Amount obtained in Compound interest is given by :
[tex]\bigstar\;\;\boxed{\mathsf{Amount = Principal\bigg(1 + \dfrac{Rate\;of \;interest}{100}\bigg)^{Conversion\;periods}}}[/tex]
Note : Conversion period is the time from one interest period to the next interest period. If the interest is compounded annually then there is one conversion period in an year. If the interest is compounded semi-annually then there are two conversion periods in an year. if the interest is compounded quarterly then there are four conversion periods in an year.
Problem :
Given : $500 is invested for one year at 4% annual interest
[tex]\implies\boxed{\begin{minipage}{4 cm}\bigstar\;\;\textsf{Principal = 500}\\\\\bigstar\;\;\textsf{Time period = 1 year}\\\\\bigstar\;\;\textsf{Rate of interest = 4\%}\end{minipage}}[/tex]
As the question mentions the term ''compounded quarterly'', there are 4 conversion periods in a year.
If the interest is compounded quarterly, then the rate of interest per conversion period (quarter) will be :
[tex]\implies \mathsf{\left(\dfrac{1}{4} \times 4\%\right) = 1\%}[/tex]
Substituting all the values in the Amount formula of C.I, We get :
[tex]\mathsf{\implies Amount = 500\bigg(1 + \dfrac{1}{100}\bigg)^4}[/tex]
[tex]\mathsf{\implies Amount = 500\left(1 + 0.01\right)^4}[/tex]
[tex]\mathsf{\implies Amount = 500\left(1.01\right)^4}[/tex]
[tex]\mathsf{\implies Amount = 520.30}[/tex]
We know that : Interest = Amount - Principal
[tex]:\implies[/tex] Interest = 520.30 - 500
[tex]:\implies[/tex] Interest = $20.30
If $500 is invested in a savings account with a 4% annual interest rate compounded quarterly for one year, it would earn $20.04 in interest.
Explanation:To calculate the interest earned on a savings account, we can use the formula for compound interest: A = P(1 + r/n)^(nt), where A is the final amount, P is the principal amount (initial investment), r is the annual interest rate, n is the number of times interest is compounded per year, and t is the number of years. In this case, the principal amount is $500, the annual interest rate is 4% (or 0.04 as a decimal), the interest is compounded quarterly (so n = 4), and the investment period is one year (so t = 1).
Plugging the values into the formula, we get:
A = 500(1 + 0.04/4)^(4×1)
Simplifying the equation, we calculate that the final amount after one year is $520.04. To find the amount of interest earned, we subtract the initial investment ($500) from the final amount ($520.04):
Interest = $520.04 - $500 = $20.04.
Therefore, $500 would earn $20.04 in interest if invested for one year in a savings account with a 4% annual interest rate compounded quarterly.
Learn more about Calculating interest on a savings account here:https://brainly.com/question/35883250
#SPJ3
Alana has 12.5 cups of flour with which she is baking four loaves of raisin bread and one large pretzel. The pretzel requires 2.5 cups of flour to make. How much flour is in each loaf of raisin bread? Explain the steps to follow to get the answer.
Answer:2.5 cups of flour in each loaf of raisin bread
Step-by-step explanation:
The pretzel uses 2.5 cups of flour so the remaining flour is 10(12.5-2.5)
Since there are four loaves and 10 cups of flour left
Therefore one loaf has 10/4 or 2.5 cups of flour
Answer:
Four times the amount of flour for the raisin bread plus 2.5 cups equals 12.5 cups total. The equation is 4x + 2.5 = 12.5. First, I subtract 2.5 from both sides, and then I divide both sides by 4. Each loaf contains 2.5 cups of flour.
--
Brianna Edwards
e d g e n u i t y things
Thanks in advance
Remember Vote Brainliest
Rachel works as a tutor for $15 an hour and as a waitress for $8 an hour. This month, she worked a combined total of 109 hours at her two jobs. Let t be the number of hours Rachel worked as a tutor this month. Write an expression for the combined total dollar amount she earned this month.
Answer:
$ (7t+872)
Step-by-step explanation:
Earning for 1 hour as a tutor= $15
Earnings for 1 hour as a waitress= $8
Total hours worked in the month combined jobs= 109 hrs
Number of hours worked as tutor for the month= t
Find the number of hours worked as waitress for the month= 109-t hours
Total amount earned that month = amount earned as a tutor+ amount earned as a waitress
Amount earned as a tutor= $15 × t = $15t
Amount earned as a waitress= $8× (109-t)= $ (872-8t)
Total amount earned combined= $ 15t + $ (872-8t)
=$ ( 15t-8t +872)
= $ (7t+872)
Final answer:
Rachel's total earnings from both jobs can be expressed as the sum of her hourly rates multiplied by the hours worked in each job, which gives the equation: Total Earnings = 15t + 8(109 - t), where t is the number of hours she worked as a tutor.
Explanation:
To write an expression for the combined total dollar amount Rachel earned this month through her two jobs, we can start by indicating that she earns $15 an hour for tutoring and $8 an hour as a waitress. Given that t represents the number of hours she worked as a tutor, we can calculate her earnings from tutoring as 15t. If the total number of hours worked is 109, then the remaining number of hours worked as a waitress would be 109 - t. Her earnings from working as a waitress would thus be 8(109 - t).
Adding these two amounts together gives us the expression for Rachel's total earnings:
Total Earnings = 15t + 8(109 - t)
6. Ashlee has already taken 1 page of notes on ber own, and she will take 3 pages during each hour of
class. After attending 2 hours of clans, how many total pages of notes will Ashlee have in her
notebook? Write and solve an equation to find the answer.
Answer:
7 pages
Step-by-step explanation:
this is because 2 times 3 equals 6 and plus one equals 7
Final answer:
Ashlee starts with 1 page of notes and will take 3 pages of notes for each hour of class she attends. After attending 2 hours of class, she will have a total of 7 pages of notes in her notebook.
Explanation:
The question involves solving a simple algebraic equation to find the total number of pages of notes Ashlee will have after attending 2 hours of class. Ashlee starts with 1 page of notes and takes 3 pages of notes for each hour of class. To find the total number of pages of notes, we can use the equation:
Total pages = Initial pages + (Pages per hour × Number of hours)
Substituting the given values into the equation:
Total pages = 1 + (3 × 2) = 1 + 6 = 7 pages
Therefore, Ashlee will have 7 pages of notes in her notebook after attending 2 hours of class.
The graph of g(x) = (x + 1) is a transformation of the graph of f(x) = x. Which of the following describes the transformation?
Question 2 options:
a)
translation 1 unit up
b)
translation 1 unit left
c)
translation 1 unit right
d)
translation 1 unit down
Answer:
a) translation of 1 unit up
Step-by-step explanation:
85/18 divided by 17/18
Answer:
5
Step-by-step explanation:
85 * 18 / 18 * 17
18 cancels out.
85/17
= 5
Your answer for this question is 5
1.) When you divide 85/18 by 17/18, the first step you want to take is switch the reciprocal.
[tex]\frac{85}{18}[/tex]÷[tex]\frac{17}{18}[/tex]=
[tex]\frac{85}{18}[/tex]×[tex]\frac{18}{17}[/tex]
2.) When you switch the reciprocal, you then division sign is changed to times.
[tex]\frac{85}{18}[/tex]×[tex]\frac{18}{17}[/tex]
3.) Now you simply multiply
[tex]\frac{85}{18}[/tex]×[tex]\frac{18}{17}[/tex]=[tex]\frac{1530}{306}[/tex]
4.) Last step, you divide
[tex]\frac{1530}{306}[/tex] = 5
Hope This Helps.
Please Mark as Brainliest!!!
Which algebraic rule describes the 180° counter-clockwise rotation about the origin?
A) (x, y) → (−x, y)
B) (x, y) → (x, −y)
C) (x, y) → (−x, −y)
D) (x, y) → (−y, −x)
Answer:
C
Step-by-step explanation:
Under a counterclockwise rotation about the origin of 180°
a point (x, y ) → (- x, - y) → C
Answer: C) (x, y) → (−x, −y)
Step-by-step explanation:
When we rotate a figure 180°clockwise or counter-clockwise , the magnitude of x and y coordinates remains same but their signs got changed.
For example : After a rotation of 180°clockwise or counter-clockwise (3,4) becomes (-3,-4).
Algebraically , we can say
Ordered pair (x , y ) will become (-x, -y) after a rotation of 180°clockwise or counter-clockwise.
Thus , the algebraic rule describes the 180° counter-clockwise rotation about the origin will be :-
C) (x, y) → (−x, −y)
Find the discriminant if 3x^2-10x=-2
[tex]3x^2-10x=-2\\3x^2-10x+2=0\\\\\Delta=(-10)^2-4\cdot3\cdot2=100-24=76[/tex]
Answer:
The discriminate is 76
Step-by-step explanation:
* Lets explain what is the discriminant
- In the quadratic equation ax² + bx + c = 0, the roots of the
equation has three cases:
1- Two different real roots
2- One real root or two equal real roots
3- No real roots means imaginary roots
- All of these cases depend on the discriminate value (D)
- The discriminate D = b² – 4ac determined from the coefficients of
the equation ax² + bx + c = 0.
# If the value of D positive means greater than 0
∴ There are two different real roots
# If the value of D = 0
∴ There are two equal real roots means one real root
# If the value of D is negative means smaller than 0
∴ There is real roots but the roots will be imaginary roots
∴ We use the discriminant to describe the roots
* Lets solve the problem
∵ 3x² - 10x = -2
- Put it in the form of ax² + bx + c = 0
- Add 2 for both sides
∴ 3x² - 10x + 2 = 0
- Compare between this equation and the form up to find a , b , c
∵ 3x² - 10x + 2 = 0 and ax² + bx + c = 0
∴ a = 3 , b = -10 , c = 2
- Lets find the discriminate D
∵ D = b² - 4ac
∵ a = 3 , b = -10 , c = 2
∴ D = (-10)² - 4(3)(2)
∴ D = 100 - 24 = 76
* The discriminate is 76
Factor out the greatest common factor from this expression using the distributive property.
90 + 60
A) 30(3+2)
B) 10(9+6)
C) 15(6+4)
D) 6(15+10)
Answer:
30(3+2)
Step-by-step explanation:
90=3(30)=3(3)(10)=3(3)(2)(5)
60=3(20)=3(5)(4)=3(2)(2)(5)
The factors that 90 and 60 have in common are a pair of 3,2, and 5's.
So the biggest factor we can factor out is 3*2*5 which is 30
So 30(3+2)
Leftovers from the prime factorizations above stayed in the ( )
Calvin is 150 cm tall, which is 75% of Darryl's height. How many centimeters tall is Darryl?
Answer:
200
Step-by-step explanation:
150=75% * X
X= 150/0.75
X-200
Darry is 200 centimeters tall
What are examples of things you can measure in centimeters?the meter has 100 centimeters.10 millimeters make 1 centimeter.The centimeter could be written as cm.While calculating the surface area of the object, the unit of measurement becomes cm 2.What are examples of objects we can measure in centimeters?These are the common measurements:
MillimetersCentimetersMetersKilometersGiven,
Calvin = 150 centimeters and 75% of Darryl's height.
we have to find x
150=75% * X
X= 150/0.75
X-200
Learn more about Centimeters and perimeter here https://brainly.com/question/19098836
#SPJ2
Leticia spends $18.45 on a shirt. She spends a maximum of $3.00 more than Humberto spends. If h represents the amount
Humberto spends, which symbol can be used to complete the inequality below to represent this situation?
18.45_3+h
Answer: C
Step-by-step explanation:
Final answer:
The correct symbol to complete the inequality 18.45_3+h is ≤, representing that Leticia spends at most $3 more than Humberto, so her spending of $18.45 is less than or equal to Humberto's spending plus $3.
Explanation:
Leticia spends a certain amount on a shirt, and we have an inequality to show that she spends at most $3 more than Humberto. The inequality to represent this situation, where h represents the amount Humberto spends, is 18.45 ≤ 3 + h. This means that Leticia's spending of $18.45 is less than or equal to Humberto's spending plus an additional $3. The symbol ≤ (less than or equal to) completes the inequality because it indicates that the amount Leticia spends is not greater than the cost of the shirt plus an extra $3. In other words, Humberto's spending could be exactly $3 less than Leticia's, or even less, but not more.
Use the elimination method to solve the system of equations. Choose the
correct ordered pair.
5x+3y = 13
-5x-12y = 23
Answer:
x = 5, y = -4 → (5, -4)Step-by-step explanation:
[tex]\underline{+\left\{\begin{array}{ccc}5x+3y=13\\-5x-12y=23\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad-9y=36\qquad\text{divide both sides by (-9)}\\.\qquad y=-4\\\\\text{put the value of y to the first equation:}\\\\5x+3(-4)=13\\5x-12=13\qquad\text{add 12 to both sides}\\5x=25\qquad\text{divide both sides by 5}\\x=5[/tex]
Find the area of the kite
Step-by-step answer:
Area of a kite is half of the product of the diagonals.
The length of diagonal in the x-direction is 4+5 = 9
The length of diagonal in the y-direction is 4+4 = 8
Therefore
Area of kite = 8*9/2 = 36 units.
ANSWER
The correct answer is A.
EXPLANATION
If you know the diagonals of a kite you can easily find the area.
The area of a kite is half the product of the diagonals.
From the graph, the from -5 to 4.
Using the number line approach. The longer diagonal is
[tex] |4 - - 5| = |4 + 5| = |9| = 9 \: \: units[/tex]
Similarly the shorter diagonal is from -4 to 4
[tex] |4 - - 4| = |4 + 4| = |8| = 8 \: \: units[/tex]
The area of the kite is:
[tex]Area= \frac{1}{2} \times 8 \times 9[/tex]
[tex]Area=4 \times 9[/tex]
This implies that
[tex]Area=36 \: square \: \: units[/tex]
The first choice is correct.
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
Polygon ABCD, shown in the figure, is dilated by a scale factor of 8 with the origin as the center of dilation, resulting in the image A′B′C′D′.
The slope of is
.
Answer:
The answer is 2
Step-by-step explanation:
Answer: The slope of C'D' = 2
Step-by-step explanation:
From the given picture, we can that the coordinates of point C and D are (5,4) and (4,2).
After dilation with scale factor of 8 with the origin as the center of dilation , the coordinates of C' and D' will be :-
[tex]C'=(8\times5,8\times4)=(40,32)[/tex]
[tex]D'=(8\times4,8\times2)=(32,16)[/tex]
Now, the slope of line segment C'D' will be
[tex]\text{Slope}=\dfrac{\text{Change in y-coordinate}}{\text{Changein x-coordinate}}\\\\\Rightarrow\text{Slope}=\dfrac{16-32}{32-40}\\\\\Rightarrow\text{Slope}=\dfrac{-16}{-8}\\\\\Rightarrow\text{Slope}=2[/tex]
24. Mr. Tucker earns $250 per week working in an appliance store. In add
of his sales. Last week he sold $2,800 worth of app
in an appliance store. In addition, he earns 2% commission on all
le sold $2,800 worth of appliances. What was Mr. Tucker's total income for the week
Answer:$306
Step-by-step explanation:
firstly Mr. Tucker 250 weekly
sold 2800 appliances and earn 2%, so find the 2% of 2800 which is
x/2800 X 2/100 = 56
this mean he earn $56 dollars on the sales . add his weekly earn which is $250 to the $56 which will be $250 + 56 = $306 for the week
Answer:
306$
Step-by-step explanation:
2,800*0.02=56
250+56=306
Find xif f(x) = 2x + 7 and f(x) = -1.
Answer: -4
Step-by-step explanation:
Solve 2x+7=-1
2x. =-8
x. =-4
Answer:
-4
Step-by-step explanation:
To find the value you have to substitute x for -1. because f(x) = -1.
-2x + 7 = -1
-7= -7
-2x =-8
÷-2
x=-4
Hope it helps!
Solve for x. 9x + 2 = 5x + 22
Answer:
Here is your answer in the picture..
Answer:
x = 5
Step-by-step explanation:
Given
9x + 2 = 5x + 22 ( subtract 5x from both sides )
4x + 2 = 22 ( subtract 2 from both sides )
4x = 20 ( divide both sides by 4 )
x = 5
If 3x +b = c, what is the value of x in terms of c and b?
Answer:
x=(c-b)/3
Step-by-step explanation:
we have
3x+b=c
Solve for x
That means -----> Clear variable x
Subtract b both sides
3x+b-b=c-b
3x=c-b
Divide by 3 both sides
x=(c-b)/3
The recursive rule for a sequence is an=an-1+7, where a1=15.What is the explict rule for this sequence
well, the recursive rule of aₙ = aₙ₊₁ + 7, where a₁ = 15, is simply saying that
we start of at 15, and the next term is obtained by simply adding 7, and so on.
well, that's the recursive rule.
so then let's use that common difference and first term for the explicit rule.
[tex]\bf n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} a_n=n^{th}\ term\\ n=\textit{term position}\\ a_1=\textit{first term}\\ d=\textit{common difference}\\ \cline{1-1} a_1=15\\ d=7 \end{cases} \\\\\\ a_n=15+(n-1)7\implies a_n=15+7n-7\implies a_n=7n+8[/tex]
15p!!!!What is the percent of change from 85 to 64? round to the nearest percent
Subtract the new amount from the original amount:
64 - 85 = -21
Now divide that by the original amount:
-21 / 85 = -0.247
Multiply that by 100 for the percentage:
-0.247 x 100 = -24.7%
Rounded to the nearest percent is -25%
0.2x + 0.8 = 9.6 find x
Please and thank you.
Answer:
x=44
Step-by-step explanation:
Making the equation in terms of x:
0.2x + 0.8 = 9.6
-0.8 -0.8
0.2x=8.8
*5 *5
x=44
Answer:
x=44
Step-by-step explanation:
Multiply by 10 from both sides of equation.
0.2x*10+0.8*10=9.6*10
Simplify.
2x+8=96
Subtract by 8 from both sides of equation.
2x+8-8=96-8
Simplify.
96-8=88
2x=88
Divide by 2 from both sides of equation.
2x/2=88/2
Simplify, to find the answer.
88/2=44
x=44 is the correct answer.
I hope this helps you, and have a wonderful day!
Solve the system of equations by finding the reduced row-echelon form of the augmented matrix for the system of equations.
4x - 3y + z = 22
4x + y + 5z = 30
3x-y-z = 4
The augmented matrix for this system is
[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\4&1&5&30\\3&-1&-1&4\end{array}\right][/tex]
Subtract row 1 from row 2, and subtract 3(row 1) from 4(row 3):
[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&4&4&8\\0&5&-7&-50\end{array}\right][/tex]
Multiply row 2 by 1/4:
[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&1&1&2\\0&5&-7&-50\end{array}\right][/tex]
Subtract 5(row 2) from row 3:
[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&1&1&2\\0&0&-12&-60\end{array}\right][/tex]
Multiply row 3 by -1/12:
[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&1&1&2\\0&0&1&5\end{array}\right][/tex]
While this isn't exactly RREF, you can already solve the system quite easily:
[tex]\boxed{z=5}[/tex]
[tex]y+z=2\implies\boxed{y=-3}[/tex]
[tex]4x-3y+z=22\implies4x=8\implies\boxed{x=2}[/tex]
We can confirm this solution by continuing with the row reduction. Subtract row 3 from row 2:
[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&1&0&-3\\0&0&1&5\end{array}\right][/tex]
Subtract -3(row 2) and row 3 from row 1:
[tex]\left[\begin{array}{ccc|c}4&0&0&8\\0&1&0&-3\\0&0&1&5\end{array}\right][/tex]
Finally, multiply row 1 by 1/4:
[tex]\left[\begin{array}{ccc|c}1&0&0&2\\0&1&0&-3\\0&0&1&5\end{array}\right][/tex]
and we end up with [tex]\boxed{(x,y,z)=(2,-3,5)}[/tex], as before.
Final answer:
To solve for x, y, and z, the given system of equations is represented as an augmented matrix, then reduced to its reduced row-echelon form through row operations, from which the solutions can be directly obtained.
Explanation:
To solve the system of equations by finding the reduced row-echelon form of the augmented matrix, we first write the system as an augmented matrix:
[ 4 -3 1 | 22 ]
[ 4 1 5 | 30 ]
[ 3 -1 -1 | 4 ]
Next, we perform row operations to convert the matrix to its reduced row-echelon form. Once we have the reduced form, we can directly read off the solutions for the variables x, y, and z.
These row operations usually involve scaling rows, adding and subtracting rows, and swapping rows to systematically bring the matrix into the desired form. The final reduced row-echelon form should look like:
[ 1 0 0 | x ]
[ 0 1 0 | y ]
[ 0 0 1 | z ]
Where x, y, and z are the solutions to the original equations. At this stage, each row corresponds to an equation of the form x=..., y=..., z=..., making it straightforward to determine the values of the variables.
The solutions to the inequality y<2x - 4 are shaded on the
graph. Which point is a solution?
(-1,1)
(1,-1)
(3,2)
(2,3)
Answer:
None
Step-by-step explanation:
y<2x - 4
Substitute points to determine if they are a solution
(-1,1)
1<2(-1) - 4
1 < -2-4
1 < -6 False not a solution
(1,-1)
-1<2(1) - 4
-1 < 2-4
-1 < -2 False not a solution
(3,2)
2<2(3) - 4
2 < 6-4
2 < 2 False not a solution
(2,3)
3<2(2) - 4
3 < 4-4
3 < 0 False not a solution
Which statement accurately describes how to perform a 90° clockwise rotation of point A (1,4) around the origin?
I was expecting a choice that said A(1,4) is in the first quadrant so 90 degrees clockwise is fourth quadrant. For perpendicularity we reverse the coordinates, negating one of them. For the fourth quadrant, it must be the y coordinate that's negative. We end up at A'(4,-1).
The answer is the second choice: create a circle with the center at the origin. The image of A' will be on the circle, 90 degrees clockwise from A.
What is the measure of JL (the minor arc)?
A.82
B.164
C.196
D.41
Answer:
B. 164°
Step-by-step explanation:
arc JL = 2 (<JKL)
arc JL = 2(82)
arc JL = 164°
The measure of JL is 164°.
The correct option is (B)
What is minor arc?An arc whose measure is less than 180 degrees is called a minor arc.
Given: angle JKL= 82°
We know by the theorem that
"When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference."
Then,
JL= 2 (JKL)
JL= 2(82)
JL= 164°.
Hence, the measure of JL is 164°.
Learn more about minor arc here:
https://brainly.com/question/1831869
#SPJ2
Find the measure of angle B in the following triangle
Answer:
27.6 degrees
Step-by-step explanation:
Use Cosine rule on Acute triangle
b² = a² + c² - 2ac Cos B
where b = 10, a = 14, c = 20
10² = 14² + 20² - 2(14)(20) Cos B
-496 = -560 Cos B
Cos B = (-496) / (-560)
B = [tex]Cos^{-1}[/tex] (-496) / (-560) = 0.483 radians = 27.6 degrees
Which angles are corresponding angles?
Check all that apply.
Answer: Options 'A', 'C' and 'F' are correct.
Step-by-step explanation:
Since we have given that
Corresponding angles are those angles which takes the same corresponding position at intersection when a transversal cut the two parallel lines.
so, According to this , we get that
∠1 and ∠5
∠2 and ∠6
∠3 and ∠7
∠4 and ∠8
so, Options 'A', 'C' and 'F' are correct.
Which graph corresponds to the function f(x) = x2 + 4x – 1?
Answer:
See below
Step-by-step explanation:
I don't know if this helps you, but I wanted to get you an answer as quickly as I could in case you needed it really soon. This is what a graph of this function would look like. Choose the answer that looks like this one.
I really hope this helps!
The graph for the given function is plotted. The graph of a function is represented by y = f(x).
How to graph a function?Consider the given function as y = f(x)Consider some values for x and find y-valuesPair these x and y values as coordinates and plot them in the graphConnect all the points forming a curve (since it is a quadratic function)Graphing the given function:The given function is f(x) = x² + 4x - 1
Consider x values as {-5, -4, -3, -2, -1, 0, 1, 2}
Substituting these values in the function for finding y-values
When x = -5
y = f(-5) = (-5)² + 4(-5) -1 = 4
∴ (-5, 4)
When x = -4
y = f(-4) = (-4)² + 4(-4) -1 = -1
∴ (-4, -1)
When x = -3
y = f(-3) = (-3)² + 4(-3) -1 = -4
∴ (-3, -4)
When x = -2
y = f(-2) = (-2)² + 4(-2) -1 = -5
∴ (-2, -5)
When x = -1
y = f(-1) = (-1)² + 4(-1) -1 = -4
∴ (-1, -4)
When x = 0
y = f(0) = 0 + 4(0) -1 = -1
∴ (0, -1)
When x = 1
y = f(1) = 1² + 4(1) -1 = 4
∴ (1, 4)
When x = 2
y = f(2) = 2² +4(2) -1 = 11
∴ (2, 11)
Plotting these points in the graph and connecting them gives a curve (parabola).
Checking for the vertex:
f(x) = a(x - h)² + k
⇒ x² + 4x - 1
⇒ (x - (-2))² -5
So, the vertex is (h, k) = (-2, -5).
Learn more about the graph of a function here:
https://brainly.com/question/4025726
#SPJ2
Tangent line i think please help me find x
Answer:
x= 6.5 cm
Step-by-step explanation:
When a tangent line touches the circle, it forms a right angle triangle at that point
Apply the Pythagorean relationship in this case
Given that the height is = 20.2 cm = b
The hypotenuse is = c= x+14.7 cm
General formulae is;
a² +b² =c²
x² + 20.2² =( x+ 14.7)²
x² + 408.04= x² +14.7x+14.7x+216.09
x² + 408.04= x² + 29.4 x +216.09.........................collect like terms
x²-x² + 408.04-216.09= 29.4x
191.95= 29.4x-------------------------------divide by 29.4 t0 get x
191.95/29.4 =x
x=6.5 cm
Use the four-step process to find f'(x) and then find f'(1), f'(2), and f'(3).
f(x) = -x^2+6x-5
f'(x) =
Step 1: evaluate f(x+h) and f(x)
We have
[tex]f(x+h) = -(x+h)^2+6(x+h)-5 = -(x^2+2xh+h^2)+6x+6h-5[/tex]
[tex]= -x^2-2xh-h^2+6x+6h-5[/tex]
And, of course,
[tex]f(x)=-x^2+6x-5[/tex]
Step 2: evaluate f(x+h)-f(x)
[tex]f(x+h)-f(x)=-x^2-2xh-h^2+6x+6h-5-(-x^2+6x-5)=-2xh-h^2+6h[/tex]
Step 3: evaluate (f(x+h)-f(x))/h
[tex]\dfrac{f(x+h)-f(x)}{h}=-2x-h+6[/tex]
Step 4: evaluate the limit of step 3 as h->0
[tex]f'(x) = \displaystyle \lim_{h\to 0} \dfrac{f(x+h)-f(x)}{h}=-2x+6[/tex]
So, we have
[tex]f'(1) = -2\cdot 1+6 = 4,\quad f'(2) = -2\cdot 2+6 = 2,\quad f'(3) = -2\cdot 3+6 = 0[/tex]
Write the inequality in slope-intercept form. 5x - 2y < -8 show work.
[tex]\bf 5x-2y<-8\implies -2y<-5x-8\implies \stackrel{\textit{multiplication by a negative}}{y~~\stackrel{\downarrow }{>}~~\cfrac{-5x-8}{-2}} \\\\\\ y>\cfrac{5x+8}{2}\implies y>\cfrac{5}{2}x+4\impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]