A string is stretched to a length of 212 cm and both ends are fixed. If the density of the string is 0.02 g/cm, and its tension is 357 N, what is the fundamental frequency? Course hero

Answers

Answer 1

The fundamental frequency of a string fixed at both ends is f₁ = c/2L, where 'c' is calculated from the tension and linear mass density of the string. Using the given tension and density, one can find the wave speed 'c' first, then substitute into the formula to get the fundamental frequency.

To calculate the fundamental frequency of a string fixed at both ends, you can use the formula for the fundamental frequency of a string, which is given by f1 = c/2L, where f1 is the fundamental frequency, c is the speed of the wave on the string, and L is the length of the string.

To find the speed of the wave on the string, we use the formula c = \/(T/μ), where c is the speed of the wave, T is the tension in the string, and μ is the linear mass density of the string. Substituting the given values, c = \/(357 N / (0.02 g/cm * 100 cm/m)) = \/(357 / 0.0002 kg/m), we can calculate c and then use the result to find f1.


Related Questions

The top of a swimming pool is at ground level. If the pool is 3.00 m deep, how far below ground level does the bottom of the pool appear to be located for the following conditions? (The index of refraction of water is 1.333.)

(a) The pool is completely filled with water.
______m below ground level

(b) The pool is filled halfway with water.
______m below ground level

Answers

Answer:

a) 2.25 m

b) 2.625 m

Explanation:

Refraction is the name given to the phenomenon of the speed of light changing the the boundary when it moves from one physical medium to the other.

Refractive index is the ratio of the speed of light in empty vacuum (air is an appropriate substitution) to the speed of light in the medium under consideration.

In terms of real and apparent depth, the refractive index is given by

η = (real depth)/(apparent depth)

a) Real depth = 3.00 m

Apparent depth = ?

Refractive index, η = 1.333

1.333 = 3/(apparent depth)

Apparent depth = 3/1.3333 = 2.25 m.

Hence the bottom of the pool appears to be 2.25 m below the ground level.

b) Real depth = 1.5 m

Apparent depth = ?

Refractive index, η = 1.333

1.3333 = 1.5/(apparent depth)

Apparent depth = 1.5/1.3333 = 1.125 m

But the pool is half filled with water, there is a 1.5 m depth on top of the pool before refraction starts.

So, apparent depth of the pool = 1.5 + 1.125 = 2.625 m below the ground level

Final answer:

The apparent depth of a swimming pool is measured by considering the water's refractive index. With the pool completely filled, the bottom appears to be 2.25m deep. When halfway filled, the pool appears to be 2.625m deep.

Explanation:

When light travels from a medium with a high refractive index to one with a lower refractive index, the light is refracted, or bent, making objects appear closer than they actually are. We can calculate this apparent depth by using the formula d' = d / n, where d' is the apparent depth, d is the actual depth, and n is the refractive index.

(a) If the pool is completely filled with water, for a person looking from above ground, the bottom of the pool appears to be closer than it actually is. Substituting the given values into the formula, we get the apparent depth: d' = 3.00m / 1.333 = 2.25 m below ground level.

(b) If the pool is halfway filled with water, the apparent depth of the water is calculated in the same way. However, the depth beneath the water is below the refractive index border and is not subject to refraction. Therefore, the apparent total depth of the partially filled pool is the sum of the actual depth of the air part (1.50m) and the apparent depth of the water part (1.50m / 1.333 = 1.125m). This gives us 2.625m.

Learn more about Refraction and Apparent Depth here:

https://brainly.com/question/32255407

#SPJ3

Old cannons were built on wheeled carts, both to facilitate moving the cannon and to allow the cannon to recoil when fired. When a 150 kg cannon and cart recoils at 1.5 m/s, at what velocity would a 10 kg cannonball leave the cannon?

Answers

Answer:

22.5 m/s

Explanation:

Applying Newton's third law of motion

Momentum of the cannon and cart = momentum of the cannonball

MV = mv..................... Equation 1

Where M = mass of the cannon and the cart, V = Recoil velocity of the cannon and the cart, m = mass of the cannonball, v = velocity of the cannonball

make v the subject of the equation

v = MV/m............. Equation 2

Given: M = 150 kg, V = 1.5 m/s, m = 10 kg

Substitute into equation 2

v = 150(1.5)/10

v = 22.5 m/s

Hence the cannonball leave the cannon with a velocity of 22.5 m/s

Answer:

v2 = 22.5 m/s

Explanation:

Momentum is how hard to stop or turn a moving object . Generally, momentum measures mass in motion. Momentum is a vector quantity. Mathematically,

p = mass ×  velocity

The total momentum of an isolated system of  bodies remains constant.

mometum before = 0

mass of the canon (m1) = 150 kg

mass of the ball (m2) = 10 kg

velocity of the ball (v2) = ?

velocity of the cannon(v1) = 1.5 m/s

momentum after = momentum before

m2v2 + m1v1 = 0

10v2 = 150 × 1.5

10v2 = 225

divide both sides by 10

v2 = 225/10

v2 = 22.5 m/s

A racquet ball with mass m = 0.238 kg is moving toward the wall at v = 12.4 m/s and at an angle of θ = 31° with respect to the horizontal. The ball makes a perfectly elastic collision with the solid, frictionless wall and rebounds at the same angle with respect to the horizontal. The ball is in contact with the wall for t = 0.078 s. 1)What is the magnitude of the initial momentum of the racquet ball?

Answers

Answer:

[tex]||\vec p || = 2.951\,\frac{kg\cdot m}{s}[/tex]

Explanation:

The initial momentum of the racquet ball is:

[tex]||\vec p || = (0.238\,kg)\cdot (12.4\,\frac{m}{s} )[/tex]

[tex]||\vec p || = 2.951\,\frac{kg\cdot m}{s}[/tex]

A circular coil that has N = 230 turns and a radius of r = 10.0 cm lies in a magnetic field that has a magnitude of B 0 = 0.0650 T directed perpendicular to the plane of the coil. What is the magnitude of the magnetic flux Φ B through the coil?

Answers

Answer:

Φ = 0.469 Wb

Explanation:

Given,

N = 230 turns

Radius, r = 10 cm

Magnetic field, B = 0.0650 T

Magnetic flux  = ?

now,

Φ = NBA

Φ = 230 x 0.0650 x π x r²

Φ = 230 x 0.0650 x π x 0.1²

Φ = 0.469 Wb

Hence, the magnetic flux is equal to Φ = 0.469 Wb

The magnitude of the magnetic flux ΦB through the coil is approximately 0.0496 T·m². when A circular coil that has N = 230 turns and a radius of r = 10.0 cm.

Given:

N = 230 turns

r = 10.0 cm = 0.1 m

B₀ = 0.0650 T

The magnetic flux through a coil can be calculated using the formula:

ΦB = B₀ × A × N,

The area of the coil, we can use the formula for the area of a circle:

A = π × r²,

Let's calculate the magnetic flux:

A = π × r² = 3.14159 × (0.1)² = 0.0314159 m²

ΦB = B₀ × A × N = 0.0650 × 0.0314159 × 230 = 0.04958735 T·m²

Therefore, the magnitude of the magnetic flux ΦB through the coil is approximately 0.0496 T·m².

To know more about magnetic flux:

https://brainly.com/question/1596988

#SPJ6

Current passes through a solution of sodium chloride. In 1.00 s, 2.68×1016Na+ ions arrive at the negative electrode and 3.92×1016Cl− ions arrive at the positive electrode. (a) What is the current passing between the electrodes? (b) What is the direction of the current?

Answers

Explanation:

Given that,

Number of sodium ions at the negative electrode, [tex]Na^+=2.68\times 10^{16}[/tex]

Number of chloride ions at the positive electrode, [tex]Cl^-=3.92\times 10^{16}[/tex]

(a) The current flowing in the circuit is due to the positive as well as negative charges such that total charge becomes:

[tex]Q=(Na^++Cl^-)e[/tex]

[tex]Q=(2.68\times 10^{16}+3.92\times 10^{16})(1.6\times 10^{-19})[/tex]

Q = 0.01056 C

The current is given by :

[tex]I=\dfrac{Q}{t}[/tex]

[tex]I=\dfrac{0.01056}{1}=10.56\ mA[/tex]

So, the current passing between the electrodes is 10.56 mA.

(b) The direction of electric current is towards negative electrodes.

Explanation:

(a)   First, we will calculate the charge of sodium ions as follows.

              q = ne

                  = [tex]2.68 \times 10^{16} \times 1.6 \times 10^{-19} C[/tex]

                  = [tex]4.288 \times 10^{-3} C[/tex]

Now, charge of chlorine ions is calculated as follows.

            q' = ne

                = [tex]3.92 \times 10^{16} \times 1.6 \times 10^{-19} C[/tex]

                = [tex]6.272 \times 10^{-3} C[/tex]

Hence, the current will be calculated as follows.

             i = [tex]\frac{q}{t} + \frac{q'}{t}[/tex]

               = [tex]\frac{4.288 \times 10^{-3} C}{1.00} + \frac{6.272 \times 10^{-3} C}{1.00}[/tex]

               = [tex]10.56 \times 10^{-3} A[/tex]

               = 10.56 mA

Therefore, current passing between the electrodes is 10.56 mA.

(b)   Since, positive ions are moving towards the negative electrode. And, current is the flow of ions or electrons therefore, the direction of current is towards the negative electrode.

A magnetic field has a magnitude of 1.2 \times 10^{-3} T, and an electric field has a magnitude of 4.6 \times 10^{3}N/C. Both fields point in the same direction. A positive 1.8 \mu C charge moves at a speed of 3.1 \times 10^6 m/s in a direction that is perpendicular to both fields. Determine the magnitude of the net force that acts on the charge.

Answers

Answer: F = 113.4.[tex]10^{-3}[/tex]N

Explanation: Net Force is the total forces acting in an object. In this case, there are two forces acting on the charge: one due to magnetic field (Fm) and another due to electric field (Fe). So, net force is

F = Fe + Fm

Force due to electric field

To determine this force:

Fe = q.E, where q is the charge and E is electric field.

Calculating:

Fe = q.E

Fe = 1.8.[tex]10^{-6}[/tex].4.6.[tex]10^{3}[/tex]

Fe = 8.28.[tex]10^{-3}[/tex]N

Force due to magnetic field: It can only happens when the charge is in movement, so

Fm = q.(v×B), where v represents velocity and B is magnetic field

The cross product indicates that force is perpendicular to the velocity and the field.

Calculating:

Fm = q.v.B.senθ

As θ=90°,

Fm = q.v.B

Fm =  1.8.[tex]10^{-6}[/tex].3.1.[tex]10^{6}[/tex].1.2.[tex]10^{-3}[/tex]

Fm = 6.696.[tex]10^{-3}[/tex]N

F, Fm and Fe make a triangle. So, using Pythagorean theorem:

F = [tex]\sqrt{Fe^{2} + Fm^{2} }[/tex]

F = [tex]\sqrt{(8.28.10^{-3} )^{2} +(6.696.10^{-3} )^{2} }[/tex]

F = 113.4.[tex]10^{-3}[/tex]N

The net force acting on the charge is F = 113.4.[tex]10^{-3}[/tex]N

A spring with a force constant of 5400 N/m and a rest length of 3.5 m is used in a catapult. When compressed to 1.0 m, it is used to launch a 48 kg rock. However, there is an error in the release mechanism, so the rock gets launched almost straight up. How high does it go (in m)? (Assume the rock is launched from ground height.) m

Answers

Answer:

5.51 m

Explanation:

From the question,

The energy used to stretch the spring = the potential energy of the rock.

(1/2)ke²  = mgh ................. Equation 1

Where k = spring constant, e = extension/compression, m = mass of the rock, g = acceleration due to gravity, h = height of the rock above the ground

make h the subject of the equation.

h = ke²/2mg ....................equation 2

Given: k = 5400 N/m, e = 1 m, m = 48 kg.

Constant: g = 9.8 m/s²

Substitute into equation 2

h = 5400(1²)/(2×48×9.8)

h = 5400/940.8

h = 5.51 m.

Hence the height of the rock = 5.51 m

To practice Problem-Solving Strategy 25.1 Resistor Circuits. Find the currents through and the potential difference across each resistor in the circuit shown on the diagram (Figure 1) . Use the following values: E = 12.0V , R1 = 15.0Ω , R2 = 45.0Ω , R3 = 20.0Ω , and R4 = 25.0Ω .

Part A

Step by step, reduce the circuit to the smallest possible number of equivalent resistors in order to find the equivalent resistance Req of the entire circuit.

Express you answer in ohms to three significant figures.

Part B

Find Ieq, the current through the equivalent resistor.

Express your answer in amperes to three significant figures.

Answers

Answer:

I₁ = 0.32 A

I₂ = 0.16 A

I₃ = 0.16 A

I₄ = 0.16 A

Explanation:

Part A

The equivalent resistance of the circuit is

Req = R₁ + (R₂||(R₃ + R₄))

Req = 15 + (45||(20 + 25))

Req = 15 + (45||45) = 15 + ((45×45)/(45+45)) = 15 + 22.5 = 37.5 Ω

Part B

From Ohm's law,

V = IR

Ieq = V/(Req) = 12/(37.5) = 0.32 A

Part C

Current through R₁ is the same as Ieq as R₁ is directly in series with the voltage source.

I₁ = 0.32 A

Then, this current flows through the (R₂||(R₃ + R₄)) loop too as the entire loop is in series with R₁

This current is them split into two branches of R₂ and (R₃ + R₄), since these two branches have equal resistances (45 Ω and 45 Ω), 0.32 A is split equally between the R₂ and (R₃ + R₄) branch.

Current through R₂ (using current divider)

I₂ = (45/90) × 0.32 = 0.16 A

Current through (R₃ + R₄) = 0.16 A too.

And because the two resistors are in series, the same current flows through them.

I₃ = I₄ = 0.16 A

Final answer:

First, we resolve the parallel circuits using the formula for resistors in parallel to get the equivalent resistance, Rp. We then substitute this into the series circuits to get the total equivalent resistance, Req. Using Ohm's Law, we can calculate the equivalent current, Ieq.

Explanation:

To solve this, we first need to determine the equivalent resistance of the whole circuit. As it is a combination of parallel and series circuits, we have to start by replacing the resistors in parallel. Using the formula for resistors in parallel, 1/R = 1/R2 + 1/R3, the parallel combination of R2 and R3 can be replaced by one resistor with resistance Rp = 1/ ((1/R2) + (1/R3)). This gives Rp = 13.333Ω. Now we have a simple series circuit with R1, Rp, and R4. The equivalent resistance of the whole circuit is then Req = R1 + Rp + R4 = 15.0Ω + 13.333Ω + 25.0Ω = 53.333Ω.

In part B, we apply Ohm's Law: I = E/R to get the equivalent current through the circuit. Using our values for E (12V) and Req (53.333Ω), we find Ieq = 0.225A.

Learn more about Problem-Solving Strategy 25.1 Resistor Circuits here:

https://brainly.com/question/14993917

#SPJ11

Incandescent light bulbs contain a metallic filament inside. Metallic systems have allowed energy levels in a continuous range of energy, so electrons can make transitions of any energy within that range. In our lab, we will connect a light bulb to a variable AC voltage source (a Variac), which can deliver 0-140 V to the filament. The higher the voltage, the hotter we make the temperature, and the more energy we are giving the electrons in the metal, Suppose that at 20 V the filament is a dull red color, which means that most of the photons being emitted are red. When we increase the voltage, what color of light do you expect the filament to emit?

Answers

Answer:

Since at 20V most of the photons released are red then when the voltage keeps increasing the hotter the filament will be, therefore the color of light will be bright red.

Explanation:

The higher the energy the more the electrons in the molecules of the object will be excited, and when they de-excite to their ground states they release energy in the form of infrared light. The increase in voltage and higher temperatures make the object release brighter color and sometimes at the highest temperatures +1400 degrees Celsius, the color glows hot white.

A typical laboratory centrifuge rotates at 3700 rpm . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 cm from the axis of rotation

Answers

Answer:

Explanation:

acceleration of test tube

= ω² R

= (2πn)² R

= 4π²n²R

n = no of rotation per second

= 3700 / 60

= 61.67

R = .10 m

acceleration

= 4π²n²R

= 4 x 3.14² x 61.67² x .10

= 14999 N Approx

Final answer:

The acceleration at the end of a test tube 10 cm from the axis of rotation in a centrifuge spinning at 3700 rpm is calculated to be 15051.2 m/s², demonstrating the significant centrifugal forces generated by such devices.

Explanation:

To calculate the acceleration at the end of a test tube that is 10 cm from the axis of rotation in a centrifuge spinning at 3700 rpm, we first need to convert the rotational speed to radians per second. The formula to convert revolutions per minute (rpm) to radians per second (ω in rad/s) is ω = (2π×rpm)/60. Thus, ω = (2π× 3700)/60 = 387.98 rad/s. Next, we use the formula for centripetal acceleration, a = ω²×r, where r is the radius of the circle (distance from the center of rotation to the point of interest) in meters. Given that r = 10 cm = 0.1 m, the acceleration a = (387.98)^2× 0.1 = 15051.2 m/s².

This centripetal acceleration is much larger than Earth's gravitational acceleration, indicating the extreme forces at play in a centrifuge's operation, which is crucial for its role in laboratory settings for sedimentation of materials.

At the bottom of its path, the ball strikes a 2.30 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after the collision.

Answers

Answer:

(a). The speed of the ball after collision is 2.01 m/s.

(b). The speed of the block after collision 1.11 m/s.

Explanation:

Suppose, A steel ball of mass 0.500 kg is fastened to a cord that is 50.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal.

Given that,

Mass of steel block = 2.30 kg

Mass of ball = 0.500 kg

Length of cord = 50.0 cm

We need to calculate the initial speed of the ball

Using conservation of energy

[tex]\dfrac{1}{2}mv^2=mgl[/tex]

[tex]v=\sqrt{2gl}[/tex]

Put the value into the formula

[tex]u=\sqrt{2\times9.8\times50.0\times10^{-2}}[/tex]

[tex]u=3.13\ m/s[/tex]

The initial speed of the ball [tex]u_{1}=3.13\ m/s[/tex]

The initial speed of the block [tex]u_{2}=0[/tex]

(a). We need to calculate the speed of the ball after collision

Using formula of collision

[tex]v_{1}=(\dfrac{m_{1}-m_{2}}{m_{1}+m_{2}})u_{1}+(\dfrac{2m_{2}}{m_{1}+m_{2}})u_{2}[/tex]

Put the value into the formula

[tex]v_{1}=(\dfrac{0.5-2.30}{0.5+2.30})\times3.13[/tex]

[tex]v_{1}=-2.01\ m/s[/tex]

Negative sign shows the opposite direction of initial direction.

(b). We need to calculate the speed of the block after collision

Using formula of collision

[tex]v_{2}=(\dfrac{2m_{1}}{m_{1}+m_{2}})u_{1}+(\dfrac{m_{1}-m_{2}}{m_{1}+m_{2}})u_{2}[/tex]

Put the value into the formula

[tex]v_{2}=(\dfrac{2\times0.5}{0.5+2.30})\times3.13+0[/tex]

[tex]v_{2}=1.11\ m/s[/tex]

Hence, (a). The speed of the ball after collision is 2.01 m/s.

(b). The speed of the block after collision 1.11 m/s.

You create a plot of voltage (in V) vs. time (in s) for an RC circuit as the capacitor is charging, where V=V_{0} \cdot \left(1- e^{ \frac{-\left(t\right)}{RC} } \right). You curve fit the data using the inverse exponent function Y=A \cdot \left(1- e^{-\left(Cx\right)} \right)+B and LoggerPro gives the following values for A, B, and C. A = 4.211 ± 0.4211 B = 0.1699 ± 0.007211 C = 1.901 ± 0.2051 What is the time constant for and its uncertainty?

Answers

Answer:

The time constant and its uncertainty is t ± Δt = 0.526 ± 0.057 s

Explanation:

If we make a comparison we have to:

y = A*(1-e^-(C*x)) + B

If the time remains constant we have to:

t = R*C = 1/C

In this way we calculate the time constant and its uncertainty. this will be equal to:

t ± Δt = (1/1.901) ± (0.2051/1.901)*(1/1.901) = 0.526 ± 0.057 s

Use the exact values you enter to make later calculations.You measure the potential difference across a capacitor at different times while it's charging and record the following results.Voltage (V) Time (s)1.4790 0.015843.0000 0.036894.5210 0.066516.0210 0.11700

The final voltage the capacitor reaches after you go get some coffee is 6.500 V.
(a) Determine the time constant from the slope.

Answers

Answer:

0.0800 is time constant for slope.

Explanation:

See attached pictures for explanation.

Final answer:

To find the time constant from the slope, use the formula RC = -1/slope, where R is the resistance and C is the capacitance. Calculate the slope by taking the ratio of voltage change to time change between two data points.

Explanation:

To determine the time constant from the slope, we can use the formula:

RC = -1/slope

where R is the resistance in the circuit and C is the capacitance of the capacitor.

In this case, since we are only given the voltage and time data, we need to find the slope by taking the ratio of the change in voltage to the change in time between any two points.

Let's take the first and second data points:

Slope = (V2 - V1) / (t2 - t1)

          = (3.0000 V - 1.4790 V) / (0.036894 s - 0.015843 s)

Now, calculate the slope:

Slope = (1.5210 V) / (0.021051 s)

Slope ≈ 72.27 V/s

Once we have the slope, we can plug it into the formula RC = -1/slope to find the time constant:

RC = -1 / (72.27 V/s)

Calculate RC:

RC ≈ -0.0138 s/V

So, the time constant (τ) is approximately 0.0138 seconds per volt (s/V). This value represents the product of resistance and capacitance in the circuit.

Learn more about Time constant here:

https://brainly.com/question/34087350

#SPJ3

3. A uniformly charged ring of radius 10.0 cm has a total T charge of 75.0 mC. Find the electric field on the axis of the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and (d) 100 cm from the center of the ring.

Answers

To solve this problem we will apply the concepts related to the electric field in a ring. This concept is already standardized in the following mathematical expression, which relates the coulomb constant, the distance to the axis, the distance of the two points. Mathematically it is described as,

[tex]E = \frac{k_exq}{(x^2+r^2)^{(3/2)}} \hat{i}[/tex]

Here,

[tex]k_e[/tex] = Coulomb constant

q = Charge

x = Distance to the axis

r = Distance between the charges

Our values are given as,

[tex]r = 10.0cm = 10*10^{-2} m[/tex]

[tex]q = 75\mu C = 75*10^{-6} C[/tex]

[tex]x_a = 1.00cm[/tex]

[tex]x_b = 5.00cm[/tex]

[tex]x_c = 30cm[/tex]

[tex]x_d = 100cm[/tex]

So applying this to our 4 distances, we have

PART A)

[tex]E_a = \frac{(9*10^9)(1.00*10^{-2})(75*10^{-6})}{((1.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]

[tex]E_a = 6.64*10^6N/C \hat{i}[/tex]

PART B)

[tex]E_b = \frac{(9*10^9)(5.00*10^{-2})(75*10^{-6})}{((5.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]

[tex]E_b = 24.1*10^6N/C \hat{i}[/tex]

PART C)

[tex]E_c = \frac{(9*10^9)(30.00*10^{-2})(75*10^{-6})}{((30.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]

[tex]E_c = 6.39*10^6N/C \hat{i}[/tex]

PART D)

[tex]E_d = \frac{(9*10^9)(100.00*10^{-2})(75*10^{-6})}{((100.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]

[tex]E_d = 0.664*10^6N/C \hat{i}[/tex]

A 4.9 kg block is initially at rest on a horizontal frictionless surface when a horizontal force in the positive direction of an x axis is applied to the block. The force is given by F with arrow(x) = (2.6 − x^2) N, , where x is in meters and the initial position of the block is x=0(a) What is the kinetic energy of the block as it passes through x = 2.1 m?

(b) What is the maximum kinetic energy of the block between x = 0 and x = 2.1 m?

Answers

Answer with Explanation:

We are given that

Mass of block=m=4.9 kg

Initial velocity, u=0

[tex]F=(2.6-x^2) i N[/tex]

Initial position, x=0

a.We have to find the kinetic energy of the blocks as it passes through x=2.1 m

Work done=Kinetic energy=[tex]\int_{0}^{2.1}(2.6-x^2) dx[/tex]

Kinetic energy of the block=[tex][2.6 x-\frac{x^3}{3}]^{2.1}_{0}[/tex]

Kinetic energy of the block=[tex]2.6\times 2.1-\frac{(2.1)^3}{3}-0=2.373 J[/tex]

Kinetic energy of the block=2.373 J

b.Initial kinetic energy of block=[tex]K_i=\frac{1}{2}(4.9)(0)=0[/tex]

According to work energy theorem

[tex]W=K_f-K_i[/tex]

[tex]2.373 =k_f-0[/tex]

[tex]k_f=2.373 J[/tex]

Hence, the maximum kinetic energy of the block =2.373 J

An ideal gas is compressed isothermally to one-third of its initial volume. The resulting pressure will be

A) three times as large as the initial value.
B) less than three times as large as the initial value.
C) more than three times as large as the initial value.
D) equal to the initial value.

Answers

Answer:

A three times as large as the initial value

A typical wall outlet voltage in the United States is 120 volts. Personal MP3 players require much smaller voltages, typically 487.0 mV 487.0 mV . If the number of turns in the primary coil is 2464 2464 , calculate the number of turns on the secondary coil of the adapter transformer.

Answers

Answer:

Number of turns on the secondary coil of the adapter transformer is 10.

Explanation:

For a transformer,

    [tex]\frac{V_{s} }{V_{p} } = \frac{N_{s} }{N_{p} }[/tex]

where [tex]V_{s}[/tex] is the voltage induced in the secondary coil

           [tex]V_{p}[/tex] is the voltage in the primary coil

          [tex]N_{s}[/tex] is the number of turns of secondary coil

         [tex]N_{p}[/tex] is the number of turns of primary coil

From the given question,

    [tex]\frac{487*10^{-3} }{120}[/tex] = [tex]\frac{N_{s} }{2464}[/tex]

⇒    [tex]N_{s}[/tex] = [tex]\frac{2462*487*10^{-3} }{120}[/tex]

            = 9.999733

  ∴   [tex]N_{s}[/tex] = 10 turns

Answer:

607,145 turns

Explanation:

Output voltage, that is secondary voltage,Es = 120 volts

Input voltage, that is primary voltage, Ep = 487/1000 = 0.487 volts

Number of turns in secondary = Ns

Number of turns in primary, Np = 2464

∴ Es/Ep = Ns/Np

Ns = Es * Np/Ep = 1`20 X 2464/0.487 =  607,145 turns ( Step up transformer)

If the velocity of a pitched ball has a magnitude of 47.0 m/s and the batted ball's velocity is 56.5 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answers

Answer:

Change in momentum =15.01kgm/s

Impulse applied by bat = 15.01Ns

Explanation:

Please see attachment below.

You are to connect resistors R1 and R2, with R1 > R2, to a battery, first individually, then in series, and then in parallel. Rank those arrangements according to the amount of current through the battery, greatest first.

Answers

Answer:

Parallel, R2, R1, series

Explanation:

From Ohm's law, V=IR hence making current the subject of the formula then [tex]I=\frac {V}{R}[/tex]

Since R1>R2 eg 4>2 then current for individual connection of R2 will be greater than that for R1 for example, assume V is 8 then if R2 we will have 8/2=4 A but for R1 we shall have 8/4=2 A.

When in parallel, the equivalent resistance will be given by [tex]\frac {1}{R1}+\frac {1}{R2}[/tex] for example here it will be 1/4+1/2=3/4. Still taking V of 8 then I= 8/(3/4)=10.667 A

When in series connection, equivalent resistance is given by adding R1 and R2 hence using the same figures we shall have 4+2=6 hence I=8/6=1.33A

We can conclude that the arrangement of current from greatest will be parallel, R2, R1, series

According to the amount of current, the arrangement will be "Parallel, R2, R1, Series".

Parallel and Series connection

By using Ohm's law

Voltage (V) = Current (I) × Resistance (R)

or,

→ I = [tex]\frac{V}{R}[/tex]

Since R1 > R2

Let, Current (V) = 8 then the resistance will be:

R2 = [tex]\frac{8}{2}[/tex] = 4 A

and,

R1 = [tex]\frac{8}{2}[/tex] = 4 A

When the resistance is in parallel connection,

= [tex]\frac{1}{R1} + \frac{1}{R2}[/tex]

= [tex]\frac{1}{4} +\frac{1}{2}[/tex]

By taking L.C.M, we get

= [tex]\frac{1+2}{4}[/tex] = [tex]\frac{3}{4}[/tex] and,

The current be:

→ I = [tex]\frac{8}{\frac{3}{4} }[/tex] = 10.667 A

When the resistance is in series connection,

= R1 + R2

= 4 + 2

= 6 and,

The current be:

→ I = [tex]\frac{8}{6}[/tex] = 1.33 A

Thus the response above is appropriate.

Find out more information about resistor here:

https://brainly.com/question/24858512

Two objects are moving at equal speed along a level, frictionless surface. The second object has twice the mass of the first object. They both slide up the same frictionless incline plane. Which object rises to a greater height?

a. Object 1 rises to the greater height because it weighs less.
b. Object 2 rises to the greater height because it possesses a larger amount of kinetic energy.
c. Object 2 rises to the greater height because it contains more mass.
d. Object 1 rises to the greater height because it possesses a smaller amount of kinetic energy.
e. The two objects rise to the same height.

Answers

Answer:

Option E is correct.

The two objects rise to the same height.

Explanation:

Let the mass, velocity and height the bigger object will rise to be M, V and H respectively.

Let the mass, velocity and height the object will rise to be m, v and h respectively.

Note that V = v

Using the work energy theorem

The change in kinetic energy of a body between two points is equal to the work done on the body between those two points.

Change in kinetic energy of the bigger object = (final kinetic energy) - (initial kinetic energy) = 0 - (1/2)(M)(V²) = (-MV²/2)

(The final kinetic energy = 0 J because the object comes to rest at the final point)

Work done on the bigger object = work done by all the forces acting on the body

But the only force acting on the body is the force of gravity (since the inclined plane is frictionless)

Workdone on the body = work done by the force of gravity in moving the body up a height of H = - MgH

(-MV²/2) = - MgH

H = (V²/2g)

For the small body,

Change in kinetic energy of the bigger object = (final kinetic energy) - (initial kinetic energy) = 0 - (1/2)(m)(v²) = (-mv²/2)

Workdone on the body = work done by the force of gravity in moving the body up a height of H = - mgh

(-mv²/2) = - mgh

h = (v²/2g)

Since V = v as given in the question (Both bodies have the same speeds)

H = h = (V²/2g) = (v²/2g)

Hope this Helps!!!

"A 0.15 kg ball moving at 40 m/s is struck by a bat. The bat reverses the ball's direction and gives it a speed of 50 m/s. What average force does the bat apply to the ball if they are in contact for 6.0 ×10 -3 s?"

Answers

Final answer:

The average force exerted by the bat on the ball is 2250 N.

Explanation:

To calculate the average force exerted by the bat on the ball, we can use the impulse-momentum principle. The impulse experienced by the ball is equal to the change in its momentum. We can calculate the initial momentum by multiplying the mass of the ball by its initial velocity, and similarly, we can calculate the final momentum using the mass and final velocity. By subtracting the initial momentum from the final momentum, we get the change in momentum. Finally, dividing the change in momentum by the time of contact gives us the average force.

Using the given values, the initial momentum of the ball is (0.15 kg) × (-40 m/s) = -6 kg·m/s, and the final momentum is (0.15 kg) × (50 m/s) = 7.5 kg·m/s. The change in momentum is 7.5 kg·m/s - (-6 kg·m/s) = 13.5 kg·m/s. Dividing this by the time of contact, 6.0 × 10^-3 s, gives us an average force of 2250 N.

A proton moves perpendicular to a uniform magnetic field B at a speed of 1.00 x10^7 m/s and experiences an acceleration of 2.00 x10^13 m/s^2. in the positive x-direction when its velocity is in the positive z-direction. Determine the magnitude and direction of the field for which the magnitude of the field is a minimium

Answers

Answer:

So, Magnitude of the field (B) = 2.09 x 10^(-2) T.

It's in the negative direction since acceleration is in positive direction.

Explanation:

First of all, since acceleration is in positive x- direction, the magnetic field must be in negative y- direction.

We know that The magnitude of the Lorentz force F is; F = qvB sinθ

So, B = F/(qvsinθ)

F = ma.

Speed(v) = 1.00 x10^(7) m/s

acceleration (a) = 2.00 x10^(13) m/s^(2)

Mass of proton = 1.673 × 10^(-27) kilograms

q(elementary charge of proton) = 1.602×10^(−19)

Since right hand thumb rule, θ= 90°

So;B = [1.673 × 10^(-27) x 2.00 x10^(13)] / [ {1.602×10^(−19)} x {1.00 x10^(7)} x sin 90]

So,B = 2.09 x 10^(-2) T.

It's in the negative direction since acceleration is in positive direction.

Final answer:

The magnitude of the magnetic field that the proton experiences is 2.08 x 10^-4 Tesla. The direction of the magnetic field, determined by the right-hand rule, is in the negative y-direction.

Explanation:

The force experienced by a charged particle moving within a magnetic field, like the proton in your question, can be calculated using the Lorentz force law: F = qvBsinθ, where F is the force, q is the charge of the particle, v is its velocity, B is the magnetic field, and θ is the angle between the velocity and the magnetic field. Because the proton is moving perpendicular to the field, θ = 90°, and sinθ = 1. Therefore, F = qvB. To find the magnetic field, B, we can rearrange this formula to give B = F/qv.

Now, we know from Newton's second law that F = ma, so we can replace F in our formula with the proton's mass (m, which is 1.67 x 10^-27 kg for a proton) times the given acceleration (a), yielding B = ma/qv.

Substitute the given values for acceleration, proton's charge, and velocity into our equation, we get: B = (1.67 x 10^-27 kg)(2 x 10^13 m/s^2) / (1.60 x 10^-19 C)(1 x 10^7 m/s) = 2.08 x 10^-4 Tesla (T).

The direction of the magnetic field is given by the right-hand rule as discussed in Essential Knowledge 2.D.1. If you arrange your right hand such that your thumb points in the direction of the proton's velocity (positive z-direction) and your fingers curl in the direction of the force (positive x-direction), your palm points in the direction of the magnetic field, which would be in the negative y-direction.

Learn more about Magnetic Field here:

https://brainly.com/question/36936308

#SPJ3

Consider a sphere, an infinitely long cylinder, and a plane of infinite length and width (a, b and c below). Imagine that you can hover above each one in your own personal helicopter. In which case do you have the most freedom to move about without your view of the object changing? In other words, for each case consider if there are directions that you can move in without the objects distance or orientation, relative to you, changing.

Answers

Answer:

A plane of infinite length and width.

Explanation:

For the case of the sphere, we should consider spherical coordinates.

You can move around the sphere without changing your distance from the center of the sphere, however you can alter your azimuthal angle and polar angle, since they are symmetric in spherical coordinate system.

r --> Cannot change

Φ --> Free to change

θ --> Free to change

For the case of the infinite cylinder, we should consider cylindrical coordinates.

You can change your height and angular coordinate, but you cannot change your distance from the axis of the cylinder.

r --> Cannot change

θ --> Free to change

z --> Free to change

For the case of the infinite plane, we should consider cartesian coordinates.

Since the length and width of the plane is infinite, we cannot recognize whether we are getting closer or further away.

x --> Free to move

y --> Free to move

z --> Free to move

Therefore, in the case of infinite plane you have the most freedom to move about without your view of the object changing.

Final answer:

An infinite plane allows the most freedom of movement without changing the view, due to its infinite symmetry. In contrast, a sphere and a cylinder have more limited symmetrical properties, resulting in a restricted freedom of movement to keep the view unchanged.

Explanation:

When comparing the freedom to move above a sphere, an infinitely long cylinder, and an infinite plane, the plane provides the most freedom without changing your view of the object. On a sphere, any move results in a different orientation or distance from the surface. With the cylinder, movement along the axis does not change the view, but any other direction does. However, the infinite plane allows movement in any direction on a two-dimensional plane without changing the viewed geometry or orientation.

From a mathematical perspective, this question revolves around symmetry and geometric invariance under transformation. The infinite plane exhibits infinite symmetry; therefore, no matter how you move parallel to its surface, the view remains unchanged. Conversely, a sphere has rotational symmetry around its center, and a cylinder along its axis, limiting the directions in which one can move without altering the perceived distance or orientation.

A blood-flow meter emits a 1.1-MHz ultrasound pulse to measure the speed of blood moving directly away from the meter. The meter’s sensor detects the pulse reflected back from the blood at a frequency 21 Hz lower than the emitted frequency. Take the speed of sound in the tissues to be 1475 m/s.

At what speed, in centimeters per second, is the blood moving?

Answers

Answer:

V = 2.8cm/s

Explanation:

Please see attachment below.

This problem involves the concept of doppler effect.

Answer:

The speed at which the blood is flowing in cm/s = 1.4 cm/s

Explanation:

emitted frequency ( f ) = 1.1 * 10^6 Hz

detected frequency ( F ) = 21 Hz

speed of sound in tissues ( c ) = 1475 m/s

speed ( V ) = ?

To calculate for speed of blood flowing we apply the detected frequency formula :

F = [tex]\frac{2fV}{c}[/tex]

21 = ( 2* 1100000* V ) / 1475

therefore V = (21 * 1475) / (2 * 1100000)

                V = 30975 / 2200000

                 V = 0.0140 m/s = 1.4 cm/sec

If 745-nm and 660-nm light passes through two slits 0.54 mm apart, how far apart are the second-order fringes for these two wavelengths on a screen 1.0 m away

Answers

Answer:

0.82 mm

Explanation:

The formula for calculation an [tex]n^{th}[/tex] bright fringe from the central maxima is given as:

[tex]y_n=\frac{n \lambda D}{d}[/tex]

so for the distance of the second-order fringe when wavelength [tex]\lambda_1[/tex] = 745-nm can be calculated as:

[tex]y_2 = \frac{n \lambda_1 D}{d}[/tex]

where;

n = 2

[tex]\lambda_1[/tex] = 745-nm

D = 1.0 m

d = 0.54 mm

substituting the parameters in the above equation; we have:

[tex]y_2 = \frac{2(745nm*\frac{10^{-9m}}{1.0nm}(1.0m) }{0.54 (\frac{10^{-3m}} {1.0mm})}[/tex]

[tex]y_2[/tex] = 0.00276 m

[tex]y_2[/tex] = 2.76 × 10 ⁻³ m

The distance of the second order fringe when the wavelength [tex]\lambda_2[/tex] = 660-nm is as follows:

[tex]y^'}_2 = \frac{2(660nm*\frac{10^{-9m}}{1.0nm}(1.0m) }{0.54 (\frac{10^{-3m}} {1.0mm})}[/tex]

[tex]y^'}_2[/tex] = 1.94 × 10 ⁻³ m

So, the distance apart the two fringe can now be calculated as:

[tex]\delta y = y_2-y^{'}_2[/tex]

[tex]\delta y[/tex] = 2.76 × 10 ⁻³ m - 1.94 × 10 ⁻³ m

[tex]\delta y[/tex] = 10 ⁻³ (2.76 - 1.94)

[tex]\delta y[/tex] = 10 ⁻³ (0.82)

[tex]\delta y[/tex] = 0.82 × 10 ⁻³ m

[tex]\delta y[/tex] =  0.82 × 10 ⁻³ m [tex](\frac{1.0mm}{10^{-3}m} )[/tex]

[tex]\delta y[/tex] = 0.82 mm

Thus, the distance apart the second-order fringes for these two wavelengths = 0.82 mm

A current of 8 A exists in a copper (Cu) wire which has a diameter of 5 mm. What is the current density? Each atom of copper contributes one conduction electron, and the average thermal speed r k T m of an electron is 2.4 × 106 m/s . The mass

Answers

Explanation:

Below is an attachment containing the solution.

a carbon steel ball with a 30mm diameter is pressed against a flat carbon steel plate with a force of 20n. calculate the diameter of the circular contact area and the maximum pressure that occurs at the center of the contact area

Answers

Final answer:

The diameter of the circular contact area is 30 mm and the maximum pressure at the center of the contact area is approximately 0.14 N/mm^2.

Explanation:

To calculate the diameter of the circular contact area, we need to determine the radius of the contact area first. The radius can be found by dividing the diameter of the ball by 2. In this case, the radius is 15 mm.

The area of the circular contact area can be calculated using the formula A = πr^2, where A is the area and r is the radius. The maximum pressure at the center of the contact area can be found by dividing the force applied on the plate by the area of the contact area.

Using these formulas, the diameter of the circular contact area is 30 mm and the maximum pressure at the center of the contact area is approximately 0.14 N/mm^2.

In a typical Van de Graaff linear accelerator, protons are accelerated through a potential difference of 20 MV. What is their kinetic energy if they started from rest? Give your answer in (a) eV, (b) keV,(c) MeV, (d) GeV, and (e) joules.

Answers

Answer:

a) 2 x10^7 eV

b) 2 x10^4 keV

c) 20 MeV

d) 0.02 Gev

e) 3.2 x 10^-12J

Explanation:

The potential difference = 20 x 10^6 V

The charge on the proton = 1.6 x10^-19

The work done to move the proton will be basically the proton will acquire if it accelerates.

Kinetic energy gained = ΔVq = 20 x10^6 x 1.6 x 10^-19

                                                 =3.2 x 10^-12J or 2 x10^7 eV

2 x10^7 eV = 2 x10^4 keV = 20 MeV = 0.02 Gev

Explanation:

Below is an attachment containing the solution.

A 0.60-kg particle has a speed of 2.0 m/s at point A and a kinetic energy of 7.5 J at point B. What is (a) its kinetic energy at A? (b) Its speed at point B ? (c) The total work done on the particle as it moves from A to B ?

Answers

Answer:

Explanation:

note:

solution is attached due to error in mathematical equation. please find the attachment

Answer:

(a) 1.2 J

(b) 5 m/s

(c)  6.3 J

Explanation:

(a) Kinetic energy at A

Ek = 1/2mv².................. Equation 1

Where Ek = Kinetic energy at A, m = mass of the particle, v = velocity at A.

Given: m = 0.6 kg, v = 2.0 m/s

Substitute into equation 1

Ek = 1/2(0.6)(2²)

Ek = 0.6(2)

Ek = 1.2 J.

(b)

Speed at point B

Ek' = 1/2mv'²............... Equation 2

Make v' the subject of the equation,

v' = √(2Ek'/m).................. Equation 3

Where, Ek' = kinetic energy at B, v' = velocity at B.

Given: Ek' = 7.5 J, m = 0.6 kg,

Substitute into equation 3

v' = √[(2×7.5)/0.6]

v' =√(15/0.6)

v' = √25

v' = 5 m/s.

(c)

Wt =  Δ kinetic energy from A to B

Where Wt = total work done as the particle moves from A to B.

Wt = 1/2m(v'²-v²)

Wt = 1/2(0.6)(5²-2²)

Wt = 0.3(25-4)

Wt = 0.3(21)

Wt = 6.3 J

To model a tornado, superimpose the stream function for a vortex (Eq. 6.91) and a source (Eq. 6.83). Assume that the circulation is 8000 m2 /s and the pressure at the radius of 40 m is 2 kPa less than atmospheric

Answers

Answer:

The stream function for this potential flow is -4696.8

Explanation:

Given that,

Circulation = 8000 m²/s

Radius = 40 m

Pressure = 2 kPa

Suppose the determine the stream function for this potential flow

We need to calculate the stream function

Using formula of stream function

[tex]\Psi=-(\dfrac{\Gamma}{2\pi})ln(r)[/tex]

Where, Γ = circulation

r = radius

Put the value into the formula

[tex]\Psi=-\dfrac{8000}{2\pi}\times ln(40)[/tex]

[tex]\Psi=-4696.8[/tex]

Hence, The stream function for this potential flow is -4696.8

Other Questions
9.Lula bought new furniture on her credit card for $993. If she pays it off in 6 months there will be no interest on her purchase. How much will her payments be if evenly distributed over 6 months? A schedule listing account balances for the current and previous years, and columns for adjusting and reclassifying entries proposed by the auditors to arrive at the final mount that will appear in the financial statement, is referred to as a: _______.A) Working trial balance.B) Lead schedule.C) Summarizing schedule.D) Supporting schedule. There are 8 male teachers and 5 female teachers who teach English in the school. What is the ratio of the number of male teachers to the number of female teachers? Johnnie's father worked his entire career in the automotive manufacturing industry in Michigan. When Johnnie entered the workforce, the auto industry was in decline, so he instead found a professional career in the booming information technology sector, an industry that did not exist when his father began his career. This is an example ofa. structural mobility.b. horizontal mobility.c. exchange mobility.d. social reproduction. I WILL GIVE A CROWN JUST NEED HELP ASAP Another name for an oxidizing agent is a(n) Group of answer choices electron acceptor. hydride transfer reagent. electron donor. electropositive metal. reductant. 4.5(32 divided by 8) +12 An article reports that blue eyed people earn less than brown eyed people, with these numbers: average blue-eyed salary $35,000, average brown-eyed salary $37,000, p-value 0.45. Based on that reported p-value, and using the common definition of "statistical significance," which is the case?a. The results are nowhere near to being statistically significant.b. The results are almost but not quite statistically significant.c.The results are just barely statistically significant.d.The results are strongly statistically significant.A group of 10 people is choosing a chairperson and vice-chairperson. They put all 10 people's names into a hat. The first name drawn becomes chair. The second name drawn becomes vice-chair. How many possible combinations of chair and vice-chair are there?a.19b.90c.100d.10! (10 factorial) When is the color emitted from an atom A chemist determined by measurements that 0.050 moles of aluminum participated in a chemical reaction. Calculate the mass of aluminum that participated in the chemical reaction. Be sure your answer has the correct number of significant digits. A nurse provides teaching for a 25-year-old patient who will receive mitoxantrone [Novantrone] for worsening relapsing-remitting multiple sclerosis. Which statement by the patient indicates a need for further teaching?a. "I may experience cardiac side effects several years after receiving this drug."b. "I should report fever, chills, cough, and hoarseness immediately."c. "I will need an infusion of this medication once weekly."d. "I will need a liver function test and a pregnancy test before each dose." Upton Computers makes bulk purchases of small computers, stocks them in conveniently located warehouses, ships them to its chain of retail stores, and has a staff to advise customers and help them set up their new computers. Upton's balance sheet as of December 31, 2013, is shown here (millions of dollars):Cash $3.5 Accounts payable $9.0Receivables 26.0 Notes payable 18.0Inventories 58.0 Line of credit 0Total current assets $87.5 Accruals 8.5Net fixed assets 35.0 Total current liabilities $35.5Mortgage loan 6.0Common stock 15.0Retained earnings 66.0Total assets $122.5 Total liabilities and equity $122.5Sales for 2013 were $375 million and net income for the year was $11.25 million, so the firm's profit margin was 3.0%. Upton paid dividends of $4.5 million to common stockholders, so its payout ratio was 40%. Its tax rate is 40%, and it operated at full capacity. Assume that all assets/sales ratios, spontaneous liabilities/sales ratios, the profit margin, and the payout ratio remain constant in 2014. Do not round intermediate calculations.If sales are projected to increase by $70 million, or 18.67%, during 2014, use the AFN equation to determine Upton's projected external capital requirements. Enter your answer in millions. For example, an answer of $1.2 million should be entered as 1.2, not 1,200,000. Round your answer to two decimal places.Using the AFN equation, determine Upton's self-supporting growth rate. That is, what is the maximum growth rate the firm can achieve without having to employ nonspontaneous external funds? Round your answer to two decimal places.Use the forecasted financial statement method to forecast Upton's balance sheet for December 31, 2014. Assume that all additional external capital is raised as a line of credit at the end of the year and is reflected (because the debt is added at the end of the year, there will be no additional interest expense due to the new debt).Assume Upton's profit margin and dividend payout ratio will be the same in 2014 as they were in 2013. What is the amount of the line of credit reported on the 2014 forecasted balance sheets? (Hint: You don't need to forecast the income statements because you are given the projected sales, profit margin, and dividend payout ratio; these figures allow you to calculate the 2014 addition to retained earnings for the balance sheet.) Round your answers to the nearest cent.Upton ComputersPro Forma Balance SheetDecember 31, 2014(Millions of Dollars)Cash $Receivables $Inventories $Total current assets $Net fixed assets $Total assets $Accounts payable $Notes payable $Accruals $Total current liabilities $Mortgage loan $Common stock $Retained earnings $Total liabilities and equity $ Which discovery caused hunter-gatherers to give up their nomadic lifestyle and settle down permanently in one place?A. fireB. stone toolsC. agricultureD. fishingE. treehouses Number the following igneous rock types according to how mafic they are, with 1 being the least mafic (most felsic) and 4 being the most mafic. A. Andesite.B. Basalt.C. Peridotite.D. Rhyolite. This inventory system requires a physical inventory count to be made at least once during the year. Answer 1 This inventory system computes and records cost of goods sold at the time of sale. Answer 2 This inventory system computes and records cost of goods sold only at the end of the period. Answer 3 This inventory system computes and records sales revenue at the time of sale. If the destination file is closed when you make a change in the source file, you choose whether to update the link to display the current values when you open the destination file or continue to display the older values from the destination file.a) trueb) false Find the area of the triangle. Round your answer to the nearest thousandths. A=1/2 bh A recent national survey of U.S. adults revealed that 52% reported that they considered or made a career decision, such as looking for a new job, declining a promotion, or quitting a job, because of:___________. What can you do to help your speech linger in the minds of your audience? A. Inject a final provocation B. Summarize your main points C. Restate your introduction verbatim D. Use an attention getter What is the relationship between energy, matter and waves