1104 km/hour
ExplanationDistance between Dallas Texas to New York = 2760 km
Time the plane took from Dallas to New York = 2 hours
Time the plane took from New York back to Dallas = 2.5 hours
Formula to use
distance = speed x timeSpeed the plane took from Dallas to New York
2760 = 2 x speed
speed = 2760 / 2
= 1380 km/hour
Speed the plane took from New York to Dallas (ROUND TRIP)
2760 = 2.5 x speed
speed = 2760 / 2.5
= 1104 km/hour
Answer: The speed of airplane is 1227 km/hr
Explanation:
Average speed is defined as the ratio of total distance traveled to the total time taken.
To calculate the average speed of the airplane, we use the equation:
[tex]\text{Average speed}=\frac{\text{Total distance traveled}}{\text{Total time taken}}[/tex]
We are given:
Total distance traveled = (2760 + 2760) km = 5520 km (Round trip)
Total time taken = (2 + 2.5) hr = 4.5 hr
Putting values in above equation, we get:
[tex]\text{Average speed of airplane}=\frac{5520km}{4.5hr}=1227km/hr[/tex]
Hence, the speed of airplane is 1227 km/hr
What is the atomic bomb equivalent to a 7.0 earthquake
Answer:
199,000 tons.
Explanation:
A 7.0 earthquake has an equivalence of 199,000 tons of TNT.
Why do astronomers hypothesize that a massive black hole lies at the center of m87?
According to Einstein's theory of relativity, a black hole is a "singularity" that consists of a region of the space in which the density of matter tends to infinity. In consequence, this huge massive body has a gravitational pull so strong that not even light can escape from it.
In addition, "the surface" of a black hole is called the event horizon, which is the border of space-time in which the events on one side of it can not affect an observer on the other side.
In other words, at this border also called "point of no return", nothing can escape (not even light) and no event that occurs within it can be seen from outside.
In this sense, and according to the relativity, it is possible to determine where a black hole is if it is "observed" an enormous amount of energy released. So, in accordance to this, galaxies like ours must have a black hole in its center.
On the other hand, the elliptical galaxy Mesier 87 (also called Virgo A, but from now on M87) was showing the above described behaviour, with enormous jets of high-energy particles shooting away from its vicinity . This was imaged by the Hubble Space Telescope years ago; that is why astronemers were hypothesizing about the existence of a massive black hole there.
Well now, on April, 10th 2019 this was demonstrated with the publication of the image, for the first time, of the event horizon of the black hole in M87. This is the first time in human history a picture of a black hole is taken.
This was done by the huge effort of diverse scientist and by the syncronization of eight radio telescopes scattered across the Earth (located at: Hawaii, Spain, Chile, Mexico, Arizona and the South Pole), which took the same point of the sky at the same time.
URGENT PLEASE BRAINLIEST
Assuming the starting height is 0.0 m, calculate the potential energy of the cart after it has been elevated to a height of 1.0 m above the starting location
When the cart arrives at any place that's 1.0 meter higher than where it started, its potential energy will be
(9.8) · (its mass on kilograms) Joules .
Potential Energy is given by the formula mass x gravity x height. The starting height is irrelevant in its calculation. The potential energy depends on the mass of the object, gravity and the elevated height.
Explanation:The potential energy of an object is calculated by the formula Potential Energy = mass x gravity x height. Whenever the height of an object increases, its potential energy will increase as well provided mass and the gravitational field (g) remain constant. Here, the starting height being 0.0 m is irrelevant to the calculation of potential energy at 1.0 m height. If the mass of the cart and the value of gravity (usually taken as 9.8 m/s2 on Earth's surface) are known, you can substitute those values into the formula to find the potential energy.
e.g. If the mass of the cart was 2 kg, the potential energy at a height of 1.0 m would be 2 kg x 9.8 m/s
2
x 1.0 m = 19.6 joules.
Learn more about Potential Energy here:https://brainly.com/question/24284560
#SPJ3
Starting from rest, a disk rotates about its central axis with constant angular acceleration. in 6.00 s, it rotates 44.5 rad. during that time, what are the magnitudes of (a) the angular acceleration and (b) the average angular velocity? (c) what is the instantaneous angular velocity of the disk at the end of the 6.00 s? (d) with the angular acceleration unchanged, through what additional angle (rad) will the disk turn during the next 6.00 s?
a. The disk starts at rest, so its angular displacement at time [tex]t[/tex] is
[tex]\theta=\dfrac\alpha2t^2[/tex]
It rotates 44.5 rad in this time, so we have
[tex]44.5\,\mathrm{rad}=\dfrac\alpha2(6.00\,\mathrm s)^2\implies\alpha=2.47\dfrac{\rm rad}{\mathrm s^2}[/tex]
b. Since acceleration is constant, the average angular velocity is
[tex]\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2=\dfrac{\omega_f}2[/tex]
where [tex]\omega_f[/tex] is the angular velocity achieved after 6.00 s. The velocity of the disk at time [tex]t[/tex] is
[tex]\omega=\alpha t[/tex]
so we have
[tex]\omega_f=\left(2.47\dfrac{\rm rad}{\mathrm s^2}\right)(6.00\,\mathrm s)=14.8\dfrac{\rm rad}{\rm s}[/tex]
making the average velocity
[tex]\omega_{\rm avg}=\dfrac{14.8\frac{\rm rad}{\rm s}}2=7.42\dfrac{\rm rad}{\rm s}[/tex]
Another way to find the average velocity is to compute it directly via
[tex]\omega_{\rm avg}=\dfrac{\Delta\theta}{\Delta t}=\dfrac{44.5\,\rm rad}{6.00\,\rm s}=7.42\dfrac{\rm rad}{\rm s}[/tex]
c. We already found this using the first method in part (b),
[tex]\omega=14.8\dfrac{\rm rad}{\rm s}[/tex]
d. We already know
[tex]\theta=\dfrac\alpha2t^2[/tex]
so this is just a matter of plugging in [tex]t=12.0\,\mathrm s[/tex]. We get
[tex]\theta=179\,\mathrm{rad}[/tex]
Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that
[tex]\theta=44.5\,\mathrm{rad}+\left(14.8\dfrac{\rm rad}{\rm s}\right)t+\dfrac\alpha2t^2[/tex]
Then for [tex]t=6.00\,\rm s[/tex] we would get the same [tex]\theta=179\,\rm rad[/tex].
The crest of a water wave moves _________ to the direction the wave energy moves. Parallel perpendicular
Perpendicular
Explanation;The crest of a water wave moves perpendicular to the direction the wave energy moves.A transverse wave is a wave in which particles move up and down or side-to-side at right angles or perpendicular to the direction the wave travels.Examples of these waves are: vibrations in strings, ripples on water surface and electromagnetic waves. In a transverse wave, the particles of the medium oscillate in a direction perpendicular to the direction of propagation.The fundamental force underlying all chemical reactions is
A) gravitational.
B) nuclear.
C) centripetal.
D) electrical.
E) none of these.
D) Electrical
Electrical Force:
Electric forces are responsible for almost every single chemical reaction that occurs in your body. Almost all of biochemistry relies on understanding how these forces cause electrons to move between atoms, and the changes in the structure or composition that occur when electrons move between atoms.Electrostatic forces become important when particle material is electrically insulating so the electric charge can be retained.For example: The charge in a bulb. Electric circuits.Thus, option D is correct.
Learn more:
brainly.com/question/21980164
The fundamental force underlying all chemical reactions is electrical. Hence option D is correct.
Almost every chemical reaction that takes place in your body is triggered by electric forces. Understanding how these forces drive electrons to travel between atoms and the alterations in the structure or composition that result from this movement are essential to almost all of biochemistry.
When particle material is electrically insulating enough that the electric charge may be maintained, electrostatic forces become significant. For instance: a bulb's charge. electrical networks.
To know more about Force :
https://brainly.com/question/30507236
#SPJ6.
Archerfish are tropical fish that hunt by shooting drops of water from their mouths at insects above the waterÂs surface to knock them into the water, where the fish can eat them. a 65-g fish at rest just at the surface of the water can expel a 0.30-g drop of water in a short burst of 5.0 ms. high-speed measurements show that the water has a speed of 2.5 m/s just after the archerfish expels it.
Answer:
.012
Explanation:
Take the mass of the fish and divide it by the mass of the water:
65/.30=216.667
Divide the given speed by the value we found above:
2.5/216.667=.0115
Answer can be rounded up to .012
The speed of the archerfish immediately after it expels the drop of water is about (b) 0.012 m/s
[tex]\texttt{ }[/tex]
Further explanationNewton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.
[tex]\large {\boxed {F = ma }[/tex]
F = Force ( Newton )
m = Object's Mass ( kg )
a = Acceleration ( m )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
The Question:
What is the speed of the archerfish immediately after it expels the drop of water?
(a) 0.0025 m/s; (b) 0.012 m/s; (c) 0.75 m/s; (d) 2.5 m/s.
Given:
mass of fish = m₁ = 65 g
mass of drop of water = m₂ = 0.30 g
speed of water = v₂ = 2.5 m/s
initial speed of water = initial speed of archerfish = u₁ = u₂ = 0 m/s
Asked:
the speed of the archerfish = v₁ = ?
Solution:
We will use Conservation of Momentum Law as follows:
[tex]m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2[/tex]
[tex]65(0) + 0.30(0) = 65v_1 + 0.30(2.5)[/tex]
[tex]0 + 0 = 65v_1 + 0.75[/tex]
[tex]65v_1 = -0.75[/tex]
[tex]v_1 = -0.75 \div 65[/tex]
[tex]\boxed{v_1 \approx -0.012 \texttt{ m/s}}[/tex]
[tex]\texttt{ }[/tex]
Conclusion :The speed of the archerfish immediately after it expels the drop of water is about 0.012 m/s
[tex]\texttt{ }[/tex]
Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441Newton's Law of Motion: https://brainly.com/question/10431582Example of Newton's Law: https://brainly.com/question/498822[tex]\texttt{ }[/tex]
Answer detailsGrade: High School
Subject: Physics
Chapter: Dynamics
Astronomers are getting information about dark energy from
a the existence of dark matter
b the number of stars in the sky
c the fact that gases are in galaxies
d the shape of galaxies in cluster galaxies
The only way of telling about dark energy is our observation of how the universe has been expanding. It basically works the opposite as gravity, pushing things away from it. Thus, the closest answer would be D. The shape of galaxies in cluster galaxies.
Answer:
D. The shape of galaxies in cluster galaxies
Explanation:
When the Universe began to expand, everything present in Universe began to move at a very high rate. This was concluded that some external force is working on it in order to pull these things. It was known as the dark energy.
Thus the size and shape of galaxies is increasing because of this dark energy, hence the study of change in shape and size of galaxy gives information about dark energy as it is constantly applying force thus increasing the size.
A bacterium called Bacillus thuringiensis (B.T.) contains a protein that can kill cotton ballworms and certain other kinds of caterpillars. A different bacterium called Agrobacterium tumefaciens has the ability to insert its genetic material into plants. Scientists in the late twentieth century took a gene from (B.T.) and inserted it into specimens of Agrobacterium tumefaciens. Genetic material from the Agrobacterium tumefaciens specimens was then inserted into cotton plants. The goal of these tests was to reduce caterpillar infestation in the cotton plants. These tests are an example of A. Natural selection. B. Meiotic cell division C. Creating purebred species. D. Genetic engineering.
Explanation:the answer is a genetic engirnering
To create a Bt crop variety, plant scientists choose a specific Bt toxin gene and inject it into the developing cells of corn or cotton plants. The resulting mature plant has the Bt gene in each of its cells and expresses the insecticidal protein in its leaves.Thus, option D is correct.
What role of Bacillus thuringiensis in Genetic engineering?The cotton bollworm, Asian and European corn borers, and other damaging insect larvae are all paralysed by a protein produced by Bt, which is a widespread plant pest whose infestations have disastrous impacts on essential crops.
The gene of interest in Bt corn creates a protein that destroys Lepidoptera larvae, specifically the European corn borer. The donor organism in this case is a naturally occurring soil bacterium called Bacillus thuringiensis.
Therefore, The goal of these tests was to reduce caterpillar infestation in the cotton plants. These tests are an example of Genetic engineering.
Learn more about Genetic engineering here:
https://brainly.com/question/13491558
#SPJ5
What is the strength of an electric field that will balance the weight of a 1.0 g plastic sphere that has been charged to −3.0nc?
Answer:
[tex]3.27\cdot 10^6 V/m[/tex]
Explanation:
In order to balance the weight of the sphere, the electric force must be equal in magnitude to the weight of the sphere:
[tex]F_E = qE=mg[/tex]
where
[tex]q=3.0nC=3.0\cdot 10^{-9} C[/tex] is the charge of the sphere (we can ignore the sign, since we are only interested in the magnitude of the force
E is the strength of the electric field
m = 1.0 g = 0.001 kg is the mass of the sphere
g = 9.81 m/s^2 is the gravitational acceleration
Solving the equation for E, we find the strength of the electric field:
[tex]E=\frac{mg}{q}=\frac{(0.001 kg)(9.81 m/s^2)}{3.0\cdot 10^{-9} C}=3.27\cdot 10^6 V/m[/tex]
To balance the gravitational force on a 1.0 g plastic sphere with a –3.0 nC charge, an electric field strength of 3.27×106 N/C is needed. The calculation is based on setting the electric force equal to the gravitational force and solving for the electric field strength.
Explanation:The strength of an electric field that will balance the weight of a 1.0 g plastic sphere that has been charged to –3.0 nC can be computed using the relationship between the electric force and the weight of the sphere. The weight of the sphere is the force due to gravity acting on it, which is Fg = mg, where m is mass and g is the acceleration due to gravity (9.8 m/s2). To balance this force, the electric force Fe = qE, where q is the charge and E is the electric field strength, must be equal in magnitude to the gravitational force. Hence, solving for E we get:
E = Fg / q
E = (0.001 kg)(9.8 m/s2) / –3.0×10–9 C
E = –9.8×103 N/kg / –3.0×10–9 C
E = 3.27×106 N/C
The negative sign indicates that the direction of the electric field opposes the negative charge. However, in terms of magnitude, the electric field strength required to balance the weight of the plastic sphere is 3.27×106 N/C.
What fundamental frequency would you expect from blowing across the top of an empty soda bottle that is 24 cm deep
a: Blowing across the top of an empty soda bottle (24 cm deep) gives a fundamental frequency of about 714.58 Hz for the assumed closed tube.
b: Filling the bottle with soda to a height of 15 cm increases the fundamental frequency to about 1143.33 Hz.
a: To determine the fundamental frequency of a closed tube, we can use the formula f = v/2L, where f is the frequency, v is the speed of sound, and L is the length of the tube. In this case, the bottle acts as a closed tube, and its depth (24 cm) corresponds to half of the wavelength.
[tex]\( f_a = \frac{343 \, \text{m/s}}{2 \times 0.24 \, \text{m}} = 714.58 \, \text{Hz}.\)[/tex]
Therefore, the expected fundamental frequency when blowing across the top of the empty soda bottle is approximately 714.58 Hz.
b: If the bottle is filled with soda up to a height of 15 cm, the effective length of the closed tube is reduced. Using the same formula,
[tex]\( f_b = \frac{343 \, \text{m/s}}{2 \times 0.15 \, \text{m}} = 1143.33 \, \text{Hz}.\)[/tex]
Therefore, the expected fundamental frequency with a soda height of 15 cm is approximately 1143.33 Hz.
The question probable maybe:
a: What fundamental frequency would you expect from blowing across the top of an empty soda bottle that is 24 cm deep, if you assumed it was a closed tube? The speed of sound in air is 343 m/s.
b: What fundamental frequency would you expect if the bottle was filled with soda for height of 15 cm ?
What is the velocity of a wave having a frequency of 25 Hz and a wavelength of 10m
Wave speed = (frequency) x (wavelength)
Speed = (25 /sec) x (10 m)
Speed = (10 x 25) (m/s)
Speed = 250 m/s
The velocity of a wave is the product of its frequency and wavelength. Velocity of a wave having a frequency of 25 Hz and a wavelength of 10 m is 250 m/s.
What is frequency?Frequency of a wave is the number of cycles per second. It is the inverse of the time taken to travel by a wave. Thus, the unit of frequency is s⁻¹ which is equivalent to the unit Hz.
Wavelength of an wave is the distance between two consecutive crests, troughs. Wavelength and frequency is inverse relation. Thus, longer wavelength have lower frequency.
The relation between wavelength, frequency and velocity of a wave is written as below:
[tex]u = v\lambda[/tex]
Where, u is the velocity of wave and lambda is the wavelength and v is the frequency.
The velocity of wave with a frequency of 25 Hz and wavelength 10 m is calculated as follows:
velocity = frequency × wavelength
= 25 Hz × 10 m
= 250 m/s
Hence, velocity of a wave having a frequency of 25 Hz and a wavelength of 10 m is 250 m/s.
To find more about frequency, refer the link below:
https://brainly.com/question/14926605
#SPJ2
When does a convex lens act like a magnifying glass
A convex lens functions as a magnifying glass when an object is positioned closer to it than its focal length, resulting in an enlarged, virtual, and upright image.
A convex lens acts like a magnifying glass when an object is placed within its focal length. In this situation, the image formed is virtual, upright, and larger than the object itself. When the object is closer to the lens than the focal length (f), the lens is capable of magnifying the object. This is referred to as a case 2 image. As the magnifier is pulled away from the object to the point of blurring, this indicates that the lens has reached the focal length. Beyond this distance, the image will become inverted. To effectively use a convex lens for magnification, the object must therefore be positioned at a distance closer than the lens's focal length (do < f).
What is the kinetic energy of a 30 gram ball that is rolling at a speed of 2 meters per second
Answer:
0.06 J
Explanation:
The kinetic energy of an object is given by:
[tex]K=\frac{1}{2}mv^2[/tex]
where
m is the mass of the object
v is the speed
For the ball in this problem,
m = 30 g = 0.030 kg
v = 2 m/s
Therefore, the kinetic energy of the ball is
[tex]K=\frac{1}{2}(0.030 kg)(2 m/s)^2=0.06 J[/tex]
Lithium is more active than aluminium
A.True
B.false
If you travel for three hours at a speed of 30 km/h , how far will you go?
Distance = (speed) x (time) <== This is important. You should memorize it.
Distance = (30 km/hr) x (3 hr)
Distance = (30 x 3) (km/hr x hr)
Distance = 90 km
If you travel for three hours at a speed of 30 km / h, then you would go 90 kilometers in 3 hours.
What is speed?The total distance covered by any object per unit of time is known as speed. It depends only on the magnitude of the moving object. The unit of speed is a meter/second.
As given in the problem If you travel for three hours at a speed of 30 km/ h, then we have to find out the distance traveled in 3 hours.
The distance traveled in 3 hours = 30 × 3
= 90 km
Thus, If you travel for three hours at a speed of 30 km / h, then you would go 90 kilometers in 3 hours.
To learn more about speed here, refer to the link given below ;
https://brainly.com/question/7359669
#SPJ2
What equation would you use to find the time taken for an object to travel a set distance?
Time = (the set distance) / (the object's traveling speed)
Why does the gravitational force between Earth and Moon predominate over electrical forces? The electric force between Earth and Moon cancels out because they have an equal number of positive and negative charges. The gravitational force between two protons is billions of times stronger than the electrical force. Gravitational forces grow exponentially with the number of particles, while electrical forces simply add. The electrical force gets smaller more quickly with distance than the inverse square gravitational force
The gravitational force between Earth and the Moon is dominant over electrical forces because Earth and the Moon are nearly electrically neutral, making Coulomb forces almost cancel out. Gravitational force is always attractive and more substantial between objects with large masses, unlike electrostatic forces which are negligible for large bodies.
Explanation:The gravitational force between the Earth and the Moon predominates over electrical forces primarily because most objects, including the Earth and Moon, are nearly electrically neutral. Hence, the attractive and repulsive Coulomb forces nearly cancel each other out. Secondly, the gravitational force is always attractive, becoming significant on a large scale and making it the dominating force in interactions between large objects such as Earth and Moon. While the gravitational and electrostatic forces are both inverse square forces, meaning they both diminish with the square of the distance, gravitational force depends on the mass and is stronger between objects with large masses. In contrast, the electrostatic force, being much greater than the gravitational force between charged particles, becomes negligible when considering large, nearly neutral bodies.
A particle with charge 8 µC is located on the x-axis at the point −10 cm , and a second particle with charge 3 µC is placed on the x-axis at −8 cm . −10−8 −6 −4 −2 2 4 6 8 10 8 µ C 3 µ C − 3 µ C x → (cm) What is the magnitude of the total electrostatic force on a third particle with charge −3 µC placed on the x-axis at 2 cm
Answer:Force on -7 uC charge due to charge placed at x = - 10cm
now we will have
towards left
similarly force due to -5 uC charge placed at x = 6 cm
now we will have
towards left
Now net force on 7 uC charge is given as
towards left
Explanation:
How much charge does a 9.0 v battery transfer from the negative to the positive terminal while doing 45 j of work?
Here is your answer
[tex]<b>5 coulomb </b>[/tex]
REASON :
We know that
Potential difference, V= W/q
where, W is work done
and, q is magnitude of charge
Given,
V= 9.0 v and W= 45 J
So,
using above relation, we get
9= 45/q
q= 45/9
q= 5 coulomb
HOPE IT IS USEFUL
How does latitude affect climate?
Latitude controls the angle of tilt for Earth’s axis.
Latitude determines the duration of daylight hours.
Latitude causes air temperatures to remain cool at higher elevations.
Latitude causes ocean currents to move in a certain direction.
Answer:
The CORRECT ANSWER is Latitude determines the duration of daylight hours on E2020
The way in which latitude affect climate is: B. Latitude determines the duration of daylight hours.
Climate can be defined as the long-term average atmospheric conditions (weather) prevailing in a specific region and persists for a very long period of time.
Latitude refers to a geographic coordinate that specifies the angular distance of a place North or South of the Earth's surface, which is usually expressed in degrees and minutes.
In Science, latitude is the most important factor that influences the climate of a region because it determines the amount of sunlight that are received in a particular region.
In conclusion, latitude affect climate because it determines the duration of daylight hours.
Read more: https://brainly.com/question/22499554
Sound waves that start in air can move into water. This is because it is __________ that is transferred and not_____________ . A) waves, matter B) energy, waves C) energy, particles D) particles, energy
The answer is C
Sounds is just energy think about it in outer space. How does light from the sun make it to earth but sounds from the solar flares don’t that’s because light has its own particles to travel through but sound doesn’t so it needs a media to travel through
Answer:
Sound waves that start in air can move into water. This is because it is ENERGY that is transferred and not PARTICLES .
C) Energy, Particles
Explanation:
Wave propagation is the transfer of energy or disturbance through the medium.
Here we know that when energy is transferred through the medium the medium particles will remains at their own position and energy is transferred from one particle to other without the displacement of the medium from their own position.
So here in waves the energy is transmitted through the medium while the medium will remain at its own position
So correct answer will be
Sound waves that start in air can move into water. This is because it is ENERGY that is transferred and not PARTICLES .
A 193nm-wavelength UV laser for eye surgery emits a 0.500mJ pulse. (a) How many photons does the light pulse contain?
Using the equation E = hc/λ we can find out how much energy a single photon of wavelength 193 nm has. E = Planck Constant * Speed of Light/193 nm
Answer:
The number of photons is 4.8x10^14
Explanation:
The frequency of wave is equal to:
[tex]f=\frac{c}{l}[/tex]
where c is the speed of light, l is the wavelength of wave. Replacing values:
[tex]f=\frac{3x10^{8} }{193x10^{9} } =1.5x10^{15} Hz[/tex]
The energy of the proton is:
[tex]E=hf[/tex]
where h is the Planck´s constant. Replacing
[tex]E=6.626x10^{-34}*1.5x10^{5}=1.03x10^{-18} J[/tex]
The number of photons is:
[tex]n=\frac{E1}{E}[/tex]
where E1 is the energy of photon. Replacing:
[tex]n=\frac{0.5x10^{-3} }{1.03x10^{-18} }=4.8x10^{14}[/tex]
Atomic physicists usually ignore the effect of gravity within an atom. To see why, we may calculate and compare the magnitude of the ratio of the electrical force and gravitational force Fe Fg between an electron and a proton separated by a distance of 3 m. What is the magnitude of the electrical force? The Coulomb constant is 8.98755 × 109 N · m 2 /C 2 , the gravitational constant is 6.67259 × 10−11 m3 /kg · s 2 , the mass of a proton is 1.67262 × 10−27 kg, the mass of an electron is 9.10939 × 10−31 kg, and the elemental charge is 1.602 × 10−19 C. Answer in units of N. What is the ratio of the magnitude of the electrical force to the magnitude of the gravitational force? Answer in units of N.
Answer:
[tex]2.27\cdot 10^{49}[/tex]
Explanation:
The gravitational force between the proton and the electron is given by
[tex]F_G=G\frac{m_p m_e}{r^2}[/tex]
where
G is the gravitational constant
[tex]m_p[/tex] is the proton mass
[tex]m_e[/tex] is the electron mass
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,
[tex]F_G=(6.67259\cdot 10^{-11} m^3 kg s^{-2})\frac{(1.67262\cdot 10^{-27}kg) (9.10939\cdot 10^{-31}kg)}{(3 m)^2}=1.13\cdot 10^{-68}N[/tex]
The electrical force between the proton and the electron is given by
[tex]F_E=k\frac{q_p q_e}{r^2}[/tex]
where
k is the Coulomb constant
[tex]q_p = q_e = q[/tex] is the elementary charge (charge of the proton and of the electron)
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,
[tex]F_E=(8.98755\cdot 10^9 Nm^2 C^{-2})\frac{(1.602\cdot 10^{-19}C)^2}{(3 m)^2}=2.56\cdot 10^{-19}N[/tex]
So, the ratio of the electrical force to the gravitational force is
[tex]\frac{F_E}{F_G}=\frac{2.56\cdot 10^{-19} N}{1.13\cdot 10^{-68}N}=2.27\cdot 10^{49}[/tex]
So, we see that the electrical force is much larger than the gravitational force.
The ratio of the magnitude of the electrical force to the magnitude of the gravitational force will be 2.27×10⁴⁹.
What is electric force?Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force.
The gravitational force is;
[tex]\rm F_G= \frac{Gm_1m_2}{r^2} \\\\ \rm F_G= \frac{6.67\times 10^{-11}1.67\times10^{-27}9.10\times10^{-31}}{(3m)^2}\\\\ \rm F_G=1.13\times10^{-68}[/tex]
The electrical force between the two charges is given by;
[tex]\rm F_E=K\frac{KQ_1Q_2}{r^2} \\\\ \rm F=9\times10^9\frac{1.6\times10^{-19}\times9.1\times10^{-31}Q_2}{(3)^2} \\\\ \rm F_E=2.56\times 10^{-19}[/tex]
So, the ratio of the electrical force to the gravitational force is
[tex]\rm R= \frac{F_E}{F_G} \\\\ \rm R= \frac{2.56\times10^{-19}}{1.13\times10^{-68}} \\\\ \rm R= 2.27\times 10^{49}[/tex]
Hence the ratio of the magnitude of the electrical force to the magnitude of the gravitational force will be 2.27×10⁴⁹.
To learn more about the electric force refer to the link;
https://brainly.com/question/1076352
Suppose you place an object 8 cm in front of a converging lens and the image appears 16 cm on the other side of the lens. What is the focal length of the lens?
Answer:
5.33 cm
Explanation:
The lens equation states that:
[tex]\frac{1}{f}=\frac{1}{p}+\frac{1}{q}[/tex]
where
f is the focal length
p is the distance of the object from the lens
q is the distance of the image from the lens
In this problem,
p = 8 cm
q = 16 cm ( the sign is positive since the image is real, which means it is formed on the other side of the lens)
Substituting into the equation,
[tex]\frac{1}{f}=\frac{1}{8 cm}+\frac{1}{16 cm}=\frac{3}{16 cm}[/tex]
[tex]f=\frac{16}{3}cm=5.33 cm[/tex]
Consider two bicycle riders, A and B. The two riders have equal masses Mrider A = Mrider B and their respective bicycles also have similar frames, Mframe A = Mframe B . Finally, the wheels of the two bicycles have equal masses Mwheel A = Mwheel B and equal radii R wheel A = R wheel B but different mass distributions: the wheels of bike A have most of their masses at the rims, Wheel A, while the wheels of bike B have their masses ‘spread’ evenly over the whole wheel area, Wheel B. The two cyclists travel at the same speed on level ground. They approach a low hill and decide to coast up instead of hard pedalling. At the top of the hill, which of the two bikes will have a larger speed? Assume no friction nor air resistance, and all the wheels roll on the ground without slipping.
In a scenario where two bikes with different wheel mass distributions coast up a hill, the bike with more mass at the wheel's rim (wheel A) will maintain a greater speed due to a larger rotational inertia. That's because more kinetic energy is stored in rotational motion, which is more efficient in maintaining speed uphill.
Explanation:The subject here is physics shedding light on the concept of rotational inertia with a scenario involving two bicycle riders, A and B, on a hill. With all mass and physical attributes being equal, differences in how the mass distribution is in their bicycle wheels would determine how they would coast up a hill.
In this scenario, the bicycle A's wheel with most of its mass at the rims (wheel A) would have a larger rotational inertia than the wheel of bicycle B which has its mass evenly distributed. When they coast up the hill, rider A will maintain a greater speed to the top because the cyclists first store energy in the wheels during pedaling. The wheel with greater rotational inertia (wheel A) will then lose less speed because it retains more of that energy.
This happens because, in the case of rolling objects, kinetic energy gets split between rotational and linear motion. The distribution of mass influences how the kinetic energy is split. For wheel A with more mass towards the rim, more kinetic energy goes into rotational motion which does a better job at maintaining the speed uphill.
Learn more about Rotational Inertia here:https://brainly.com/question/34011188
#SPJ12
In the given scenario, bike B, with its wheel mass evenly distributed, will reach the top of the hill at a higher speed due to the relationship between the moment of inertia and kinetic energy.
Explanation:This question requires an understanding of the physics concepts of rotational motion and moment of inertia. The two bikes are identical in every aspect except the distribution of mass in their wheels. The bike A wheel, with most of its mass at the rim, has a higher moment of inertia. As the bikes coast upwards without pedaling, the kinetic energy is converted to potential energy. The kinetic energy has two forms: translational and rotational. The bike with the higher moment of inertia (bike A) will have a larger proportion of its energy in rotational form. When they reach the incline, both will begin converting potential energy back into kinetic, but because bike A has a higher portion as rotational, it will have less translational (directly related to speed) compared to bike B. Therefore, bike B will reach the top with a higher speed.
Learn more about Rotational Motion and Moment of Inertia here:https://brainly.com/question/30338164
#SPJ12
A person pushes on a 57-kg refrigerator with a horizontal force of 267 N; the - sign indicates that the force points in the +x direction. The coefficient of static friction is 0.65. (a) If the refrigerator does not move, what are the magnitude and direction of the static frictional force that the floor exerts on the refrigerator? (b) What is the magnitude of the largest pushing force that can be applied to the refrigerator before it just begins to move?
(a) -267 N
Explanation: if the refrigerator is not moving, it means that the net force acting on it is zero.
We are only interested in the motion along the horizontal direction; there are two forces acting in this direction:
- The pushing force, forward, F=+267 N
- The static frictional force, backward, [tex]F_f[/tex]
Since the net force must be zero, we have
[tex]F+F_f =0F_f = -F = -267 N[/tex]
(b) 363.1 N
The largest pushing force that can be applied to the refrigeratore before it begins to move is equal to the magnitude of the maximum static frictional force, which is given by:
[tex]F_f = \mu mg[/tex]
where
[tex]\mu=0.65[/tex] is the coefficient of static friction
m = 57 kg is the mass of the refrigerator
g = 9.8 m/s^2 is the gravitational acceleration
Substituting,
[tex]F_f = (0.65)(57 kg)(9.8 m/s^2)=363.1 N[/tex]
The static frictional force that the floor exerts on the refrigerator is 267 N in the -x direction. The largest pushing force that can be applied before the refrigerator starts to move is 362.59 N.
Explanation:The subject matter of this question falls under the branch of Physics, specifically dealing with static friction and the concept of force. To answer your questions:
(a) Magnitude and direction of static frictional forceStatic frictional force is equal to the applied force until the object starts to move. Here, you are applying a force of 267 N horizontally on the refrigerator. Since the refrigerator does not move, the static frictional force that the floor exerts on the refrigerator is also 267 N in the -x direction, opposite to the force you're applying.
(b) Magnitude of the largest pushing force before movementAt the point of impending motion, the force you apply equals the maximum static frictional force. This can be calculated using the following formula:
fs(max) = µsN
where µs represents the coefficient of static friction and N is the normal force. The value of N is calculated by multiplying the mass of the refrigerator by the acceleration due to gravity.
N = mg = (57 kg)(9.8 m/s²) = 558.6 N
Therefore, the largest pushing force fs(max) that can be applied to the refrigerator before it begins to move is :
fs(max) = (0.65)(558.6 N) = 362.59 N
So, a force greater than 362.59 N needs to be applied to make the refrigerator start moving.
Learn more about Static Friction and Force here:https://brainly.com/question/17237604
#SPJ3
Based on the second law of thermodynamics why must a machine always be less than 100% efficient?
A.Heat never moves from cold to hot.
B.Heat is never converted completely into mechanical energy.
C.Heat never flows from hot to cold.
D.Entropy never increases.
heat never moves from cold to hot
Heat is never converted completely into mechanical energy APEX
You hear a fire truck with a certain intensity, and you are about 1 mile away. Another person hears the same fire truck with an intensity that is about 10 times less. Roughly, how far is the other person from the fire truck in miles?
The intensity of sound is just like the force of gravity, the force between electric charges, and the intensity of light . . . they all DEcrease at the same rate that the SQUARE of the distance INcreases.
So if two people are watching or listening to the same source, and one intensity is 1/10 as intense as the other intensity, then the farther person must be √10 times as far from the source as the nearer person is.
√10 = 3.1622 ...
So the second guy is about 3.16 miles from the fire truck.
Final answer:
The intensity of sound follows the inverse square law, so if a fire truck's sound is heard 10 times less intensely compared to a person 1 mile away, the other person is approximately 3.16 miles away.
Explanation:
When considering the intensity of a sound and how it decreases with distance, we are dealing with a concept in physics known as the inverse square law. The intensity of a sound is inversely proportional to the square of the distance from the source. So, if a person hears a fire truck with an intensity that is 10 times less than the intensity heard by another person 1 mile away, we apply the inverse square law: Intensity Ratio = (Distance1/Distance2)². Accordingly, the other person would be √10, which is approximately 3.16 times farther away, meaning they are roughly 3.16 miles from the fire truck.
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to orbit at an altitude of 5970 km. Satellite B is to orbit at an altitude of 21200 km. The radius of Earth REis 6370 km. (a) What is the ratio of the potential energy of satellite B to that of satellite A, in orbit? (b) What is the ratio of the kinetic energy of satellite B to that of satellite A, in orbit? (c) Which satellite (answer A or B) has the greater total energy if each has a mass of 28.8 kg? (d) By how much?
(a) 0.448
The gravitational potential energy of a satellite in orbit is given by:
[tex]U=-\frac{GMm}{r}[/tex]
where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):
r = R + h
We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as
[tex]\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}[/tex]
and so, substituting:
[tex]R=6370 km\\h_A = 5970 km\\h_B = 21200 km[/tex]
We find
[tex]\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448[/tex]
(b) 0.448
The kinetic energy of a satellite in orbit around the Earth is given by
[tex]K=\frac{1}{2}\frac{GMm}{r}[/tex]
So, the ratio between the two kinetic energies is
[tex]\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}[/tex]
Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.
(c) B
The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:
[tex]E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}[/tex]
For satellite A, we have
[tex]E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J[/tex]
For satellite B, we have
[tex]E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J[/tex]
So, satellite B has the greater total energy (since the energy is negative).
(d) [tex]-2.57\cdot 10^8 J[/tex]
The difference between the energy of the two satellites is:
[tex]E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J[/tex]