/tex]
[tex]K^+[/tex] and [tex]Cl^-[/tex] attract each other and form an ionic bond. As we have a chlorine molecule that is two atoms of chlorine are present, 2 atoms of potassium will react to form 2 moles of KCl.
[tex]2K+Cl_2\rightarrow 2KCl[/tex]
Under which circumstances is it wise to use a mixture of solvents to carry out a recrystallization
A theory that has been proven true repeatedly over time and never disproven is called ??
Name one physical property that could be used to distinguish chlorine from oxygen
Which best describes the mass realationships between protons, neutrons, and electrons?
A) electrons and neutrons are equal is mass but protons are much larger
B) protons and neutrons are relatively the same mass, whereas electrons are much lower in mass
C) protons and neutrons are basically of equal mass
Protons and neutrons are relatively the same mass, whereas electrons are much lower in mass.
What is the relationship between the mass of electron, proton, and neutron?
Protons and neutrons have an equal mass which is equal to 1.67262 × 10⁻²⁷ kg.
Whereas electrons have almost negligible mass. The mass of an electron is 1/1,836 of a proton.
Learn more about charges and masses of subatomic particles here:
https://brainly.com/question/14201193
#SPJ2
To what chemical reaction class does this reaction belong? 2 mg(s) + o2(g)2 mgo(s)
How many moles of chlorine are in 6.67X10^40 chlorine molecules
Please put in scientific notation
To solve for the number of moles, we simply have to use the Avogadros number which states that there are 6.022 x 10^23 molecules per mole. Therefore:
number of moles = 6.67 X 10^40 chlorine molecules / (6.022 x 10^23 molecules / mole)
number of moles = 1.108 x 10^17 moles
Answer: 1.108 x 10^17
Explanation:
Of the pigments that were soluble in the solvent, which pigment is the most polar? yellow, red, purple, blue
A 0.465 g sample of an unknown compound occupies 245 ml at 298 k and 1.22 atm. what is the molar mass of the unknown compound? answer: a 0.465 g sample of an unknown compound occupies 245 ml at 298 k and 1.22 atm. what is the molar mass of the unknown compound? 26.3 g/mol 81.8 g/mol 33.9 g/mol 38.0 g/mol 12.2 g/mol
Determine the molar mass of an unknown compound by rearranging the ideal gas law to solve for the number of moles and then dividing the sample mass by the number of moles.
Explanation:You calculate the molar mass of a gas with the concept that at a consistent temperature and pressure, the molar volume of a gas is constant. The ideal gas law (PV = nRT), where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature, can be used under these conditions. Rearranging the equation and substituting molar mass for mass and number of moles gives you an equation to calculate molar mass.
First, convert volume from milliliters to liters, so 245 ml becomes 0.245 L. Using R as 0.0821 (atm L)/(mol K), the equation will yield the number of moles of the gas. Now, divide the given sample mass (0.465 g) by the calculated number of moles to obtain the molar mass. The correct choice among 26.3 g/mol, 81.8 g/mol, 33.9 g/mol, 38.0 g/mol, 12.2 g/mol is calculated through the steps described above.
Learn more about Molar Mass here:https://brainly.com/question/12127540
#SPJ11
The reaction of excess oxygen with an unknown volume of hydrogen at 200 c yields 3.22 l of steam. what is the volume of the hydrogen -pressure
The pressure of the system is approximately 19.64 atm.
To solve this problem, we can use the stoichiometry of the reaction between hydrogen and oxygen to form water vapor (steam). The balanced chemical equation for this reaction is:
2H2 + O2 → 2H2O
From the equation, we see that 2 moles of hydrogen react with 1 mole of oxygen to produce 2 moles of water vapor.
First, we need to determine the number of moles of water vapor produced using the ideal gas law:
PV = nRT
Where:
P = pressure
V = volume (in liters)
n = number of moles
R = ideal gas constant (0.0821 L·atm/(K·mol))
T = temperature (in Kelvin)
Given:
P = pressure of the system (which we need to find)
V = volume of steam produced = 3.22 L
T = temperature = 200°C = 200 + 273.15 = 473.15 K
Let's find the number of moles of water vapor first:
n = PV / RT
Substitute the given values:
n = (P * 3.22) / (0.0821 * 473.15)
Now, since the reaction is 2 moles of hydrogen to 2 moles of water vapor, we can say that the number of moles of water vapor produced is equal to the number of moles of hydrogen that reacted.
So, the number of moles of hydrogen reacting is also 'n'.
Now, 2 moles of hydrogen occupy 2 times the volume of the water vapor. So, the volume of hydrogen can be calculated as follows:
Volume of hydrogen = (2 * n) liters
Now, we need to find the pressure of the system. We can use the ideal gas law again:
P = nRT / V
Substitute the values:
P = (n * 0.0821 * 473.15) / (2 * n)
The 'n's cancel out, leaving us with:
P = 0.0821 * 473.15 / 2
Now, let's calculate this.
P = (0.0821 * 473.15) / 2
P ≈ 19.64 atm
So, the pressure of the system is approximately 19.64 atm.
What is easier to separate a homogeneous mixture or a heterogeneous mixture?
The difference in the size of their particles
Explanation:Heterogeneous mixtures are easier to separate because the particles sizes of the components of the mixture differ greatly and such the separation technique used can take advantage of this property.
An example frequently used is Sand and water. Simply filtration with filter paper and funnel brings about this separation as the water particles are small enough to pass through the paper, however the sand particles are too large and are stopped from passing. After a few moments, the water and sand would have been fully separated.
Homogenous mixtures are harder to separate because the particles sizes are close in relation to each other and as such this property would not be ideal for the separation technique used.
This is when the experimenter will turn to other properties such as boiling points, melting points and solubility in order to separate them.
An example would be to separate salt from water.
The technique preferred is evaporation as the boiling points of H2O(100oC) and NaCl(1413oC) are far apart and thus would cause the evaporation of the water longer before the NaCl begins to evaporate.
How does the number of hydrogen atoms compared to the number of oxygen atoms in each amino acid?
The number of hydrogen atoms which are compared to the number of oxygen atoms in each amino acid because:
One amino acid contains 2 oxygen atoms and 4 hydrogren atomsA hydrogen atom is an atom of hydrogen which contains one positively charged proton and a negatively charged electron and is held together by a nucleus.
As a result of this, when comparing the number of hydrogen atoms and the number of oxygen atoms, it is important to note that they have different number in the R group and each R group may be different in the number of atoms.
Read more here:
https://brainly.com/question/13055442
Give an example of how each compound is used or found in nature. Be sure to use complete sentences.
Water-
Hydrogen-
Ammonia-
Carbon Dioxide-
Hydrogen Sulfide-
Thank you!
Compounds with very high vapor pressures must have very minimal intermolecular forces true or false
Could you separate a mixture of salicylic acid and aspirin by acid-base extraction? briefly justify your answer.
Compound 1: 76.0% ru and 24.0% o (by mass), compound 2: 61.2% ru and 38.8% o (by mass). part a what is the empirical formula for compound 1?
What is the mass percent composition of oxygen in ethylene glycol, c2h6o2?
What must be done to carbon dioxide gas to change it to a solid
The thing to be done to change carbon dioxide gas into a solid is to decrease the temperature till freezing point.
What is solid state?The condition of matter in which materials are not fluid but maintain their boundaries without support, with atoms or molecules maintaining fixed places in relation to one another and unable to move freely.
For changing the gaseous state into the solid state, we have to increase the pressure of gas so that the molecules of gas come close to each other or by decreasing the temperature of gas so that toms get freeze to not move freely.
Hence, by decreasing the temperature to freezing point, carbon dioxide gas will change into a solid.
To know more about freezing point, visit the below link:
https://brainly.com/question/24314907
#SPJ2
There is a "short-cut" to determining the number of valence electrons. how can you determine the number of valence electrons by just looking at the periodic table?
Explain why the quantum number set (3, 3, -2, +½) is not possible for an electron in a ground-state atom.
How could you separate lauric acid from alpha naphthol?
To separate lauric acid from alpha naphthol, solvent extraction can be used.
Explanation:To separate lauric acid from alpha naphthol, one method that can be used is solvent extraction. Lauric acid is insoluble in water but soluble in organic solvents such as ether or ethanol, while alpha naphthol is soluble in water. By adding the mixture of lauric acid and alpha naphthol to an organic solvent, the lauric acid will dissolve in the solvent while the alpha naphthol remains in the water. After separation, the solvent can be evaporated to obtain the separated lauric acid.
Learn more about solvent extraction here:https://brainly.com/question/33536764
#SPJ6
Ca3(PO4)2 + H2SO4 → CaSO4 + H3PO4
Balance this reaction if necessary
If an automobile travels 215 mi with a gas mileage of 20.5 mi/gal , how many kilograms of co2 are produced? assume that the gasoline is composed of octane, c8h18(l), whose density is 0.69 g/ml.
1. What unit would you use if you were measuring the average kinetic energy of a substance?
A) joules
B )calories
C) Celsius
D) Watts
2. Convert 5.8 km to the unit mm.
A) 0.0000058 mm
B) 0.0058 mm
C) 5,800 mm
D) 5,800,000 mm
3. The density of a sample of metal is calculated using these three different sets of data: 2.9 g/mL, 2.8 g/mL, and 3.0 g/mL. If the true density of the metal is 2.1 g/mL, what can be said about these calculated density values?
A) The set is both accurate and precise.
B) The set is accurate but not precise.
C) The set is precise but not accurate.
D) The set is neither accurate nor precise.
4. Which statement best represents scientific laws?
A) Scientific laws are statements that contain scientists' opinions of how the world works.
B) Scientific laws are factual statements that explain why certain natural phenomena occur.
C) Scientific laws are theories that have been tested, proven, and adopted as laws.
D) Scientific laws are descriptions of observed phenomenon, generally accepted as facts.
5. A Scottish chemist Thomas Graham observed and experimented with gas particles in the 1800s. He formulated a mathematical equation that describes the relationship between the mass of a gas molecule and its rate of effusion. This relationship is a.....
A) law because it describes what happens without explaining why.
B) law because it is based on mathematics.
C) theory because it describes a relationship.
D) theory because it is a description without an explanation.
Joules is the correct unit for measuring average kinetic energy of a substance, 5.8 km is equal to 5,800,000 mm, the density values mention precision but lack accuracy, scientific laws are descriptions of observed phenomena, and Graham's equation is a law based on description of what occurs.
Explanation:The unit used for measuring the average kinetic energy of a substance is joules (A).
Converting 5.8 km to millimeters results in 5,800,000 mm (D).
The calculated density values of a metal sample (2.9 g/mL, 2.8 g/mL, and 3.0 g/mL) compared to the true density of 2.1 g/mL show that the set is precise but not accurate (C), as the measurements are close to each other but not to the true value.
A correct representation of scientific laws is that they are descriptions of observed phenomena, generally accepted as facts (D).
Thomas Graham's mathematical equation on the relationship between gas molecule mass and effusion rate is a law because it describes what happens without explaining why it happens (A).
The theory that the pressure of a gas increases as its volume decreases because molecules have to move a shorter distance to hit the container's walls falls under a microscopic description of chemical behavior, as it deals with the behavior of individual gas molecules.
Where do proteins get the energy to combine co2 and other compounds in the calvin cycle?
What is the molarity of a 10.2 % by mass glucose (c6h12o6) solution? (the density of the solution is 1.03 g/ml .)?
Final answer:
To find the molarity of a 10.2% glucose solution with a density of 1.03 g/ml, you calculate the mass of glucose in 1 L of solution to be approximately 105.06 g, convert this to moles, and find the molarity to be 0.583 M.
Explanation:
The question asks: What is the molarity of a 10.2 % by mass glucose (C₆H₁₂O₆) solution? (the density of the solution is 1.03 g/ml). To find the molarity, first identify the mass of glucose in a given volume of the solution. Assuming we have 1000 mL (or 1 L) of solution for simplicity, with a density of 1.03 g/mL, the total mass of the solution would be 1030 g. Given that 10.2% is by mass, the mass of glucose is 10.2% of 1030 g, which equals 105.06 g.
To find the molarity, we need to convert the mass of glucose to moles by dividing by its molar mass (180.156 g/mol for C₆H₁₂O₆). This equals approximately 0.583 moles of glucose. Since molarity is defined as moles of solute per liter of solution, and our assumed volume of the solution is 1 L, the molarity of the glucose solution is therefore 0.583 M.
The molarity of a 10.2% by mass glucose solution with a density of 1.03 g/mL is approximately 0.583 M.
The solution's volume and the number of moles of glucose were calculated to determine this value.
This gives the concentration of glucose in the solution.To find the molarity of a 10.2% by mass glucose (C₆H₁₂O₆) solution with a density of 1.03 g/mL, follow these steps:
Determine the mass of glucose and the mass of the solution: Assume we have 100 g of solution. This means we have 10.2 g of glucose and 89.8 g of solvent (water).Calculate the number of moles of glucose: The molar mass of glucose (C₆H₁₂O₆) is 180.16 g/mol.Therefore, the molarity of the solution is approximately 0.583 M .
Correct question is: What is the molarity of a 10.2 % by mass glucose (C₆H₁₂O₆) solution? (the density of the solution is 1.03 g/ml .)?
How does the arrangement of particles in a gas differ from the arrangements in liquids and solids?
Arrange the isotopes of sulfur and phosphorus in order of decreasing number of neutrons.
Rank the isotopes from most to fewest neutrons. To rank items as equivalent, overlap them.
Answer:
Rank of the isotopes from most to fewest neutrons:
S-36, P-35
P-33
P-32
S-32, P-31
Explanation:
The following options are missing:
S-36
P-35
S-32
P-33
P-32
P-31
Sulfur has 16 protons then S-36 has 36 - 16 = 20 neutrons and S-32 has 32 - 16 = 16 neutrons.
Phosphorus has 15 protons, then P-35 has 35 - 15 = 20 neutrons, P-33 has 33 - 15 = 18 neutrons, P-32 has 32 - 15 = 17 neutrons and P-31 has 31 - 15 = 16 neutrons.