A student releases a block of mass m from rest at the top of a slide of height h1. The block moves down the slide and off the end of a table of height h2 , landing on the floor a horizontal distance d from the edge of the table. Friction and air resistance are negligible. The overall height H of the setup is determined by the height of the room. Therefore, if h1 is increased, h2 must decrease by the same amount so that the sum h1 + h2 remains equal to H. The student wants to adjust h1 and h2 to make d as large as possible.

Without using equations, explain why making h1 very small would cause d to be small, even though h2 would be large.

Without using equations, explain why making h2 very small would cause d to be small, even though h1 would be large

Derive an equation for d in terms of h1, h2, m, and physical constants, as appropriate.

Write the equation or step in your derivation in part (b) (not your final answer) that supports your reasoning in part (a)i.

Briefly explain your choice.

Write the equation or step in your derivation in part (b) (not your final answer) that supports your reasoning in part (a)ii.

Briefly explain your choice.

If the experiment is repeated on the Moon without changing h1 or h2 , will the new landing distance d be greater than, less than, or the same as the landing distance when the experiment is performed on Earth?

_____Greater than _____Less than _____The same as

Answers

Answer 1
Final answer:

The horizontal distance (d) a block travels after being released from a slide is limited by the initial velocity from the slide and the time of flight from the table. Mathematical considerations of kinetic energy and projectile motion demonstrate why the distances h1 and h2 are crucial factors. On the Moon, the block would travel further due to reduced gravity.

Explanation:

The horizontal distance (d) that a block travels after sliding down a slide and falling off a table is dependent on both the vertical height dropped and the velocity with which it leaves the table. If we make height h1 (the slide) very small, the velocity of the block at the bottom of the slide and consequently at the end of the table would be small because it would have converted a smaller amount of potential energy into kinetic energy. This would result in a small horizontal distance (d) even though height h2 (the table) is large. Conversely, making height h2 (the table) very small would mean that the block doesn't have much height to fall from, which limits the total time it has to move horizontally, again resulting in a small d.

In analyzing both scenarios mathematically, the relationship between the horizontal distance and the heights would involve equations of motion and energy conservation. The step that supports reasoning in part (a)i would involve the equation for kinetic energy at the end of the slide (KE = 1/2 m[tex]v^2[/tex]), which is maximized when h1 is large. Similarly, the step supporting part (a)ii is Newton's equations of motion for projectile motion (particularly, time of flight = sqrt(2h2/g)), where increasing h2 increases the time the block spends in air and thus d.

When repeating the experiment on the Moon, the new landing distance d will be greater than the landing distance when performed on Earth. This is because the acceleration due to gravity on the Moon is less than on Earth, which increases the time the block spends in the air.


Related Questions

If 3.2*10^20 electrons pass through a wire in 4s, what would be the electrical current in the wire?

Answers

Answer: 12.8 A

Explanation:

Current is defined as the rate of flow of electric charge based on the formula:

I(current) = deltaQ(change in charge)/deltat(change in time).

First, however, we must convert the number of electrons into the number of coulombs. Based on the fact that the charge of 1 electron or 1 elementary charge is equal to 1.6*10^-19 C, we can calculate:

3.2*10^20 e = 1.6*10^-19*3*10^20 C = 51.2 C.

Now we use: I = Q/t = 51.2/4 = 12.8 A.

Hope this helped.

A lens is formed from a plastic material that has an index of refraction of 1.59 . If the radius of curvature of one surface is 1.15 m and the radius of curvature of the other surface is 1.80 m , use the lensmaker's equation to calculate the magnitude of the focal length | f | and the power | P | of the lens.

Answers

Final answer:

Using the lensmaker's equation with an index of refraction of 1.59 and radii of curvature of 1.15 m and -1.80 m, we find the focal length |f| to be approximately 1.19 m and the power |P| to be about 0.84 diopters.

Explanation:

To calculate the magnitude of the focal length |f| and the power |P| of the lens, we use the lensmaker's equation which is given by:

1/f = (n - 1) * (1/r1 - 1/r2)

where n is the index of refraction of the lens material, r1 and r2 are the radii of curvature of the lens surfaces. Given the index of refraction n = 1.59, and the radii of curvature r1 = 1.15 m (positive for convex surface) and r2 = -1.80 m (negative for concave surface), we can substitute these values into the equation.

Calculating |f|:

1/f = (1.59 - 1) * (1/1.15 + 1/1.80)
= 0.59(0.870 + 0.556)
= 0.59 * 1.426
= 0.841

Thus, |f| = 1/0.841 m ≈ 1.19 m.

To calculate the power of the lens P, which is given in diopters (D), we use: P = 1/f in meters. So, |P| = 1/1.19 m ≈ 0.84 D.

This calculation highlights the application of physics principles in analyzing optical systems.

A string is 1.6 m long. One side of the string is attached to a force sensor and the other side is attached to a ball with a mass of 200 g. The ball is lifted to a height of 1.5 m above the ground and then released from rest. The ball swings to its lowest point where the string breaks. The ball is then in free-fall until it hits the ground. How far would the ball travel in the horizontal direction between points B and C (i.e. what is the range)?

Answers

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The distance traveled in horizontal direction is [tex]D = 1.38 m[/tex]

Explanation:

From the question we are told that

      The length of the string is  [tex]L = 1.6 \ m[/tex]

      The mass of the ball is  [tex]m = 200 g = \frac{200}{1000} = 0.2 \ kg[/tex]

       The height of ball is  [tex]h = 1.5 \ m[/tex]

Generally the work energy theorem can be mathematically represented as

               [tex]PE = KE[/tex]

   Where PE is the loss in potential energy which is mathematically represented as

                   [tex]PE =mgh[/tex]

Where h is the difference height of ball at A and at B  which is mathematically represented as

                 [tex]h = y_A - y_B[/tex]

So        [tex]PE =mg(y_A - y_B)[/tex]              

While KE is the gain in kinetic energy which is mathematically represented as

               [tex]KE = \frac{1}{2 } (v_b ^2 - 0)[/tex]

Where [tex]v_b[/tex] is the velocity of the of the ball

  Therefore we have from above that

                    [tex]PE =KE \equiv mg (y_A - y_B) = \frac{1}{2} m (v_b ^2 - 0)[/tex]

               Making [tex]v_b[/tex] the  subject we have

      [tex]v_b = \sqrt{2g (y_A - y_B)}[/tex]

substituting values

      [tex]v_b = \sqrt{2g (1.5 - 0.40)}[/tex]

     [tex]v_b = 4.6 \ m/s[/tex]

Considering velocity of the ball when it hits the  floor in terms of its vertical and horizontal component we have

         [tex]v_x = 4.6 m/s \ while \ v_y = 0 m/s[/tex]

The time taken to travel  vertically from the point the ball broke loose  can be obtained using the equation of motion

            [tex]s = v_y t - \frac{1}{2} g t^2[/tex]

Where s is distance traveled vertically which given in the diagram as [tex]s = -0.4[/tex]

The negative sign is because it is moving downward

     Substituting values

              [tex]-0.4 = 0 -\frac{1}{2} * 9.8 * t^2[/tex]

         solving for t we have  

               [tex]t = 0.3 \ sec[/tex]

Now the distance traveled on the horizontal is mathematically evaluated as

           [tex]D = v_b * t[/tex]

           [tex]D = 4.6 * 0.3[/tex]

           [tex]D = 1.38 m[/tex]

Answer:

bjknbjk;jln

Explanation:

A satellite travels around the Earth in a circular orbit. What is true about the forces acting in this situation? A. The resultant force is the same direction as the satellite’s acceleration. B. The gravitational force acting on the satellite is negligible. C. There is no resultant force on the satellite relative to the Earth. D. The satellite does not exert any force on the Earth.

Answers

Answer:

A. The resultant force in the same direction as the satellite’s acceleration.

Explanation:

Launching a satellite in the space and then placing it in orbit around the Earth is a complicated process but at the very basic level it works on simple principles. Gravitational force pulls the satellite towards Earth whereas it acceleration pushes it in straight line.

The resultant force of gravity and acceleration makes the satellite remain in orbit around the Earth. It is condition of free fall where the gravity is making the satellite fall towards Earth but the acceleration doesn't allow it and keeps it in orbit.

Final answer:

In a circular orbit around the Earth, the resultant force acting on a satellite is in the same direction as its acceleration.

Explanation:

In a satellite orbiting the Earth in a circular orbit, there are several forces at play. The gravitational force between the satellite and the Earth provides the centripetal force that keeps the satellite in its orbit. The centripetal force acts towards the center of the circular orbit, while the satellite's acceleration is directed towards the center as well. Therefore, option A is correct: the resultant force is in the same direction as the satellite's acceleration.

The gravitational force acting on the satellite is not negligible; in fact, it is crucial in providing the necessary centripetal force. Therefore, option B is incorrect.

Option C is incorrect as well. There is a resultant force acting on the satellite relative to the Earth, which is responsible for keeping the satellite in its circular orbit.

Lastly, option D is also incorrect. According to Newton's third law of motion, the satellite exerts an equal and opposite force on the Earth, keeping the Earth and the satellite in orbit around their common center of mass.

Learn more about Satellites in Circular Orbit here:

https://brainly.com/question/36010275

#SPJ11

Notice that the flux through the cube does not depend on aaa or ccc. Equivalently, if we were to set b=0b=0, so that the electric field becomes E′→=ai^+cj^E′→=ai^+cj^, then the flux through the cube would be zero. Why?

Answers

Final answer:

Electric flux through a cube with an external electric field is zero if there are no charges inside the cube, as Gauss's law states that the net flux is proportional to enclosed charge, leading to zero flux when the electric field vectors align perpendicularly with the area vectors of the cube's sides.

Explanation:

The electric flux through a cube can be analyzed when an electric field is applied. If the electric field is given by E' = ai + cj, where i and j are unit vectors along the x and y axes respectively, and there is no field component along b, zero flux is observed through most of the cube's surfaces due to the perpendicular directions of the electric field and the area vectors of the surfaces. Specifically, the sides of the cube have area vectors perpendicular to the given field components, resulting in a scalar product of zero. Consequently, the flux through these sides is zero. Gauss's law states that the net flux through a closed surface is proportional to the charge enclosed within the surface. If there are no charges inside the cube, the net flux must be zero regardless of whether the charges are outside the cube or if the cube has an induced electric field due to a changing current, as would be the case with a wire acting as an inductor passing through it.

d. What do the results suggest about the ability of touch therapists to select the correct hand by sensing energy​ fields? A. Since the confidence interval is not entirely above​ 0.5, there does not appear to be sufficient evidence that touch therapists can select the correct hand by sensing energy fields. B. Since the confidence interval is not entirely below​ 0.5, there appears to be evidence that touch therapists can select the correct hand by sensing energy fields. C. Since the lower confidence limit is below​ 0.5, there does not appear to be sufficient evidence that touch therapists can select the correct hand by sensing energy fields. D. Since the upper confidence limit is above​ 0.5, there appears to be evidence that touch therapists can select the correct hand by sensing energy fields.

Answers

Answer:

A) Since the confidence interval is not entirely above 0.5, there does not appear to be sufficient evidence that touch therapists can select the correct hand by sensing energy fields.

Explanation:

See answer, it actually doubles as explaination.

A blob of clay is thrown at a basketball while it's in the air, and the clay sticks to the basketball. What is true about the momentum and energy of this system before and after this collision? If more than one response is correct, select all correct responses to get credit for this question.


a. Momentum is conserved

b. Kinetic energy is conserved

c. Some kinetic energy is converted into thermal energy

d. Total energy is conserved

Answers

Answer:

- Momentum is conserved

- Some kinetic energy is converted into thermal energy

Explanation:

Collision occurs when an object exert force on another. Collision can either be elastic or inelastic depending on whether the bodies stick together or separates after collision.

For elastic collision, the bodies separates after collision and due to this both their momentum and energy are conserved. Both separated object doesn't loose energy as such during collision and they possesses greater momentum.

In inelastic collision, the bodies stick together after collision. Their momentum is conserved but not their kinetic energy since they are not free to move independently.

Based on the question, the type of collision that occur is an inelastic collision since they stick together in air after collision. Some of the kinetic energy of the particles are turned into vibrational energy of the atoms leading to heating effect. Based on this, the following are true

- Their momentum before and after collision is conserved

- Some kinetic energy is converted into thermal energy(heat)

The electric field between the square plates of a parallel-plate capacitor has magnitude E. The potential across the plates is maintained at constant voltage by a battery as they are pulled apart to twice their original separation, which is small compared to the dimensions of the plates. (i)The magnitude of the electric field between the plates after being pulled is equal to A) 4E. B) 2E. C) E. D) E/2. E) E/4. (ii) If the plates were charged but not connected to the battery as they were pulled apart to double the separation, which of the above answers give the correct electric field ?

Answers

Answer:

D)  E/2

Explanation:

i) To find the magnitude of electric field between the plates you use:

[tex]E=\frac{\Delta V}{d}[/tex]

where V is the voltage and d the separation between plates. If d is doubled you obtain:

[tex]E'=\frac{\Delta V}{2d}=\frac{1}{2}\frac{\Delta V}{d}=\frac{1}{2}E[/tex]

That is, the magnitude of the electric field is halved.

Then, the answer is D.

ii) The magnitude of E' is E/2 because the charge on the plates generates the field E.

Then, the answer is D again

A 20 kg object is pushed with a force of 100 N. What is the resulting acceleration of the
object to the nearest hundredth of a m/s

Answers

Answer:

Acceleration, [tex]a=5\ m/s^2[/tex]

Explanation:

We have,

Mass of the object is 20 kg

Force acting on the object is 100 N

It is required to find the resulting acceleration of the  object. Let a is the acceleration. The force acting on object is given by :

[tex]F=ma[/tex]

a is acceleration

[tex]a=\dfrac{F}{m}\\\\a=\dfrac{100\ N}{20\ kg}\\\\a=5\ m/s^2[/tex]

So, the resulting acceleration of the  object is [tex]5\ m/s^2[/tex].

A heavy lab cart moves with kinetic energy K init on a track and collides with a lighter lab cart that is initially at rest. The carts bounce off each other but the collision is not perfectly elastic, causing the two-cart system to lose kinetic energy K lost. A student wonders if the fraction of kinetic energy lost from the two-cart system during the collision (Klost/Kini) depends on the speed of the first cart before the collision and plans to perform an experiment.

The student hypothesizes that a greater fraction of kinetic energy is lost from the system during the collision when the speed of the first cart is greater. Briefly state one reason the hypothesis might be correct

Answers

Final answer:

A greater initial speed of the heavy cart could lead to a higher initial kinetic energy, which could result in a greater fraction of the kinetic energy being lost during a non-perfectly elastic collision. This could support the student's hypothesis.

Explanation:

The student's hypothesis could be correct because the fraction of kinetic energy lost from the two-cart system during the collision could indeed depend on the initial speed of the heavy cart. If the first, heavier cart is moving at a higher speed before the collision, it would have a higher initial kinetic energy (K init). When it collides with the second cart, more kinetic energy could be transformed into other forms of energy such as heat or sound, especially since the collision is not perfectly elastic. This means a greater fraction of kinetic energy could be lost (K lost) in the process, supporting the student's hypothesis.

Learn more about Kinetic Energy in Collisions here:

https://brainly.com/question/16933340

#SPJ6

The higher initial speed of the first cart leads to greater deformation and energy conversion to non-mechanical forms, resulting in a larger fraction of kinetic energy loss may be the reason the hypothesis might be correct.

The hypothesis that a greater fraction of kinetic energy is lost from the system during the collision when the speed of the first cart is greater might be correct due to the nature of inelastic collisions and the role of deformation and heat generation during such collisions.

One reason for this is that the energy loss in a collision often includes contributions from factors like the deformation of the carts and the generation of heat, both of which can increase with the relative speed at the moment of collision. As the speed of the first cart increases, the impact forces during the collision are higher, leading to greater deformation and more energy being converted into internal energy (such as heat and sound) rather than being retained as kinetic energy in the system.

This means that when the speed of the first cart is higher, a larger portion of the initial kinetic energy is likely to be transformed into non-mechanical forms of energy, resulting in a greater fraction of kinetic energy being lost from the two-cart system.

A thin, circular disk of radius R = 30 cm is oriented in the yz-plane with its center as the origin. The disk carries a total charge Q = +3 μC distributed uniformly over its surface. Calculate the magnitude of the electric field due to the disk at the point x = 15 cm along the x-axis.

Answers

Answer:

electric field due to the disk at the point x = 15 cm along the x-axis is;

E = 3.31 x 10^(9) N/C

Explanation:

We are given;

Radius;r = 30cm = 0.3m

Charge; Q = +3 μC = +3 x 10^(-6) C

Point, x = 15 cm = 0.15m

The formula for electric field due to the disk on the x-axis is given by;

E = [Q/(2ε₀•π•r²)] * [1 - (x/√(x² + r²))]

Where;

Q, x and r are as stated earlier

ε₀ is the permittivity of free space and has a constant value of 8.85 x 10⁻¹² C²/N.m

Thus, plugging in the relevant values, we have;

E = [3 x 10^(-6)/(8.85 x 10⁻¹² x π x 0.3²)] * [1 - (0.15/√(0.15² + 0.3²))]

E = 3.31 x 10^(9) N/C

Using evidence from the article, defend the concept that

Earth's magnetic poles have swapped places over time.

Answers

Answer: Scientists found evidence of Earth's magnetic field reversal in rocks on the ocean floor at plate boundaries. These rocks have alternating polarity due to magnetization that were during their cooling period. Using radiometric dating, scientists estimate that reversals occur approximately every several hundred thousand years.

Explanation: The earth’s magnetic field impacts into the alignment of elements like iron in rocks due to Ferro-magnetization. This causes the elements to align in a north-south direction. Accordingly scientists have studied this alignment in ancient rocks, such as in the layers of sedimentary rocks, and realized that the earth magnetic field has flipped around 200,000 to 300,000 in the last 20 million years.

Answer:

Scientists found evidence of Earth's magnetic field reversal in rocks on the ocean floor at plate boundaries. These rocks have alternating polarity due to magnetization that occurred during their cooling period. Using radiometric dating, scientists estimate that reversals occur approximately every several hundred thousand years.

Explanation:

A force of 6600 N is exerted on a piston that has an area of 0.010 m2
What area is required for a second piston to exert a force of 9900 N?
Fi F2
Use
A Ą
A. 0.015 m2
B. 150 m2
C. 0.0066 m2
D. 66 m2

Answers

Answer:

Choice A: approximately [tex]0.015\; \rm m^2[/tex], assuming that the two pistons are connected via some confined liquid to form a simple machine.

Explanation:

Assume that the two pistons are connected via some liquid that is confined. Pressure from the first piston:

[tex]\displaystyle P_1 = \frac{F_1}{A_1} = \frac{6.600\times 10^3\; \rm N}{1.0\times 10^{-2}\; \rm m^{2}} = 6.6\times 10^{5}\; \rm N \cdot m^{-2}[/tex].

By Pascal's Principle, because the first piston exerted a pressure of [tex]6.6\times 10^{5}\; \rm N \cdot m^{-2}[/tex] on the liquid, the liquid will now exert the same amount of pressure on the walls of the container.

Assume that the second piston is part of that wall. The pressure on the second piston will also be [tex]6.6\times 10^{5}\; \rm N \cdot m^{-2}[/tex]. In other words:

[tex]P_2 = P_1 = 6.6\times 10^{5}\; \rm N \cdot m^{-2}[/tex].

To achieve a force of [tex]9.900 \times 10^3\; \rm N[/tex], the surface area of the second piston should be:

[tex]\displaystyle A_2 = \frac{F_2}{P_2} = \frac{9.900\times 10^{3}\; \rm N}{6.6\times 10^5\; \rm N \cdot m^{-2}} \approx 0.015\; \rm m^{2}[/tex].

Which letter (A, B, or C) shows where you should apply the most effort to lift the stone?

Answers

A becuz its at da it dont got no wa

A refrigerator removes heat from the freezing compartment at the rate of20 kJ per cycle and ejects 24 kJ into the room each cycle. How much energy is used in each cycle?

Answers

Answer:

Energy used = 4KJ

Explanation:

Second law of thermodynamics states that as energy is transferred or transformed, more and more of it is wasted. The Second Law also states that there is a natural tendency of any isolated system to degenerate into a more disordered state.

Now when we apply that to heat engines, we'll see that;

Heat expelled = Heat removed + Work Done

We can write it as;

Q_h = Q_c + W

We are given that;

Heat removed; Q_c = 20KJ

Heat expelled into the room in each cycle; Q_h = 24KJ

Thus; plugging these 2 values into the equation, we obtain;

24 = 20 + W

W = 24 - 20

W = 4 KJ

Work done is energy used.

Thus, energy used = 4 KJ

Final answer:

The refrigerator uses 4 kJ of energy each cycle, calculated by the work done W, which is the difference between the heat ejected Qh (24 kJ) and the heat removed Qc (20 kJ).

Explanation:

The question is calculating the energy used by a refrigerator in each cycle. The refrigerator absorbs heat Qc from the inside and ejects a larger amount of heat Qh to the room. The extra energy being ejected comes from the work W done by the refrigerator, which is the energy used by it in each cycle.

If the refrigerator removes 20 kJ (Qc) from the freezing compartment and ejects 24 kJ (Qh) into the room each cycle, the work done (energy used) W can be found using the first law of thermodynamics which states that the conservation of energy principle - the change in internal energy of a system is equal to the heat added to the system minus the work done by the system:

W = Qh - Qc

Substituting in the given values:

W = 24 kJ - 20 kJ

W = 4 kJ

Thus, the work done (energy used) by the refrigerator in each cycle is 4 kJ.

A closed loop conductor with radius 1.5 m is located in a changing magnetic field. If the max emf induced in the loop is 7.0 V, what is the max rate which the magnetic field strength is changing if the magnetic field is oriented perpendicular to the plane in which the loop lies

Answers

Answer:

0.99 T/s

Explanation:

Solution

From the example given, we recall that,

The emf induced in the loop is V = 7.0

Closed loop conductor with r = 1.5 m

∅B = BA

The emf =  d∅B/ dt

which is

d/dt  (BA)

so,

emf = A dB/ dt

emf =πr² dB/ dt

Now,

dB/dt = emf /πr²

=  7/π * (1.5)²

Therefore dB/dt = 0.99 T/s

For each star, determine how its light would be shifted. Not all choices may be used, and some may be used more than once. A red dwarf moving away from Earth at 39.1 km/s


A yellow dwarf moving transversely at 15.1 km/s

A red giant moving towards Earth at 23.3 km/s

A blue dwarf moving away from Earth at 25.9 km/s

A red dwarf moving transversely at 14.1 km/s

Answers

Final answer:

When a star moves towards or away from Earth, its light is shifted to longer or shorter wavelengths, respectively. The red dwarf moving away from Earth and the blue dwarf moving away from Earth would have their light shifted towards longer wavelengths, resulting in a redshift.

Explanation:

The Doppler effect is the change in the observed frequency of sound or light waves due to the relative motion between the source of the waves and the observer.

When a star moves towards or away from Earth, its light is shifted to a longer or shorter wavelength, respectively.

In this case, the red dwarf moving away from Earth at 39.1 km/s would have its light shifted towards longer wavelengths, resulting in a redshift.

Similarly, the blue dwarf moving away from Earth at 25.9 km/s would also experience a redshift.

On the other hand, the red giant moving towards Earth at 23.3 km/s would have its light shifted towards shorter wavelengths, resulting in a blueshift.

The yellow dwarf moving transversely at 15.1 km/s would not exhibit any shift in its light because its motion is perpendicular to the line of sight.

The red dwarf moving transversely at 14.1 km/s would also not show any shift in its light.

A magnetic field between the poles of the electromagnet is uniform at any time, but its magnitude is increasing at the rate of 0.020T/s. The area of the conducting loop in the field is 120 cm2 , and the total circuit resistance, including the meter is 5.0 ohms. (a)Find the induced emf and the induced current in the circuit.(b) If the loop is replaced by one made of an insulator, what effect does this have on the induced emf and induced current?

Answers

Answer:

a) -2.4*10^-4 V

   4.8*10^-5 A

b)  emf = 0

   induced current = 0

Explanation:

a) The induced emf is given by the following formula:

[tex]emf=-\frac{d\Phi_B}{dt}=-\frac{d(AB)}{dt}[/tex]    ( 1 )

A: area of the loop = 120 cm^2 = 120 (10^-2)^2 = 0.012m^2

The area is constant and dB/dt = 0.020T/s

By replacing in  the values of the parameters in the equation (1) you obtain:

[tex]emf=-A\frac{dB}{dt}=-(0.012m^2)(0.020T/s)=-2.4*10^{-4}V[/tex]

The induced current is:

[tex]I=\frac{emf}{R}=\frac{2.4*10^{-4}V}{5.0\Omega}=4.8*10^{-5}A[/tex]

b) If the loop is made of an insulator, electrons in the wire does not feel the change in the magnetic flux. Due to that, there is no a work over the electrons, and consequantly, there is neither emf nor induced current.

(a) The magnitude of the induced emf is 2.4 x 10⁻⁴ V.

(b) The induced current is 4.8 x 10⁻⁵ A.

Induced emf

The magnitude of the induced emf is determined by applying Faraday's law of electromagnetic induction.

emf = dΦ/dt

emf = BA/t

where;

A is the area = 120 cm² = 0.012 m²

emf = (0.02 x 0.012)

emf = 2.4 x 10⁻⁴ V

Induced current

The induced current is calculated as follows;

emf = IR

I = emf/R

I = (2.4 x 10⁻⁴) / (5)

I = 4.8 x 10⁻⁵ A

Learn more about electromagnetic induction here: https://brainly.com/question/26334813

A horizontal spring with a 10000 N/m spring constant is compressed 0.08 m, and a 12-kg block is placed against it. When the block is released, the block shoots forward along a horizontal surface that exerts 8 N friction force on the block. How far from the original position does the block travel before coming to a stop

Answers

Answer:

4.04m

Explanation:

First you calculate the velocity of the block when it leaves the spring. You calculate this velocity by taking into account that the potential energy of the spring equals the kinetic energy of the block, that is:

[tex]U=K\\\\\frac{1}{2}kx^2=\frac{1}{2}mv^2\\\\v=\sqrt{\frac{kx^2}{m}}=\sqrt{\frac{(10000N/m)(0.08m)^2}{12kg}}=2.3\frac{m}{s}[/tex]

To find the distance in which the block stops you use the following expression (net work done by the friction force is equal to the difference in the kinetic energy of the block):

[tex]W_{T}=\Delta K\\\\F_f d=\frac{1}{2}m[v^2-v_o^2]\\\\d=\frac{mv^2}{2F_f}[/tex]

where Ff is the friction force. By replacing the values of the parameters you obtain:

[tex]d=\frac{(12kg)(2.3m/s)^2}{2(8N)}=3.96m[/tex]

hence, the distance to the original position is 3.96m+0.08m=4.04m

Final answer:

The 12 kg block travels a distance of 4 meters before coming to a stop. This is calculated using the principles of conservation of energy and work done by a force, in this case, the friction force.

Explanation:

The question involves a situation related to Physics, specifically kinematics and mechanics. In order to calculate how far the block travels, we first need to understand how the forces in this situation work. When the block is released, the potential energy stored in compressed spring converts into kinetic energy which propels the block forward. However, due to the presence of friction, this kinetic energy gradually diminishes causing the block to eventually come to a stop.

 

The first step is to find the initial speed of the block just when it is released. We can use the principle of conservation of energy for this: the spring potential energy is equal to the initial kinetic energy. For potential energy in a spring, we use the formula PE = 0.5 * k * x^2, where k is the spring constant and x is the amount of compression (so PE = 0.5 * 10000 * 0.08^2 = 32 Joules). Kinetic energy is given by KE = 0.5 * m * v^2, where m is the mass and v is the velocity. Equating these (since initial PE = initial KE), we get v = sqrt((2 * PE) / m) = sqrt((2 * 32) / 12) = approx 4.08 m/s.

 

Now, knowing the initial speed, we can calculate how far the block travels before friction brings it to stop. The work done by the friction force will equal the initial kinetic energy of the block: Work = Friction force * distance = KE. Solving this equation for distance gives us distance = KE / Friction force = 32 Joules / 8 N = 4 meters.

Learn more about Physics of Motion here:

https://brainly.com/question/13966796

#SPJ11

You are driving along a highway at 35.0 m/s when you hear the siren of a police car approaching you from behind and you perceive the frequency as 1310 Hz. You are relieved that he is in pursuit of a different speeder when he continues past you, but now you perceive the frequency as 1240 Hz. What is the frequency of the siren in the police car? The speed of sound in air is 343 m/s.

Answers

Answer:

[tex]f_{police}=1268.7 Hz[/tex]    

Explanation:

We can use Doppler equation to find the frequency of the siren.

First of all we have the police car moving behind the car. Hence, the frequency detected by the car will be:  

[tex]f_{car1}=f_{police}(\frac{v_{s}-v_{car}}{v_{s}-v_{police}})[/tex]      (1)

Now, when the police car is moving in front of the car, the frequency detected by the car will be:

[tex]f_{car2}=f_{police}(\frac{v_{s}+v_{car}}{v_{s}+v_{police}})[/tex]        (2)            

By solving equation (1) and equation (2) for [tex]v_{police}[/tex] we have:

[tex]v_{police} = 44.67 m/s[/tex]

Knowing that:

f(car1) = 1310 Hzf(car2) = 1240 HzVs = 343 m/sV(car) = 35 m/s

Finally, we just need to put this value into the first equation to find frequency of the police car.

[tex]f_{police}=f_{car}(\frac{v_{s}-v_{police}}{v_{s}-v_{car}})[/tex]    

[tex]f_{police}=1310(\frac{343-44.7}{343-35})[/tex]  

[tex]f_{police}=1268.7 Hz[/tex]    

I hope it helps you!

                                                                                                                                       

A cast-iron flywheel has a rim whose OD is 1.5 m and whose ID is 1.4 m. The flywheel weight should be chosen such that an energy fluctuation of 6.75 J will cause the angular speed to vary by no more than 240 to 260 rev/min. a.Estimate the coefficient of speed fluctuationb.If the weight of the spokes is neglected, determine the thickness of the rim

Answers

Answer:

the coefficient of speed fluctuation is 0.08

the thickness of the rim is [tex]1.423*10^{-4}\ \ m[/tex]

Explanation:

a.Estimate the coefficient of speed fluctuation

Let first determine the average speed of the flywheel by using the expression:

[tex]n = \frac{n_1+n_2}{2}[/tex]

where;

[tex]n_1 =[/tex] minimum speed  = 240 rev/min

[tex]n_2 =[/tex] maximum speed = 260 rev/min

∴ [tex]n = \frac{240 +260}{2}[/tex]

n = 250 rev/ min

To find the coefficient of speed fluctuation; we have:

[tex]C_s = \frac{n_2-n_1}{n}[/tex]

[tex]C_s = \frac{260-240}{250}[/tex]

[tex]C_s = 0.08[/tex]

Hence; the coefficient of speed fluctuation is 0.08

b . If the weight of the spokes is neglected, determine the thickness of the rim

Let's start solving this process by finding the moment of inertia of the flywheel.

The moment of inertia of the fly wheel is given by the equation:

[tex]I = \frac {E_2-E_1}{C_s \omega^2}[/tex]

where ;

[tex]\omega = \frac{2 \pi *n}{60}[/tex]  (since we are converting to rad/s)

[tex]\omega = \frac{2 \pi *250}{60}[/tex]

= 26.18 rad/s

[tex]E_2-E_1[/tex] = the energy fluctuation = 6.75 J

[tex]I = \frac{6.75}{0.08*26.18^2}[/tex]

= 0.123 kg.m²

To determine the weight of the flywheel ; we have the following expression;

[tex]I = \frac{W}{8g}(D^2+d^2)[/tex]

[tex]W = \frac{8gl}{D^2_o+d_i^2}[/tex]

where;

[tex]D_0[/tex] = outer diameter = 1.5 m

[tex]d_i =[/tex] inner diameter = 1.4 m

[tex]W = \frac{8*9.81*0.123}{1.5^2+1.4^2}[/tex]

W = 2.29 N

Let employ the weight density of the cast-iron flywheel [tex]w \rho[/tex] = 70575.5N/m²

Then the volume of the flywheel:

[tex]V = \frac{W}{ w \ rho}[/tex]

[tex]V = \frac{2.29}{70575.5}[/tex]

[tex]V = 3.24*10^{-5} m^3[/tex]

Let t be the thickness of the rim;

the thickness of the rim can be calculate by using the formula;

[tex]V = \frac{\pi t}{4}(D^2-d^2)[/tex]

[tex]t = \frac{4V}{\pi(D^2-d^2)}[/tex]

[tex]t = \frac{4*3.24*10^{-5}}{\pi(1.5^2-1.4^2)}[/tex]

[tex]t = 1.423*10^{-4}m[/tex]

Hence, the thickness of the rim is [tex]1.423*10^{-4}\ \ m[/tex]

A submarine dives to a depth of 100-m beneath the surface of the Pacific Ocean. The density of sea water is 1030 kg/m3. The submarine has a hatch with an area of 2 m2 located on the top of the submarine. No need to show work. a) Calculate the gauge pressure applied on the submarine at the depth of 100 m. b) Calculate the absolute pressure applied on the submarine at the depth of 100 m. Assume the atmospheric pressure in the air above the ocean is one atmosphere. c) Calculate how much force is required in order to open the hatch from the inside of submarine. Assume that the pressure inside the submarine is one atmosphere.

Answers

Answer:

A) 1010430 pa

B) 1111755 pa

C) 2020860 N

Explanation:

Guage pressure = pgh

= 1030 kg/m3 x 9.81 m/s2 x 100 m

= 1010430 pa

Absolute pressure is Guage pressure + atmospheric pressure.

= 1010430 + 101325 = 1111755 pa

If the pressure inside submarine is 1 atm, then net pressure will be

1111755 - 101325 = 1010430 pa

Force required to open hatch against this pressure will be,

F = pghA

pgh = 1010430 pa

F = 1010430 pa x 2 m^2

F = 2020860 N

Based on the data provided:

the gauge pressure is the absolute gauge pressure is 1111755 pathe force required to open the hatch is 2020860 N

What is the gauge pressure on the submarines at the given depth?

The gauge pressure is calculating using the formula:

Guage pressure = pgh

where:

p is density of seawater = 1030 kg/m^3

g is acceleration due to gravity = 9.81 m/s^2

h is depth = 100 m

Substituting:

Gauge pressure = 1030 kg/m3 x 9.81 m/s2 x 100 m

Gauge pressure = 1010430 pa

Therefore, the gauge pressure is 1010420 pa

What is the absolute gauge pressure at this depth?

The absolute gauge pressure is calculated using the formula:

Absolute pressure = Guage pressure + atmospheric pressure.

Atmospheric pressure = 1 atm = 101325 pa

Thus:

Absolute gauge pressure = 1010430 + 101325

Absolute gauge pressure = 1111755 pa

Therefore, the absolute gauge pressure is 1111755 pa

What is the force that will be applied to open the hatch from inside of the submarine?

First determine the net pressure.

Pressure inside submarine = 1 atm

Net pressure = 1111755 - 101325

Net pressure = 1010430 pa

Force required to open hatch against this pressure is then calculated from the formula:

Force = net pressure × area

Force = 1010430 pa x 2 m^2

Force = 2020860 N

Therefore, the force required to open the hatch is 2020860 N

Learn more about about guage pressure and force at: https://brainly.com/question/9376763

Monochromatic light of wavelength λ illuminates a pair of thin parallel slits of width a separated by a distance d at normal incidence, producing an interference pattern on a distant screen. a) (10 points) Explain two modifications to the experiment which would cause the maxima (bright spots) of the diffraction pattern to move away from the center. b) (10 points) Explain two modifications to the experiment which would cause the minima (dark spots) of the interference pattern to move towards the center.

Answers

Answer:

Explanation:

a ) If x be the position of n the bright fringe on the screen , following formula holds .

x = n (λD / d) ; λ is wave length , D is screen distance and d is slit separation .

If we increase the value of λ or  wave length, x will increase so central fringe along with all the fringes will shift away from the centre .

If we increase the value of D or screen distance , it will also increase x ,  so fringes along with central fringe  will shift away from the center.

b ) Fringes ,whether bright or dark , both shift together , either towards or away from the center .

So to move the dark spots towards the center , we need to do the opposite to what we did in the first case , ie decrease the wavelength or decrease the screen distance .

A skateboarder rolls horizontally off the top of a
staircase at a speed of 18 ms-1
and at the bottom of
the stairs which has a horizontal length of 9 m as
shown.
Calculate the skater's vertical displacement during
the jump?

Answers

Given Information:

Initial horizontal speed = Vx = 18 m/s

horizontal distance = R = 9 m

Required Information:

Vertical displacement = h = ?

Answer:

Vertical displacement = h = 1.23 m

Explanation:

The horizontal distance covered by the skater is given by

R = Vx*t

Where R is horizontal distance, Vx is the initial horizontal speed and t is the time taken for the jump.

t = R/Vx

t = 9/18

t = 0.5 seconds

The vertical displacement covered by the skater is given by

h = Vy*t + ½gt²

Where Vy is the initial vertical speed of the skater and is zero since the skater jumps horizontally, g is the gravitational acceleration and h is the vertical displacement.

h = 0*t + ½gt²

h = ½gt²

h = ½(9.81)(0.5)²

h = 1.23 m

Therefore, the vertical displacement of the skater is 1.23 m

please help me asap!!!!!

Answers

Answer:

no, because if he was pushing the box with constant force the box would have to move with constant speed

Explanation:

Supervillain Prof. Marcia Grail is experimenting with energy and electric charge to better create a new doomsday weapon (and take over the world). She gathers a charge of 1.11 x 10^-10 C and places it in the center of a large empty spherical vacuum chamber of radius 250m (the place she fixes this immovable charge can be thought of as the origin of coordinates). The potential at a point 1m away in the positive y-direction is 1 V. What is the potential 1m away in the positive x-direction

Answers

Answer:

Check the explanation

Explanation:

given

charge of [tex]1.11 * 10^{-10}[/tex] C

radius 250m

The potential at a point 1m

and 1 V

mass 2 micrograms

charge of +2 Coulombs

the potential is V = K Q / r

V = 9 X 109 X 1.11 X 10-10 / 1

V = 9 X 109 X 1.11 X 10-10

V = 0.999 volt

nearly it is V = 1 v

the energy stored is U = q X V

U = 2 X 1

U = 2 J

the energy is stored in this configuration is U = 2 J

You throw a rock upward. The rock is moving upward, but it is slowing down. If we define the ground as the origin, the position of the rock is _____ and the velocity of the rock is _____. You throw a rock upward. The rock is moving upward, but it is slowing down. If we define the ground as the origin, the position of the rock is _____ and the velocity of the rock is _____. negative, negative positive, negative negative, positive positive, positive

Answers

Answer:

positive, positive

You throw a rock upward. The rock is moving upward, but it is slowing down. If we define the ground as the origin, the position of the rock is positive and the velocity of the rock is positive

Explanation:

Given that the ground is defined as the origin.

The position of the rock is positive since the rock is thrown upward, the position also increases with time until it reaches the maximum height. Also, since the rock is thrown upward with the ground as the origin, the velocity of the rock is positive but the velocity reduces with time (change in height per unit time as the rock moves up is positive)

The correct option for the position of the rock is positive, and for the velocity of the rock, it is positive.

When the rock is thrown upward, it moves away from the ground, which we have defined as the origin. Since the rock is above the ground, its position is positive. Although the rock is slowing down as it moves upward, it still has an upward velocity until it reaches its peak height. Therefore, the velocity of the rock is also positive because it is still moving in the upward direction, even though it is decelerating.

To summarize:

- The position of the rock is positive because it is above the origin (ground).

- The velocity of the rock is positive because it is moving upward, despite the fact that it is slowing down.

The correct answer is: positive, positive.

Brian is forced to help Stewie play on the swings at the park. He pushes Stewie until Stewie could reach a maximum height of 0.5 m above the lowest point on the swing and then stepped aside. Stewie gets scared of such a high height (considering he is very short) and decides to jump off the swings at the swings lowest point. If Stewie has a mass of 5 kg and the swing has a mass of 2 kg, what is the maximum height the swing will reach after Stewie jumps off with a velocity of 2 m/s?

Answers

Answer: 0.3 m

So basically we want to think of this situation from the perspective of conservation of energy. As in, we can derive the velocity of both the swing and Stewie at the bottom of the swing via:

mgh = 0.5m*v^2

v = (2*g*h)^0.5 = (2*9.8*0.5)^0.5 = 3.13 m/s

This represents the velocity of Stewie and the swing at the bottom of the swing's path. Now, we will think of this from the perspective of conservation of momentum. Basically, the collective momentum of Stewie and the swing is equal to the sum of their subsequent momenta:

(5+2)*3.13 = 5*2+5*v(swing); v(swing) represents the velocity of the swing following Stewie jumping.

7*3.13 = 10 + 5v

v = 2.4 m/s

Now, we return to conservation of energy and find that the kinetic energy of the swing following Stewie jumping is equivalent to its final gravitational potential energy.

Based on the easily derivable formula: h=v^2/2g, we find that h = 2.4^2/19.6,

which is: 0.3 m.

If g is supposed to be 10 or you need a different degree of precision, then you can use my method. Hope this helps.

A laser beam is incident at an angle of 30.2° to the vertical onto a solution of corn syrup in water. (a) If the beam is refracted to 18.82° to the vertical, what is the index of refraction of the syrup solution? (b) Suppose the light is red, with wavelength 632.8 nm in a vacuum. Find its wavelength in the solution. nm (c) Find its frequency in the solution. Hz (d) Find its speed in the solution.

Answers

Answer:

a) n2 = 1.55

b) 408.25 nm

c) 4.74*10^14 Hz

d) 1.93*10^8 m/s

Explanation:

a) To find the index of refraction of the syrup solution you use the Snell's law:

[tex]n_1sin\theta_1=n_2sin\theta_2[/tex]   (1)

n1: index of refraction of air

n2: index of syrup solution

angle1: incidence angle

angle2: refraction angle

You replace the values of the parameter in (1) and calculate n2:

[tex]n_2=\frac{n_1sin\theta_1}{sin\theta_2}=\frac{(1)(sin30.2\°)}{sin18.82\°}=1.55[/tex]

b) To fond the wavelength in the solution you use:

[tex]\frac{\lambda_2}{\lambda_1}=\frac{n_1}{n_2}\\\\\lambda_2=\lambda_1\frac{n_1}{n_2}=(632.8nm)\frac{1.00}{1.55}=408.25nm[/tex]

c) The frequency of the wave in the solution is:

[tex]v=\lambda_2 f_2\\\\f_2=\frac{v}{\lambda_2}=\frac{c}{n_2\lambda_2}=\frac{3*10^8m/s}{(1.55)(408.25*10^{-9}m)}=4.74*10^{14}\ Hz[/tex]

d) The speed in the solution is given by:

[tex]v=\frac{c}{n_2}=\frac{3*10^8m/s}{1.55}=1.93*10^8m/s[/tex]

A fully penetrating well in a 33 m thick confined aquifer pumps at a constant rate of 2000 m3/day for a long time. If the head in an observation well located160 m from the well is 249 m and the undisturbed head calculated at 453 m radius of influence is 250 m, determine the aquifer’s hydraulic conductivity (in m/d), transmissivity, and the drawdown 100 m away from the well. Problem

Answers

Answer:

the aquifer’s hydraulic conductivity  is K = 10.039 m/day

transmissivity T = 331.287 m/day

the drawdown 100 m away from the well is s = 1.452 m

Explanation:

Given that :

The  constant pumps rate Q = 2000 m³/day

R₁ =160 m     →    H₁  = 249 m

R₂ = 453 m    →    H₂ = 250 m

The  confined aquifer B is 33 m thick

The hydraulic conductivity K = [tex]\frac{Q*In (\frac{R_1}{R_2}) }{2 \pi B(H_2-H_1)}[/tex]

K = [tex]\frac{2000*In (\frac{160}{453}) }{2 \pi *33(250-249)}[/tex]

K = [tex]\frac{2081.43662}{207.3451151}[/tex]

K = 10.039 m/day

Transmissivity T = K × B

T = 10.039×33

T = 331.287 m/day

TO find the drawdown 100 m away from the well; we have:

K = [tex]\frac{Q* In(\frac{R_2}{R_1} )}{2 \pi B (H_2-H_1)} =\frac{Q* In(\frac{R_2}{R_3} )}{2 \pi B (H_2-H_3)}[/tex]

[tex]\frac{ In(\frac{453}{160} )}{(250-249)} =\frac{ In(\frac{453}{100} )}{ (250-H_3)}[/tex]

H₃ = 248.548 m

Drawdown (s) = H₂ - H₃

s = (250 -  248.548)m

s = 1.452 m

Other Questions
Which event took place in response to protests over the unlawful segregation of a bowling alley? *The Denmark Vesey Revolt.The Hamburg Massacre.The Orangeburg Massacre.The Freedom Riders Campaign.Can ya'll help me ? what is -3+1/3=?what is 5+6+7x+3= What is the y-intercept of this quadratic function?f(x)=-x2+10x-22 Find the volume of the cone. Round your answer to the nearest tenth. Yet another variation: A better packet switched network employs the concept of acknowledgment. When the end users device receives a packet correctly it sends an acknowledgment to the sender. Here too, a packet is received correctly with probability p, but the sender keeps sending copies of a given packet until a copy is correctly received (signaled by acknowledgment). Let random variable N be the number of times the same message packet is sent. a) Find the PMF PN (n). NEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Betsy's high school is putting on a production of a play as a fundraiser for the school's music programs. A local bank has agreed to allow the school to use a line of credit from which they can withdraw money to pay for the play. Then, any deposits they make at the bank will be applied to the negative balance of the credit account.The play cost $3,200.00 to produce, and they intend to sell tickets for $10 each. After the play, Betsy will take the ticket proceeds and deposit them with the bank. If 1,007 people attend the play's opening night, what will the balance of the bank account be?A. $13,270B. $6,870C. $10,070D. - $3,099 Who were the Bolsheviks? A. Lenin's party B.Kerensky's party C. Rasputin's party D.Nicholas II's party what is the fraction for 4.5 A line passes through the points (-1, 4) and (2, -2). What is the equation of this line?Write your answer in the form y=mx+b.I don't get it please help! Sharon knew that her established customers preferred her product much better than the one sold by her primary competitor. As Sharon was planning to expand into new markets, she was considering her pricing options. Over time and several discussions with customers, Sharon was leaning toward charging a higher price than competitors. She thought that the higher price would help demonstrate that hers was a high-quality product. Sharon was considering Group of answer choicesA. a top of market strategy. B. the value of quality. C. advantageous pricing. D. premium pricing. E. differential pricing. Which best explains how this excerpt creates suspense A. it develops the plot using dialogue instead of description.B. it explains that the fishermen have found two graves on the island.C. it shows that Manjiro is a character who asks a lot of questions. D.it includes a question that the reader will want to know the answer to. What does area III on the map indicate? A. Northwest Territory B. Mexican Cession C. Texas Annexation D. Oregon Country Which of the following is true when an individual exhibits two identical recessive alleles? A.the individual will be homozygous B.the letters will be capitalized C.the individual will be heterozygous D. The individual will exhibit the dominant allele only Consider the connotation of the underlined word in each sentence, and then match each sentence to the bestdescription.You need to push the red button toend the phone callpositive connotationThe runner shows perseverance ashe pushes himself to run the last mile.negative connotationThe pushy woman demands a refundfor the faulty itemneutral connotation Disturbed soil is when top soil and subsoil are mixed.OTrueUFalse Andrea has a credit score of 895 and Ashley has a credit score of 768. Stutts National Bank has determined that both will receive a credit card; however, the borrower with the lower credit score will be charged a $50.00 fee the first time she makes a purchase. If both receive a credit card with $1,500.00 available credit, what will Ashley's remaining available credit be after she purchases a $425.00 Coach bag? - Identify the outlier in the data set {12, 15, 20,44, 18, 20}, and determine how the outlieraffects the mean, median, mode, and range ofthe data. Which of the following statements is true?In a C major scale, C has a higher pitch than DBina CminoIn a C minor scale, C has a higher pitch than FIn a C major scale, F has a higher pitch than CIn a C minor scale, C has a higher pitch than D What is the probability Jane gets a cone with any ice cream and any topping?1/121/41/22/3 Describe the characteristics of Caribbean culture,