Final answer:
The 95% confidence interval for the true mean score of subjects' attitudes towards public transportation is between 67.361 and 85.039, computed using a t-score for a sample size of 25.
Explanation:
To calculate the 95% confidence interval for the mean score of all subjects regarding their attitudes towards public transportation, we will use the following formula for a confidence interval when the population is normally distributed but the population standard deviation is not known:
CI = ± t*(s/√n), where CI is the confidence interval, ± denotes plus or minus, t is the t-score that corresponds to the desired level of confidence and degrees of freedom (df = n - 1), s is the sample standard deviation, and √n is the square root of the sample size.
For our sample size of n = 25, the degrees of freedom is df = 24. Consulting a t-distribution table or using statistical software to find the t-value for df = 24 at a 95% confidence level, we assume a t-value approximately equal to 2.064 (this may slightly vary depending on the source of the t-distribution table). Plugging in the values:
CI = ± 2.064*(21.4/√25), thus the margin of error is approximately 2.064 * 4.28
The confidence interval is then the sample mean ± the margin of error:
76.2 ± (2.064 * 4.28)
This calculation yields a confidence interval for the population mean score of:
Lower Bound = 76.2 - 8.83872 ≈ 67.361
Upper Bound = 76.2 + 8.83872 ≈ 85.039
Therefore, rounding to three decimal places: 67.361 (Lower Bound) and 85.039 (Upper Bound).
We are 95% confident that the true mean score of all subjects' attitudes towards public transportation lies between 67.361 and 85.039.
Simplify: (−7x + 5) – (2x2 – 8x + 6)
Answer:
2x^2 + x -1
Step-by-step explanation:
-7x + 5 - 2x^2 + 8x -6
2x^2 + x -1
answer question pls
Answer:
B,1/5
Step-by-step explanation:
Answer:
the answer would be
B aka your second option
Step-by-step explanation:
i don't really have a step by step but this is the first question i've answered on this app let me know if i am helpful!!
What is the surface area
Patricia got a 5/25 balloon mortgage and her initial payments were $965. She
decided to refinance her balloon payment with a 30-year mortgage and her
new payments were $925. What is the total financed cost she paid for her
house?
Answer:
$390,900
Step-by-step explanation:
Given:
Initial payment = $965
New rapayment = $925 when she decided to refinance her ballon payment with a 30 year mortgage
In this case, a 5/25 ballon mortgage simply means loan repayment for the first 5 years is at a fixed rate.
Which means the total amount she paid in the first five years was=
12 * 5 * $965 = $57,900
When she refinanced the payment with a 30 year mortgage, her total payment = $925 * 12 * 30years = $333,000
Total financed cost Patricia paid =
$57,900 + $333,000 = $390,900
An SAT coaching company claims it's course can raise SAT scores of high school students (thus, when they take it a second time after being coached). Of course, students who retake the SAT without paying for coaching generally raise their scores also. A random sample of students who took the SAT twice found 427 who were coached and 2733 who were not coached. For both the coached group and the uncoached group, the gain in score was recorded. The SAT coaching company wishes to test to see if their coaching provided better second attempts on average. What case is best
Answer:
Check the explanation
Step-by-step explanation:
(a) The appropriate test is the matched-pairs test because a student’s score on Try 1 is certainly correlated with his/her score on Try 2. Using the differences, we have xbar = 29 and s = 59.
(b) To test H0: mu=0 vs. H1 mu > 0, we compute
[tex]t = (29-0)/((59/sqrt(427))=10.16[/tex]
with df = 426. This is certainly significant, with P < 0.0005. Coached students do improve their scores on average
(a) H0: μ1 = μ2 vs. Ha: μ1 > μ2, where μ1 is the mean gain among all coached students and μ2 is the mean gain among uncoached students. H0 and Ha. Using the conservative approach, df = 426 is rounded down to df = 100 in (t table) and we obtain 0.0025 < P < 0.005. Using software, df = 534.45 and P = 0.004. There is evidence that coached students had a greater average increase.
(b) 8 ± t*(3.0235) where t* equals 2.626 (using df = 100 with (t table) ) or 2.585 (df = 534.45 with software). This gives either 0.06 to 15.94 points, or 0.184 to 15.816 points, respectively.
(c) Increasing one’s score by 0 to 16 points is not likely to make a difference in being granted admission or scholarships from any colleges.
Help! Best answer = Brainiest!
Our environment is very sensitive to the amount of ozone in the upper atmosphere. The level of ozone normally found is 7.8 parts/million (ppm). A researcher believes that the current ozone level is not at a normal level. The mean of 16 samples is 8.2 ppm with a standard deviation of 0.6. Assume the population is normally distributed. A level of significance of 0.01 will be used. Find the value of the test statistic. Round your answer to two decimal places.
Answer:
The value of the test statistic is [tex]t = 2.67[/tex]
Step-by-step explanation:
The null hypothesis is:
[tex]H_{0} = 7.8[/tex]
The alternate hypotesis is:
[tex]H_{1} \neq 7.8[/tex]
Our test statistic is:
[tex]t = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
In this problem, we have that:
[tex]X = 8.2, \mu = 7.8, \sigma = 0.6, n = 16[/tex]
Then
[tex]t = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]t = \frac{8.2 - 7.8}{\frac{0.6}{\sqrt{16}}}[/tex]
[tex]t = 2.67[/tex]
The value of the test statistic is [tex]t = 2.67[/tex]
what is the value of 6+ {[3x(13-5)]-2}
Answer:
28 you have to do it from left to right
Answer:
13-5=8
3x8=24
24-2=22
22+6=28
28 is your answer
Step-by-step explanation:
Which dot plot shows a sample that is most representative of the number of pets in a household?
THE COMPLETE QUESTION IS:
Which dot plot shows a sample that is most representative of the number of pets in a household?
A. A dot plot going from 0 to 6. There are 3 dots above 0, 5 dots above 1, 4 dots above 2, 3 dots above 3, 2 dots above 4, 0 dots above 5, and 1 dot above 6.
B. Adot plot going from 0 to 6. There are 2 dots above 1, 3 dots above 2, and 1 dot above 5.
C. A dot plot going from 0 to 6. There is 1 dot above 0, 2 dots above 1, 1 dot above 2, 1 dot above 3, 1 dot above 4, 1 dot above 5, 2 dots above 6.
D. A dot plot going from 0 to 6. There is 1 dot above 1, 2 dots above 2, 3 dots above 3, 2 dots above 4, 1 dot above 5.
Answer:
A is the correct option
Step-by-step explanation:
A. A dot plot going from 0 to 6. There are 3 dots above 0, 5 dots above 1, 4 dots above 2, 3 dots above 3, 2 dots above 4, 0 dots above 5, and 1 dot above 6.
A has 3+5+4+3+2+0+1 = 18 dots
The rest are not up to 18.
The best graphical representation of the number of pets in a household is: A dot plot going from 0 to 6. There are 3 dots above 0, 5 dots above 1, 4 dots above 2, 3 dots above 3, 2 dots above 4, 0 dots above 5, and 1 dot above 6.
What is a graph?A graph can be defined as the graphical representation of data (information) on both the horizontal and vertical lines, which are commonly called the x-axis and y-axis respectively.
The types of graph.In Mathematics, there are different types of graph and these include:
Scatter plotBar graphPie chartDot plot.A dot plot refers to a type of graph which comprises small data points that are plotted on a simple histogram-like graph. Thus, the number of pets in a household should be represented by using a dot plot with its value ranging from 0 to 6.
Read more on graphs here: https://brainly.com/question/25875680
Suppose that you found two different solutions for a system of two linear equations. How many solutions must the system have?
Answer:
One solution.
Step-by-step explanation:
A linear line only goes one way, and thus, two lines can only meet at one point.
That is unless, the linear equations are both the same, then they will have infinite solutions.
But what you're asking is if they're different so no, you cannot have two solutions for a system of two linear equations.
Answer:
0
Step-by-step explanation:
Two different solutions means the two equations aren't consistent - there's no unique solution that solves the whole system. Two lines can meet at at most one point, so in this case, no solution to the first equation will be a solution to the second. The system has 0 solutions.
This year’s school population in Waterloo is 135 percent of last year’s school population. This year’s student population is 756. How many students did the school have last year?
Answer:560
Step-by-step explanation:
Let a be the number of students the school have last year
135% of a=756
135/100 x a=756
135a/100=756
Cross multiplying we get
135a=756 x100
135a=75600
Divide both sides by 135
135a/135=75600/135
a=560
Sophia and her brother combined to read a total of 40 books over the summer. Sophia read four times as many books as her brother. How many books did each person read?
Answer:
Brother read 8 books
Sophia read 32
Step-by-step explanation:
Number of book Sophia and her brother read is 32 and 8.
Distribution of books:Given that;
Total number of books = 40 books
Number of book Sophia read = 4[Number of book Sophia's brother read]
Find:
Number of books each person read
Computation:
Assume;
Number of book Sophia's brother read = a
So,
Number of book Sophia read = 4a
So,
a + 4a = 40
5a = 40
a = 8
Number of book Sophia's brother read = 8 books
So,
Number of book Sophia read = 32 books
Find out more information about 'Distribution'.
https://brainly.com/question/10006924?referrer=searchResults
© If you take a number, times by 7 then subtract 1. You get the same as if you took the number,
times by 5 then subtract 8. What is the number?
Answer:
-7/2
Step-by-step explanation:
This question is a word problem.
Step 1: interpretation the question
Let's assume the number is x;
X×7 – 1 = X×5 – 8
7x - 1 = 5x - 8
Step 2. Solve the equation for the unknown.
7x - 1 = 5x - 8
Take like terms together
7x - 5x = - 8 +1
2x = -7
Divide both sides by 2
x = -7/2
The answer is -7/2
Rebecca said that the graph is NOT a function. What is the BEST reason she could give to Mr. Bradley to support her statement?
A) The graph is not symmetrical about the y-axis
B) Every value of y has a single value of x
C) A vertical line placed on the graph could intersect more than one point
D) Every value of x has a single value of y
Answer:
choose choice C.
Step-by-step explanation:
many vertical lines can cross this graph more than once, which defies the definition of a function.
Answer:
c) A vertical line placed on the graph could intersect more than one point
Step-by-step explanation:
if you did the vertical line test, you would see that there would be more than one point per value.
hope i helped:) !!!
brainliest ??
Use the given degree of confidence and sample data to construct a confidence interval for the population proportion p. n=83, x=45, 98 percent
Could you please explain the steps and how to get to an answer? Thank you!
Answer:
The 98% confidence interval for the population proportion p is (0.4149, 0.6695).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 83, \pi = \frac{45}{83} = 0.5422[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5422 - 2.327\sqrt{\frac{0.5422*0.4578}{83}} = 0.4149[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5422 + 2.327\sqrt{\frac{0.5422*0.4578}{83}} = 0.6695[/tex]
The 98% confidence interval for the population proportion p is (0.4149, 0.6695).
Find the measures of angels of M and N
M (6y-10)
N (4y-10)
We have been given an image of a trapezoid. We are asked to find the measure of angle M and N.
We know that bases of trapezoid are parallel and the two angles between two parallel lines are supplementary, so we can set an equation as:
[tex]\angle M+\angle N=180[/tex]
[tex](6y-10)+(4y-10)=180[/tex]
[tex]6y-10+4y-10=180[/tex]
[tex]10y-20=180[/tex]
[tex]10y-20+20=180+20[/tex]
[tex]10y=200[/tex]
[tex]\frac{10y}{10}=\frac{200}{10}[/tex]
[tex]y=20[/tex]
Upon substituting value of y in measure of angle M, we will get:
[tex]m\angle M=6y-10[/tex]
[tex]m\angle M=6(20)-10[/tex]
[tex]m\angle M=120-10[/tex]
[tex]m\angle M=110[/tex]
Therefore, measure of angle M is 110 degrees.
Similarly, we will find the value of angle N as:
[tex]m\angle N=4y-10[/tex]
[tex]m\angle N=4(20)-10[/tex]
[tex]m\angle N=80-10[/tex]
[tex]m\angle N=70[/tex]
Therefore, measure of angle N is 70 degrees.
34. The sum of the lengths of the two bases of a trapezoid
is 22 cm, and its area is 66 cm". What is the height of
the trapezoid?
Answer:
h=6
Step-by-step explanation:
the formula for a trapezoid’s area is to multiply the bases (a and b) by the height of the trapezoid, then divide it all by 2.
so typed out, that would look like:
((a+b) h) / 2
and in the case of this problem:
((22) h) / 2 = 66
so just go ahead and solve it algebraically from there and you’re good!
9/10 divided by (-6/5)
Answer:
-3/4
Step-by-step explanation:
9/10 ÷ (-6/5)
Copy dot flip
9/10 * -5/6
Rewriting
-5/10 * 9/6
-1/2 * 3/2
-3/4
Answer: -3/4
Step-by-step explanation: Remember that dividing by a fraction is the same thing as multiplying by the reciprocal of that fraction or that fraction flipped.
In other words we can rewrite 9/10 ÷ -6/5 as 9/10 · -5/6.
Before multiplying however, notice that we can cross-cancel
the 9 and 6 to 3 and 2 and the 5 and 10 to 1 and 2.
So we now have 3/2 · -1/2.
Now multiplying across the numerators
and denominators we get -3/4.
The point M(-6,8) is the midpoint of AB. The point A has coordinates (-2,10). What are the coordinates of B
Answer:
m/6-8 =m/58
Step-by-step explanation:
Using the midpoint formula, the coordinates of point B are determined by setting up equations with the known coordinates of point A and midpoint M. Solving these equations yields the x-coordinate of B as -10 and the y-coordinate as 6, making the coordinates of point B (-10, 6).
Explanation:The question is asking to determine the coordinates of point B if M(-6,8) is the midpoint of AB and A has coordinates (-2,10). To find the coordinates of B, we use the midpoint formula which states that the midpoint M(x,y) is given by M = ((x1 + x2)/2, (y1 + y2)/2) where (x1, y1) and (x2, y2) are the coordinates of points A and B respectively. Since we know the coordinates of A and M, we can set up equations to solve for the coordinates of B.
To find the x-coordinate of B, we set up the equation -6 = (-2 + xB)/2 which yields xB = -10. For the y-coordinate, we use the equation 8 = (10 + yB)/2 which gives us yB = 6. Therefore, the coordinates of point B are (-10, 6).
Learn more about midpoint formula here:
https://brainly.com/question/30242630
#SPJ2
Which of the following statements is true in a one-way ANOVA? a. The critical value of the test will be a value obtained from the F-distribution. b. If the null hypothesis is rejected, it may still be possible that two or more of the population means equal. c. The degrees of freedom associated with the sum of squares for treatments is equal to one less than the number of populations. d. All of these. e. None of these.
Answer:
d) All of the above
Step-by-step explanation:
A one way analysis of variance (ANOVA) test, is used to test whether there's a significant difference in the mean of 2 or more population or datasets (minimum of 3 in most cases).
In a one way ANOVA the critical value of the test will be a value obtained from the F-distribution.
In a one way ANOVA, if the null hypothesis is rejected, it may still be possible that two or more of the population means are equal.
This one way test is an omnibus test, it only let us know 2 or more group means are statistically different without being specific. Since we mah have 3 or more groups, using post hoc analysis to check, it may still be possible it may still be possible that two or more of the population means are equal.
The degrees of freedom associated with the sum of squares for treatments is equal to one less than the number of populations.
Let's say we are comparing the means of k population. The degree of freedom would be = k - 1
The correct option here is (d).
All of the above
The correct answer is all of the statements are true in a one-way ANOVA: the test uses the F-distribution, rejecting the null can mean two or more population means are equal, and degrees of freedom for treatment sum of squares is the number of groups minus one.
Explanation:The correct answer to which statement is true in a one-way ANOVA is d. All of these.
The critical value of the test comes from the F-distribution.If the null hypothesis is rejected, it is still possible that two or more of the population means equal, as rejecting the null suggests at least two means are different, not necessarily all.The degrees of freedom associated with the sum of squares for treatments equals one less than the number of populations (dfbetween = number of groups - 1).One-way ANOVA is used to determine if there are any statistically significant differences between the means of three or more independent (unrelated) groups. The F statistic in ANOVA is always right-tailed because larger F values fall in the right tail of the F-distribution curve, leading to the rejection of the null hypothesis.
A pediatrician wants to determine the relation that may exist between a child's height and head circumference. She randomly selects 5 children and measures their height and head circumference. The data are summarized below. Find the residuals from the regression and verify that the residuals are approximately normally distributed. Height (inches), x 26.75 25.5 26.5 27 25 Head Circumference (inches), y 17.3 17.1 17.3 17.5 16.9
Answer:
[tex]y=0.259 x +10.447[/tex]
Now we can find the residulls like this:
[tex] e_1 = 17.3 - 17.375 = -0.075[/tex]
[tex] e_2 = 17.1 - 17.052 = 0.049[/tex]
[tex] e_3 = 17.3 - 17.311 = -0.011[/tex]
[tex] e_4 = 17.5 - 17.440 = 0.06[/tex]
[tex] e_5 = 16.9 - 16.922 = -0.022[/tex]
So then we can see that the residuals are not with an specified pattern (alternating sign) so then we can conclude that are distributed normally
Step-by-step explanation:
We have the following data given:
Height (inches), x 26.75 25.5 26.5 27 25
Head Circumference (inches), y 17.3 17.1 17.3 17.5 16.9
We need to find a linear model [tex] y = mx +b[/tex]
For this case we need to calculate the slope with the following formula:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i =130.75[/tex]
[tex]\sum_{i=1}^n y_i =86.1[/tex]
[tex]\sum_{i=1}^n x^2_i =3422.06[/tex]
[tex]\sum_{i=1}^n y^2_i = 1482.85[/tex]
[tex]\sum_{i=1}^n x_i y_i =2252.28[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=3422.06-\frac{130.75^2}{5}=2.95[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=2252.28-\frac{130.75*86.1}{5}=0.765[/tex]
And the slope would be:
[tex]m=\frac{0.765}{2.95}=0.259[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{130.75}{5}=26.15[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{86.1}{5}=17.22[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=17.22-(0.259*26.15)=10.447[/tex]
So the line would be given by:
[tex]y=0.259 x +10.447[/tex]
Now we can find the residulls like this:
[tex] e_1 = 17.3 - 17.375 = -0.075[/tex]
[tex] e_2 = 17.1 - 17.052 = 0.049[/tex]
[tex] e_3 = 17.3 - 17.311 = -0.011[/tex]
[tex] e_4 = 17.5 - 17.440 = 0.06[/tex]
[tex] e_5 = 16.9 - 16.922 = -0.022[/tex]
So then we can see that the residuals are not with an specified pattern (alternating sign) so then we can conclude that are distributed normally
Which formula is used to calculate the standard deviation of sample data?
cok
n-1
100. ()*(3*3)*==(x-)
0 /6 -> * (37)*(
n-1
Answer:
[tex]s=\sqrt{\frac{\sum (x_{i} -\mu)^{2} }{N-1} }[/tex]
Step-by-step explanation:
In statistics, the standard deviation is a measure about the amount of variation of a dataset.
The variation is measured through comparison between each data and the mean of the dataset. This way, we could get a numerical information about how far are those values form the mean (which represents the central value).
The formula to find the standard deviation of a sample is
[tex]s=\sqrt{\frac{\sum (x_{i} -\mu)^{2} }{N-1} }[/tex]
Where [tex]\mu[/tex] is the sample mean and [tex]N[/tex] is the total number of values there are.
In the formula you can notice the difference between each value ([tex]x_{i}[/tex]) and the mean ([tex]\mu[/tex]), That's why the standard deviation is commonly use to measure variation.
Therefore, the answer is
[tex]s=\sqrt{\frac{\sum (x_{i} -\mu)^{2} }{N-1} }[/tex]
If the height of the parallelogram shown is decreased by 1 inch and the base is decreased by 2 inches, what is the area of the new parallelogram?
a. 108in2
b. 104in2
c. 78in2
d. 84 in2
Answer:
B
Step-by-step explanation:
you multiply the numbers and remember the little square is 90
The area of new parallelogram is 78in2
The original parallelogram has a base of 18 inches and a height of 10 inches. Therefore, its area is 18 x10 = 180 square inches.If the height is decreased by 1 inch and the base is decreased by 2 inches, the new base will be 18 - 2 = 16 inches and the new height will be 10 - 1 = 9 inches. So, the area of the new parallelogram will be 16 x 9 = 144 square inches.Therefore, the answer is c. 78in2.
Here's a breakdown of the reasoning for each option:a. 108in2: This is incorrect because it's smaller than the area of the original parallelogram, even though both the base and height are decreased.b. 104in2:
This is also incorrect because it's still larger than the area of the new parallelogram.c. 78in2:
This is the correct answer, as calculated above.d. 84 in2: This is incorrect because it's closer to the area of the original parallelogram than the new one.
Reginald read his novel three nights in a row. Each night, he read for
3/4 of an hour.
How many hours did Reginald read his novel altogether?
9 hours
2 1/2 hours
2 1/4 hours
4 hours
Answer:
2 1/4 hours
Step-by-step explanation:
Each night, he read for 3/4 hours = 3*60/4 = 45 minutes.
He read for 3 days.
So in total, he read for:
3*45 = 135 minutes.
135 minutes is 2 hours and 15 minutes. 15 minutes is 1/4 of an hour.
So the correct answer is:
2 1/4 hours
Given the hyperbola y = 1/x, find the area under the curve between x = 5 and x = 33 to 3 sig. dig. namely: integral subscript 5 superscript 33 1 over x d x space equals . State the definite integral and evaluate it:Given the hyperbola y = 1/x, find the area under the curve between x = 5 and x = 33 to 3 sig. dig. namely: integral subscript 5 superscript 33 1 over x d x space equals . State the definite integral and evaluate it:
Answer:
[tex]\displaystyle A = \int\limits^{33}_{5} {\frac{1}{x}} \, dx[/tex]
[tex]\displaystyle A = \ln \frac{33}{5}[/tex]
General Formulas and Concepts:
Algebra II
Logarithmic PropertiesCalculus
Integration
IntegralsIntegration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \frac{1}{x}[/tex]
Bounds: [5, 33]
Step 2: Find Area
Substitute in variables [Area of a Region Formula]: [tex]\displaystyle A = \int\limits^{33}_{5} {\frac{1}{x}} \, dx[/tex][Integral] Integrate [Logarithmic Integration]: [tex]\displaystyle A = \ln |x| \bigg| \limits^{33}_5[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle A = \ln |33| - \ln |5|[/tex]Condense: [tex]\displaystyle A = \ln \frac{33}{5}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
A roof on a castle tower is shaped like a cone with a diameter of 12 feet and has a slant height of 13 feet one bundle of Shingles covers 32 ft.² how many bundles should you buy to cover the roof
Answer:
8
Step-by-step explanation:
The lateral area of a cone is ...
LA = (π/2)ds
where d is the diameter, and s is the slant height.
The area of this tower roof is about ...
LA = (π/2)(12 ft)(13 ft) = 78π ft² ≈ 245 ft²
About 245/32 = 7.7 bundles of shingles will be required for coverage.
You should buy 8 bundles of shingles to cover the roof.
will the product be greater or less then each factor? 56.9×2.01
A marketing research company needs to estimate which of two medical plans its employees prefer. A random sample of n employees produced the 95% confidence interval (0.366 comma 0.506 )for the proportion of employees who prefer plan A. Identify the point estimate for estimating the true proportion of employees who prefer that plan.
Answer:
The point estimate for estimating the true proportion of employees who prefer that plan is 0.436
Step-by-step explanation:
A confidence interval has two bounds, a lower bound and an upper bound.
A confidence interval is symmetric, which means that the point estimate used is the mid point between these two bounds, that is, the mean of the two bounds.
In this problem, we have that:
Lower bound: 0.366
Upper bound: 0.506
Point estimate:
(0.366 + 0.506)/2 = 0.436
The point estimate for estimating the true proportion of employees who prefer that plan is 0.436
Answer:
[tex]\hat p = \frac{0.366+0.506}{2}= 0.436[/tex]
And the point of estimate for the proportion of employees who prefer plan is on this case 0.436 or 43.6%.
Step-by-step explanation:
We define the parameter of interest as the proportion of employees who prefer plan p and we want to estimate this true parameter
The confidence interval for the this proportion is given by the following formula:
[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
After calculate the 95% confidence interval we got (0.366, 0.506)
We can obtain the best estimate for the proportion of employees who prefer plan like this:
[tex]\hat p =\frac{Upper +Lower}{2}[/tex]
Where Upper and Lower represent the limits for the confidence interval and replacing we got:
[tex]\hat p = \frac{0.366+0.506}{2}= 0.436[/tex]
And the point of estimate for the proportion of employees who prefer plan is on this case 0.436 or 43.6%.
The margin of error can be estimated using the fact that this confidence interval is symmetrical and we got:
[tex]ME=\frac{Upper-Lower}{2}= \frac{0.506-0.366}{2}=0.07[/tex]
Compensation professionals in XYZ Company use regression analysis to determine the pay rates of its marketing professionals. There are 4 different marketing job titles in XYZ Company. Compensation professionals use job evaluation points assigned to each marketing job title and a salary survey data. In other words, they regress job evaluation points on the salary data. What does it mean when the R2 value of this regression turns out to be 0.85
Answer: This means that the salaries of their marketing professionals are not closely related to their job titles. In further explanation, this shows that a professional with a higher job title, may be paid a lower salary when compared to a professional with a lower job title.
A 0.85 R-Squared shows that the points are far from the trend lines. From this, we can assume that the marketing professionals are paid base on commission on sales, and not base on job position.
Step-by-step explanation: R-Squared is a measure used in statistics, to represent how much proportion of the dependent variables that is explained by the independent variables. A high value of R^2 shows a very low correlation between the dependent and independent variables, while a low value of R^2 shows that the dependent and independent variables are closely related. The R-Squared value are a measure of percentage value.
For the data set 2.5, 6.5, 9, 19, 20, 2.5 what is the mean absolute deviation
Answer:
9
Step-by-step explanation:
it's 9 because you always look in the middle for the mean