Final answer:
A rubbed balloon sticks to a wooden wall due to the phenomenon of polarization, which is caused by the attraction between the charges on the balloon and the induced charges on the wall.
Explanation:
When a balloon is rubbed against a sweater, it becomes charged due to the transfer of electrons, and the attraction between these charges and the opposite charges in a nearby wall is called polarization. Polarization occurs because the balloon's negative charge causes a redistribution of charges within the wall, drawing positive charges closer and repelling negative charges. The balloon does not transfer its charge to the wall (which would be charge transfer), nor does it demonstrate charge conservation (which is the principle that charge cannot be created or destroyed) or charge potential (which refers to the potential energy a charge has due to its position in an electric field).
Ethan made a diagram to compare examples of the first and second laws of thermodynamics. What belongs in the areas marked X and Y?
First law of thermodynamics:
It states that "Energy neither be created nor it can be destroyed". simply it converts one form of energy into another form. It is also known as "law of conservation of energy"Limitations of First law
It doesn't provide a clear idea about the direction of transfer of heat.It doesn't provide the information that how much heat energy converted inti work.Its not given any practical applications.II law of thermodynamics:
It states that "the total entropy of the system can never decrease over time"
It is strongly proved by two laws, they are
1. Kelvin-plank statement:
He stated that "any engine does not give 100% efficiency". It violates the Perpetual motion of machine II kind(PMM-II).
2. Classius statement:
It states that "Heat always flows from high temperature body to low temperature body, without aid of external energy".
Also it stated that " Heat can also be transferred from low temperature body to high temperature body, by the aid of an external energy".
Applications of II law:
Refrigeration &Air conditioning, Heat transfer, I.C. engines, etc.
Answer:
The answer is D.
Explanation:
I just took the quiz.
What happens to your weight on Earth when your mass increases? It stays constant. It also increases. It decreases.
When your mass increases your weight on earth also increases
2- it also increases
When a person's mass increases on Earth, their weight also increases since weight is the gravitational force acting on mass. Mass does not change with location, while weight can vary with gravity's strength. An astronaut's mass is constant, but their weight decreases on the Moon due to lower gravity.
The relationship between mass and weight is a fundamental concept in physics. When your mass on Earth increases, your weight also increases. This is because weight is the force of gravity acting on an object's mass. Since gravity on Earth is essentially constant, an increase in mass results in a directly proportional increase in weight.
It is essential to understand that while mass is a measure of the quantity of matter in an object and does not change with location, weight is the gravitational force exerted on that mass and can vary with the strength of the gravitational field. On Earth, the acceleration due to gravity is approximately 9.80 m/s².
An example to illustrate this is comparing your weight on Earth to that on the Moon. If an astronaut traveled from Earth to the Moon, their mass would remain the same but their weight would decrease because the Moon's gravitational acceleration is only about one-sixth that of Earth's (1.67 m/s² compared to 9.80 m/s²).
What do chefs change with many dishes they serve
Chefs may adjust their recipes to enhance the taste and presentation of dishes using various techniques and ingredients, drawing upon their knowledge of food science and nutrition to make each meal appealing to both the eye and palate.
Chefs often modify the dishes they serve to enhance the taste, texture, and presentation. They might use various techniques and ingredients, such as gels, chemicals, and other substances to modify liquids or to transform the food experience, as seen in molecular gastronomy. Expert chefs combine their knowledge of food science, nutrition, and diet to create meals that are as visually appealing as they are delicious. Additionally, chefs are known to make adjustments on the fly, such as adding a little salt to a soup after tasting or altering recipes to suit specific dietary needs or preferences. This adaptability and attention to detail are part of what makes a chef proficient in the culinary arts.
A car travled 190km in 2.5 hours. What is the average speed in km per hour?
The average speed would be 76 km/h. You get this by simply diving the distance by the time.
If a car traveled 190 kilometers in 2.5 hours then the average speed of the car in kilometers per hour would be
What is speed?The total distance covered by any object per unit of time is known as speed. It depends only on the magnitude of the moving object. The unit of speed is a meter/second. The generally considered unit for speed is a meter per second.
The mathematical expression for speed is given by
speed = total distance /Total time
As given in the problem If a car traveled 190 kilometers in 2.5 hours then we have to find the average speed of the car in kilometers per hour,
The total distance covered by the car = 190 kilometers
the total time taken by the car = 2.5 hours
the average speed of the car = 190/2.5 kilometers/ hour
the average speed of the car = 76 kilometers/ hour
Thus, the average speed of the car would be 76 kilometers/ hour.
Learn more about speed from here,
brainly.com/question/7359669
#SPJ2
What is the net force acting on a falling object when it reaches terminal velocity? a force equal to gravity 9.8 m/s2 two times the initial net force zero
Answer:
The net force is zero
Explanation:
When an object is falling, there are two forces acting on it:
- The force of gravity, which is equal to the weight of the object, which pushes the object downwards
- The air resistance, which acts against the motion of the object, so it pulls upward
While the magnitude of the force of gravity is constant, the magnitude of the air resistance increases as the velocity of the falling object increases: at some point of the motion, the air resistance becomes equal in magnitude to the force of gravity. At this point, the net force on the object becomes zero, and according to Newton's second law, the acceleration of the object becomes also zero:
[tex]F=ma[/tex]
But zero acceleration means that the velocity of the object is now constant: this is known as terminal velocity.
Relate the output of energy from a heat engine to the energy put into the heat engine considering the second law of thermodynamics.
You're answer would be greatly appreciated.
The output of a heat engine is always lower than its energy input due to the second law of thermodynamics, which posits an inevitable 'loss' in the conversion of heat to work. This is because systems move naturally towards a state of higher disorder or entropy and thus decrease the availability of energy for work. The relationship between heat, work, and energy elucidates this principle.
Explanation:The output of energy from a heat engine is fundamentally related to the energy supplied to it considering the second law of thermodynamics. This law is expressed in two forms, firstly, heat transfers naturally from a hot body to a cooler one but not the reverse. Secondly, it is not possible to completely convert heat energy into work in a cyclical process returning the system to its original state.
In heat engines, a cyclical process frequently returns the engine to its original state. These engines, as indicated by the second form of the second law of thermodynamics, cannot attain a perfect conversion of heat into work. This is due to the overarching principle of entropy, which means systems naturally go towards a state of higher disorder, decreasing the availability of energy to be converted into work.
The precise relation between heat, work, and internal energy is exemplified in the first law of thermodynamics. It affirms the conservation of energy by declaring that any changes in a system's internal energy (U) will be equal to the heat transferred to the system (Q) minus any work done by it (W), in the equation ΔU = Q - W. Therefore, the energy output from a heat engine is always less than the energy input because of energy lost to the environment, largely due to the inherent inefficiencies of the heat-to-work conversion process and entropy increase.
Learn more about the Second Law of Thermodynamics and Heat Engines here:https://brainly.com/question/32369812
#SPJ3
The output energy of a heat engine is less than the input energy due to the second law of thermodynamics. Efficiency is calculated as the work output divided by heat input, and is always less than 100% because some energy is lost as heat.
The output of energy from a heat engine is related to the energy put into it by the concept of efficiency, which is restricted by the second law of thermodynamics. This law, stated in terms of entropy, indicates that it is impossible to have a perfect conversion of heat into work; some energy will always be lost as heat to the surroundings. For example, if a heat engine performs 10.0 kJ of work with an 8.50 kJ heat transfer to the environment, the heat transferred into the engine (initial thermal energy input) is the sum of these two amounts, equaling 18.5 kJ. The efficiency (η) of the engine is calculated as the work done divided by the heat transferred into the engine, which in this case would be 10.0 kJ/18.5 kJ, resulting in an efficiency of approximately 54%.
define commercial unit of energy
The commercial unit of energy is given as kWh or kilo-watt-hour.
It is defined as the work done at a rate of 1000 Watt in a time of one hour.
there are other units of energy also like joules, calories but they are not big enough to express large quantity of energy. that is why we use kWh as the commercial unit since it is bigger compared to other energy units.
What is the acceleration of a bus that goes from rest to a speed of 50km/h in 10s?
a = (Vf - Vi) / t = (13.9 m/s - 0 m/s) / 10 s = 1.4 m/s^2
Answer:
Acceleration of the bus is 1.38 m/s^2
Explanation:
Given that,
Initial speed of the bus, u = 0 m/s (rest)
Final speed of the bus, v = 50 km/h
or v = 13.88 m/s
Time taken, t = 10 s
To find :
The magnitude of the acceleration of the car.
Solve :
Let a is the acceleration of the car. The rate of change of velocity is called the acceleration of the bus. Its formula is given by :
[tex]a=\dfrac{v-u}{t}[/tex]
[tex]a=\dfrac{(13.88-0)\ m/s}{10\ s}[/tex]
[tex]a=1.38\ m/s^2[/tex]
Therefore, the magnitude of the car's acceleration is 1.38 m/s^2.
a girl throws a marshmallow that lands in her friends mouth 92m away. The girl threw the marshmallow at an angle of 67 degrees. How hard was did she throw the marshmallow?
Answer:
The girl threw the marshmallow with a speed of 35.4 m/s.
Explanation:
Use the formula for the range of projectile motion:
[tex]R = \frac{v^2\cdot \sin2\theta}{g}[/tex]
with R the range or distance (92m), theta the elevation angle (67 degrees) and g the gravitational acceleration. The velocity can be determined from this as follows:
[tex]|v| = \sqrt{\frac{R\cdot g}{\sin 2 \theta}} = \sqrt{\frac{92m\cdot 9.8 \frac{m}{s^2}}{\sin 134^\circ}}=35.40\frac{m}{s}[/tex]
The girl threw the marshmallow with a speed of 35.4 m/s, which is approximately 79 mph. No word on the boy's condition after the marshmallow's landing.
A disturbance sends ripples across water in a tub.
What are these ripples called?
surface waves
longitudinal waves
rarefactions
compressions
I believe it is surface waves because it happens at the surface of the water.
Answer:
Option (1)
Explanation:
Ripples (ripple marks) are formed due to the forward and backward motion of water over the surface of a rock bed or water bodies. They are usually formed when the flow velocity is less and the diameter of the grains is relatively small.
These are sedimentary structures that are found in many places. These ripples are divided into 2 types, namely the symmetric and the asymmetric ripples. Asymmetrical ripples are helpful in identifying the palaeocurrent direction.
These are formed when water travels over the surface, so it can be considered as the surface waves.
Hence, the most appropriate answer is option (1).
Which simple machine is the lid of a jar? a lever a screw an inclined plane a wheel and axle
The answer is a screw.
If you look up screws you can see they work the exact same!
What is the speed or a softball that travel 20m in 2sec
To find speed with distance and time, you need to remember the speed formula:
Speed = distance ÷ time
So we need speed and we have the other two values, we can plug the values in:
Speed = 20 ÷ 2 = 10
The measurement for speed in this case is m/s (metres per second)
So the answer is 10m/sThe answer would be 10mph
when neutral charge comes into contact with a positive charge
If they come in direct contact, then with certain restrictions, the neutral charge will experience a transfer of 1/2 a charge from the positive body providing we're talking about a large enough charge that can be transferred.
So if one sphere starts with no charge and one with 6 * 10^-14 Q, if they touch,then each sphere will have a charge of 3*10^-14 Q which is still a pretty big charge.
In volleyball, if a ball is served in touches any part of the opposing sideline what happens?
The point goes to the service team.
Answer:
The ball will be considered as a good ball and point will be given to the serving team.
Explanation:
In volleyball if the ball touches the line then it will considered as a good ball and point will be given to the serving team. If the ball goes outside the line without touching any member of opposing team then it would be considered as a bad ball and point will be given to opposite team and so the service.
A star is 10 light years away from the earth.suppose it brightens up suddenly today ,after how long can we see this change?
We will see the star brighten up 10 years later, because it takes 10 years for the light emitted from that star to reach the earth.
Light year = the distance light can travel in 1 year
10 light years = distance that takes light 10 years to travel
The volume of the lung 0.0024m^3 following exhalation and the pressure is 101.70KPa. Calculate the volume of the lungs during inhalation if the pressure falls to 84.16KPa
According to Boyle-Mariotte:
p₁V₁=p₂V₂=>V₂=p₁V₁/p₂= 0.0024*101.70/ 84.16=0.0028 m³
Which of the following in NOT an acceleration unit? List all that apply
-km/hr/s
-km/hr/hr
-m/s2 (it's supposed to be squared)
-km/s
-m/s/s
An acceleration unit needs a unit of length or distance on top and a unit of (time · time) on the bottom. Let's go through the list:
- km/hr/s = (km) / (hr · sec) . . . Yes
- km/hr/hr = (km) / (hr · hr) . . . Yes
- m/s² = (m) / (sec · sec) . . . Yes
- km/s = (km) / (sec) . . . No . . . This is the only one that's NOT acceleration. This one is actually a unit of speed .
- m/s/s = (m) / (s · s) . . . Yes
The correct answer is km/hr/hr. The units km/hr/hr represent acceleration in kilometers per hour per hour, which is not a valid unit for acceleration.
Explanation:The correct answer is km/hr/hr. The units km/hr/hr represent acceleration in kilometers per hour per hour, which is not a valid unit for acceleration. Here's a breakdown of the other options:
km/hr/s: This is a valid unit for acceleration, representing the change in velocity in kilometers per hour per second.m/s²: This is the SI unit for acceleration, representing the change in velocity in meters per second per second.km/s: This is a valid unit for velocity, representing the change in displacement in kilometers per second.m/s/s: This is not a valid unit for acceleration as it represents change in velocity per second per second, which is redundant.Learn more about Units of Acceleration here:https://brainly.com/question/842785
#SPJ3
What is the velocity at 3 seconds?
A. -3.3 m/s
B. -2.0 m/s
C. -0.67 m/s
D. 5.0 m/s
E. 7.0 m/s
Velocity = (distance covered in a direction) / (time to cover the distance)
Since the y-axis is position (distance), the speed at 3 seconds is the slope of the graph at 3 seconds, and NOT its y-value.
The slope is fairly easy to pick off, because the graph is so straight from 2 sec to 5 sec. During that time, the distance shrinks by 10 meters (from 10m to zero). So the slope of that whole piece of the graph is (-10m) / (3 sec).
That's a slope of (10/3 m/s) or 3.33 m/s .
In answer to the question, we can only give the speed at 3 sec, not the velocity, since we have no information about the direction of the motion. Consequently, I would call the speed a positive number. But it's not worth arguing about, so you should just select choice-A and not make a big scene.
The velocity at 3 seconds can't be determined accurately without additional information such as acceleration and the initial velocity. Velocity in physics depends on these additional factors, meaning a correct answer can't be given with the given information.
Explanation:Without more information, it's impossible to accurately determine the velocity at 3 seconds. In physics, velocity is a measure of speed in a specific direction and it depends on acceleration, the initial velocity, and the time elapsed. Not having any of this additional information means we can't give a correct answer. As such, any of the choices (A, B, C, D, E) could be potentially correct depending on the circumstances of the object's movement.
Learn more about Velocity here:https://brainly.com/question/34679635
#SPJ2
ionic compound molecules have strong forces of attraction between neighboring molecules what conclusion can be drawn about material is held together by ionic bonds
Answer:
In general, the ionic bond is formed through transfer of electrons from metal atoms to non-metallic atoms. In this process the metal atoms loose their valence electrons to achieve a stable noble gas. In forming an ionic bond, two ions which have an opposite charges, move together due to attraction between opposite charges. The ionic compounds have very strong attraction between the ions. So the lot of energy expensed to overcome attractive forces and break the individual ions apart. The conclusion is the ionic compound dissolve easily, have high melting points and non malleable.Which of these reactions is responsible for energy radiating from stars, including the Sun? A) nuclear fusion B) nuclear fission C) an exothermic chemical reaction D) an endothermic chemical reaction
Answer:
A) Nuclear fusion
Explanation:
Nuclear fusion is a process that occurs when two light nuclei fuse together forming a heavier nucleus. In such a process, the mass of the final nucleus is slightly lower than the total mass of the initial nuclei, so part of the mass is converted into energy, according to Einstein's equation:
[tex]E=mc^2[/tex]
where
E is the energy released in the process
m is the difference in mass between final products and initial nuclei
[tex]c=3.0\cdot 10^8 m/s[/tex] is the speed of light
Given the huge value of [tex]c^2[/tex], we see that in the process of nuclear fusion a tremendous amount of energy is released even for very small values of the mass, m.
Nuclear fusion occurs inside the core of the stars and it is the process responsible for the energy produced by the stars. The main process that occurs inside the core of a star is the fusion of two nuclei of hydrogen into a nucleus of helium.
Answer:
A) nuclear fusion
Explanation:
The reactions that occur in stars are nuclear fusion in which two lighter nuclei combine to give a heavier nucleus with release of enormous energy.
You walk 20 m north, then 5 meters south . What is your displacement?
-- You start out.
-- You walk 20 m north.
-- Then you walk 5 m south.
-- Your displacement, relative to where you started from is 15 m north .
Consider a stone at rest on the ground. There are two interactions that involve the stone. One is between the stone and the Earth; Earth pulls down on the stone and the stone pulls up on the Earth. What is the other interaction? 1. All are wrong. 2. between the ground and the Earth 3. between the ground and air 4. between the Earth and air 5. between the stone and the ground
5. between the stone and the ground
for a stone at rest on the ground, we have two forces acting on the stone. first is the force on the stone by the earth due to gravity of earth. second is the force applied by the ground in upward direction to balance the force of gravity on the stone.
so first interaction is between earth and stone : earth pulls stone towards it and stone pulls earth towards it by same amount of force.
second interaction is between stone and ground : ground push the stone in upward direction and stone push the ground in down direction by same amount of force.
hence the correct choice is
5. between the stone and the ground
The stone at rest on the ground is not only interacting with the Earth through gravitational force but also interacting with the ground through what's known as a normal force. The ground pushes up on the stone with a force equal to the stone's weight, balancing out the pull of gravity and keeping the stone at rest.
Explanation:The other interaction involving the stone you're asking about is the interaction between the stone and the ground. According to Newton's third law, every action has an equal and opposite reaction. Therefore, as Earth exerts a gravitational force pulling the stone down, the stone exerts an equivalent force onto the Earth. Similarly, the stone's contact with the ground is also a significant interaction. When the stone rests on the ground, the ground exerts a force (the reaction force or the normal force) that balances the weight of the stone, which is the force due to gravity. As a result, the stone doesn't move further downwards.
Learn more about Forces here:https://brainly.com/question/14215609
#SPJ3
I'm doing something for science but I'm not sure how to answer these questions.
Why are Yeti products so popular and useful?
What is the best way to warm up when coming in from the cold?
Why do you think people turn on ceiling fans during the middle of winter when they have a heater on?
1, yeti hair is thick and strong
2, a warm blanket and a change of clothes
3, to circulate the heat around the house/room
Yeti products are designed to keep beverages at a desired temperature, which explains their popularity. The best way to warm up from the cold includes dressing in layers and consuming warm foods or beverages. Ceiling fans in winter help to redistribute warm air that rises, maintaining an even temperature in a room.
Yeti products are popular and useful because they are designed with advanced insulation technologies that maintain the temperature of liquids for an extended period. This makes them ideal for outdoor activities and preserving the temperature of beverages. To warm up when coming from the cold, it is effective to dress in layers, consume warm beverages or food, and engage in physical activity to generate body heat. People may turn on ceiling fans during winter while the heater is on to distribute warm air more evenly throughout a room, as warm air rises and can leave the lower parts of a room cooler without proper circulation.
Science encourages curiosity and questioning, which is foundational for inquiry-based learning. To answer questions using the scientific method, one would formulate a hypothesis, conduct experiments, observe results, and draw conclusions. This process allows scientists to develop models and make informed decisions based on evidence. In the context of temperature and heat, one might explore how materials affect thermal retention or the rate of cooling in substances, like in the example of adding cream to coffee and when to do so for keeping the coffee warmer.
a car moving 60km/hr in one hour will travel.
Given that
Speed = 60 Km/hr
In one hour, how much distance travelled by car
We know that
Distance = Speed × time
S = 60 × 1
S = 60 Km
In one hour car will travel 60 Km
what is Br charge after it gains an electron?
Im not 100% sure but i think its bromine.
Hope this helps ^_^
How much physical activity should an adult have each week?
A.60 minutes per day, 7 days a week
B.30 minutes per day, 7 days a week
C.60 minutes per day, 5 days a week
D.30 minutes per day, 5 days a week
d 30 minutes a day , 5 days a week
Answer:
D. 30 minutes per day, 5 days a week
Explanation:
As per World Health Organization (WHO) physical activity includes the following :
- Leisure time physical activity like running
- Occupational work
- Household chores
- Sports
An adult (aged 18-64) should do at least 150 minutes of physical activity per week. That can be divided over 5 days a week as well with 30 minutes of physical activity per day.
Imagine a small child asks you to push them on a swing at the park. After a few pushes, they yell, "I want to go higher!"
How can you apply Newton's 2nd Law of Motion to push them higher?
To push the child higher on the swing, you can apply Newton's Second Law of Motion. By exerting a greater force on them and pushing at the right moment, you can increase their height on the swing.
Explanation:To push the child higher on the swing, you can apply Newton's Second Law of Motion. This law states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. To push the child higher, you need to exert a greater force on them by pushing with more strength or pushing for a longer time.
The force you apply to the child is the net force, which is the force pushing them forward minus the force of gravity pulling them down. By increasing the net force, you can increase the acceleration of the child and make them move higher on the swing.
Additionally, you can also push the child at the right moment to take advantage of the swing's motion. Pushing when the child is moving forward and upward can help increase their height on the swing.
Learn more about Newton's Second Law of Motion here:https://brainly.com/question/13447525
#SPJ12
Which is constant for a freely falling object
Answer: acceleration
For a freely falling body acceleration is always constant and it is equal to gravitational force.i.e., a = g =9.81 m/s² at sea level of the earth
The weight , size and shape are not the factors to describe the free fall.A 0.013 rubber stopper attached to a 0.93 string is swung in a circle if the tension in the string is 0.35 what is the period of the stoppers motion
1.2
0.45
0.59
1.8
The period of the stoppers motion is 1.2 second. Hence, option (A) is correct.
What is centripetal acceleration?Centripetal acceleration is a characteristic of an object's motion along a circular path. Centripetal acceleration applies to any item travelling in a circle with an acceleration vector pointing in the direction of the circle's center.
A centripetal acceleration occurs when you drive in a circle, and a centripetal acceleration also occurs when a satellite orbits the earth. Centripetal refers to being in the center.
Mass of the rubber stopper: m = 0.013 kg.
Length of the string: r = 0.93 meter.
Tension in the string is: T = 0.35 Newton.
Hence, centripetal acceleration of the rubber stopper: a = 0.35/0.013 m/s²
= 26.92 m/s²
Let the angular velocity is ω; then
ω²r = a
ω = √(26.92/0.93) rad/s
= 5.38 rad/second.
Hence, the period of the stoppers motion is = 2π/ω
= 2π/5.38 second
= 1.2 second.
Learn more about centripetal acceleration here:
https://brainly.com/question/14465119
#SPJ2
A 50 Kg box sits at rest on a 30 degree ramp where the coef of static friction is 0.5773. If your push was directed at an angle of 40 degrees to the ramp, how hard would you have to push to get the box to move up the ramp?
Given data:
m= 50 Kg,
W= m×g = 50 × 9.81 = 490.5 N
ramp angle (α) = 30 degrees,
coefficient of friction (μs) = 0.5773,
Push at an angle (Θ) = 40 degrees,
Determine: Push to get box move up (P)=?
From the figure,
Resolving the forces along the plane
W sinα + μs.R = P cos Θ --------------------- (i)
Resolving the forces perpendicular to the inclined plane
W cosα = R+Psin Θ => R= W cosα - Psin Θ -------------- (ii)
Solving (i) and (ii) and keeping μs = tan Φ, Φ = Θ
Pmin = W sin( α +Θ )
= W[ sin α.Cos Θ + cos α.sin Θ]
= 490.5 [ (sin 30.cos40) + (cos30.sin 40)]
= 460.9 N
Minimum push required to move the box up the ramp is 460.9 N