A regular hexagon is inscribed in a circle, the diameter of the circle is d; what is the circumference of the hexagon ?

Answers

Answer 1

Answer:

3d

Step-by-step explanation:

A regular hexagon has six equivalent triangles, each triangle having one side of that of the hexagon. if the diameter of the circle in which the hexagon is inscribed is d , then its radius will be

[tex]r=\frac{d}{2}[/tex]

this radius also happens to be one of the side of the equivalent triangle whose one side is also the side of hexagon. since length of one side of hexagon is

[tex]\frac{d}{2}[/tex]

the circumference of the hexagon will be [tex]6 (\frac{d}{2} )\\\\thus \\circumference   \\of \\hexagon = 3d[/tex]


Related Questions

9. 10. To solve 2x x 2 11 x = 8 x 2 2x , Ren multiplied both sides by the least common denominator. Which statement is true? A. 2 is an extraneous solution. B. 7 2 is an extraneous solution. C. 0 and 2 are extraneous solutions. D. This equation does not contain any extraneou

Answers

Answer:

2 is the extraneous solution

Step-by-step explanation:

Given equation is

[tex]\frac{2x}{x-2} -\frac{11}{x} =\frac{8}{x^2-2x}[/tex]

Factor the denominator

[tex]\frac{2x}{x-2} -\frac{11}{x} =\frac{8}{x(x-2)}[/tex]

LCD is x(x-2), multiply all the fractions by LCD

[tex]2x \cdot x-11(x-2)=8[/tex]

[tex]2x^2-11x+22= 8[/tex], subtract 8 from both sides

[tex]2x^2-11x+14=0[/tex]

factor the left hand side

[tex]2x^2-7x-4x+14= 0[/tex]

[tex]x(2x-7)-2(2x-7)=0[/tex]

[tex](x-2)(2x-7)=0[/tex]

x-2=0, so x=2

2x-7=0,  [tex]x=\frac{7}{2}[/tex]

when x=2, then the denominator becomes 0 that is undefined

So 2 is the extraneous solution

Final answer:

The question is asking which statement is true regarding the potential extraneous solutions after solving an algebraic equation by multiplying both sides by the least common denominator. To determine if a solution is extraneous, it must be checked against the original equation. Without the specific manipulations made by Ren, we cannot assess the given options.

Explanation:

To solve the equation 2x x 2 11 x = 8 x 2 2x, Ren multiplied both sides by the least common denominator to eliminate the fractions and then used algebraic techniques to find the solutions for x. We know that when we have an equation of the form (ax + b)x = 0, there are two multiplicands, and we can set each equal to zero to solve for x. This leads to two solutions.

After solving, we need to check each solution by substituting it back into the original equation to confirm whether or not the solution is extraneous. An extraneous solution is one that does not satisfy the original equation after simplification. Checking is important as it ensures that the proposed solutions indeed make the original equation an identity, such as 6 = 6.

Without the specific equation after Ren's manipulations, we cannot evaluate the statements A, B, C, or D directly. However, we can understand that extraneous solutions arise when certain steps in solving an equation (like squaring both sides or multiplying by a variable expression) introduce results that are not true for the original equation.

A hardware store rents vacuum cleaners that customers may use for part or all of a day, before returning. The store charges a flat fee plus an hourly rate. Choose the linear function f for the total rental cost of a vacuum cleaner.

Answers

Final answer:

In the context of renting a vacuum cleaner for an hourly rate plus a flat fee from a hardware store, the total rental cost can be represented as a linear function. If we consider the flat fee to be $31.50 and the hourly rate to be $32, the function would be f(x) = 31.50 + 32x, where x is the rental duration in hours.

Explanation:

The question pertains to a linear function, which is a fundamental concept in algebra and represents a straight line when graphed. Such a function is typically expressed in the form y = mx + b, where m and b are constants, y is the dependent variable, and x is the independent variable.

In the context of the question, the total rental cost for a vacuum cleaner from the hardware store can be a linear function if it involves both a fixed cost (the flat fee) and an hourly rate charge. Specifically, the flat fee can be represented as the constant b, which will be added to regardless of the number of hours the vacuum cleaner has been rented.

On the other hand, the hourly rate charge is the variable cost that alters in relation to the rental duration and can be shown as m times x. Thus, if we consider the flat fee to be $31.50 and the hourly rate to be $32 (as in the reference), the total rental cost function, f, can be formulated as follows: f(x) = 31.50 + 32x

In this equation, x stands for the number of hours the vacuum cleaner is rented. Consequently, by substituting the rental duration into the equation, it would be feasible to compute the total rental cost.

Learn more about Linear Function here:

https://brainly.com/question/29205018

#SPJ12

What is the average rate of change of the function
f(x)=480(0.3)x from x = 1 to x = 5?

Enter your answer, as a decimal, in the box.
Do not round your answer.

Answers

Answer:

Average rate of change [tex]=-35.7084[/tex]

Step-by-step explanation:

Given function is [tex]f(x)=480(0.3)^x[/tex] and we need to find average rate of change of the function from [tex]x=1\ to\ x=5[/tex].

Average rate of change [tex]=\frac{f(b)-f(a)}{b-a}[/tex]

So,

[tex]here\ b=5\ and\ a=1\\f(5)=480(0.3)^5\\=480\times0.00243=1.1664\\and\\f(1)=480(0.3)^1\\=480\times0.3=144[/tex]

Average rate of change

[tex]=\frac{f(b)-f(a)}{b-a}\\\\=\frac{f(5)-f(1)}{5-1}\\\\=\frac{1.1664-144}{5-1}\\\\=\frac{-142.8336}{4}= -35.7084[/tex]

Hence, average rate of change of the function [tex]f(x)=480(0.3)^x[/tex] over the intervel [tex]x=1\ to\ x=5[/tex] is [tex]=-35.7084[/tex].  

Answer:

-35.8074 is the correct answer

Step-by-step explanation:

Which of the following statements shows the distributive property?

5 + (4 – 2) = 20 – 10

5(4 – 2) = 20 – 10

5 + (4 – 2) = 9 + 3

5(4 – 2) = 9 – 7

Answers

Answer:

[tex]\displaystyle 5(4 - 2) = 20 - 10[/tex]

This is a genuine statement of you look real closely at it.

I am joyous to assist you anytime.

The distributive property is demonstrated in the equation 5(4 - 2) = 20 - 10, where multiplication outside the parentheses is distributed to each term within the parentheses.

The distributive property in mathematics is an algebraic property used to multiply a single term and two or more terms inside a set of parentheses. The correct statement that shows the distributive property among the given options is: 5(4 - 2) = 20 - 10.

Applying the distributive property, we would multiply the 5 by each term inside the parentheses: 5 * 4 = 20 and 5 * (-2) = -10. Hence, we have 5 * 4 - 5 * 2 = 20 - 10, which is a correct demonstration of this property.

To better understand, let me explain it step-by-step:

Multiply the term outside the parenthesis (5) by each of the terms inside the parenthesis (4 and -2).

Perform the multiplication: 5 * 4 = 20 and 5 * (-2) = -10

Combine the results to show that 5(4 - 2) is indeed equal to 20 - 10.


Which of the following represents the slope of the line?
Help ASAP

Answers

The slope is 2 because it rises 2 up and goes 1 to the right, hence 2/1 = 2

Answer:option 3 is the correct answer.

Step-by-step explanation:

Slope, m =change in value of y on the vertical axis / change in value of x on the horizontal axis

change in the value of y = y2 - y1

Change in value of x = x2 -x1

y2 = final value of y

y 1 = initial value of y

x2 = final value of x

x1 = initial value of x

From the graph given,

y2 = 3

y1 = 1

x2 = 0

x1 = - 1

Slope = (3 - 1)/(0 - - 1)

Slope = 2/1 = 2

It takes 313131 employees and \$7500$7500dollar sign, 7500 to build a car, and it takes 191919 employees and \$4300$4300dollar sign, 4300 to build a motorcycle. Genghis Motors wants to spend more than \$84000$84000dollar sign, 84000 to build cars and motorbikes using at most 706706706 employees. Let CCC denote the number of cars they build and MMM the number of motorbikes they build. Write an inequality that represents the condition based on the number of employees. Write an inequality that represents the condition based on the number of dollars.

Answers

Answer:

a) 31c + 19m ≤ 706

b) 7500c + 4300m > 84000

Step-by-step explanation:

To build a car, we need 31 employees and $7500.

To build a motorcycle, we need 19 employees and $4300.

Let C denote the number of cars they build.

Let M denote the number of motorbikes they build.

Recall that ;

To build a career, we need 31 employees. To build "c" cars, we will need 31*c = 31c employees

To build a motorcycle, we need 19 employees. To build "m" motorcycle, we will need 19*m = 19m

Since the maximum number of employees used to build the car and motorcycle is at most 706, we have

31c + 19m ≤ 706

It takes $7500 to build car. To build "c" cars, we need 7500*c = $7500c

It also takes $4300 to build "m" motorcycles. We need 4300*m = $4300m

Since Genghis motors wont to spend more than $84000 on both cars and motorcycles, we have

7500c + 4300m > 84000

For the condition based on the number of employees, we have

31c + 19m ≤ 706

For the condition based on the number of dollars, we have

7500c + 4300m > 84000

Answer:

31c + 19m ≤ 706 and 7500c + 4300m > 84000

Step-by-step explanation:

Luis hizo un viaje en el coche en el cual consumio 20 l de gasolina. el trayecto lo hizo en dos etapas en la primera consumio 2/3 de la gasolina que tenia en el deposito y en la segunda, la mitadque le quedaba. ¿cuanta gasolina habia en el deposito?

Answers

Answer: [tex]24\ liters[/tex]

Step-by-step explanation:

Let be "x" the amount of gasoline in liters that the car's tank had at the beginning of the trip.

 1. In the first part of the trip the amount of gasoline the car used can be expressed as:

 [tex]\frac{2}{3}x[/tex]

2. After the first part of the trip, the remaining was:

[tex]x-\frac{2}{3}x=\frac{1}{3}x[/tex]  

3. In the second part of the trip the car used [tex]\frac{1}{2}[/tex] of the remaining. This is:

[tex](\frac{1}{3}x)(\frac{1}{2})=\frac{1}{6}x[/tex]

4. The total amount ot gasoline used in this trip was 20 liters.

5. Then, with this information, you can write the following equation:

[tex]\frac{2}{3}x+\frac{1}{6}x=20[/tex]

6. Finally, you must solve for "x" in order to find its value. This is:

[tex]\frac{2}{3}x+\frac{1}{6}x=20\\\\\frac{5}{6}x=20\\\\5x=120\\\\x=24[/tex]

List K consists of seven numbers. Is the average (arithmetic mean) of the seven numbers negative?
1) Four of the seven numbers in list K are negative.
2) The sum of the seven numbers in list K is negative.

Answers

Answer:

Yes, the average (arithmetic mean) of the seven numbers would be negative.

Step-by-step explanation:

We have been given that list K consists of seven numbers. We have been given two cases about list K. We are asked to determine whether the average (arithmetic mean) of the seven numbers negative.

1st case: Four of the seven numbers in list K are negative.

For 1st case, if the sum of 3 positive numbers is greater than sum of four negative numbers, then the average would be positive.

2nd case: The sum of the seven numbers in list K is negative.

We know that average of a data set is sum of all data points of data set divided by number of data points.

Since we have been given that sum of the seven numbers in list K is negative, so a negative number divided by any positive number (in this case 7) would be negative.

Therefore, the average (arithmetic mean) of the seven numbers would be negative.

Your watch beeps every 15 seconds, and your moms watch beeps every 25 seconds. If they beep together at 3:00 pm, at what time will they beep together for the 20th time?

Answers

Answer:

The two watches will beep together for 20th time at 3:25 pm.  

Step-by-step explanation:

My watch beeps every 15 seconds and mom's watch beeps every 25 seconds.

Thus both the watches beep at the same time at an interval of 75 seconds.

75 is the smallest multiple of 15 and 25.

They beep together at 3 pm and when they beep together for the 20th time , we have to add 20 times the time taken for both the watches to beep together.

This time interval = 20 [tex]\times[/tex] 75 = 1500 seconds = 25 minutes.

The two watches will beep together for 20th time at 3:25 pm.  

write a polynomial function with the given zeros x= -2,1,4

Answers

Answer:

With the given zeros x=-2,1,4 the polynomial function is [tex]x^3-3x^2-6x-8[/tex]

Step-by-step explanation:

Given zeros are x=-2,1,4

Now to find the polynomial function:

With the given zeros we can write it as below:

x=-2  implies that x+2=0

x=-1  implies that  x-1=0

x=4  implies that  x-4=0

Then we can the zeros or factors by (x+2)(x-1)(x-4)

Now expanding the zeros or factors:

[tex](x+2)(x-1)(x-4)[/tex]

[tex](x+2)(x-1)(x-4)=(x^2-x+2x-2)(x-4)[/tex]  ( multiply each term with each term of another factor)

[tex]=(x^2+x-2)(x-4)[/tex] ( adding the like terms)

[tex]=x^3-4x^2+x^2-4x-2x+8[/tex]   ( multiply each term with each term of another factor)

[tex]=x^3-3x^2-6x+8[/tex]  ( adding the like terms)

[tex](x+2)(x-1)(x-4)=x^3-3x^2-6x+8[/tex]

Therefore the polynomial function is [tex](x+2)(x-1)(x-4)=x^3-3x^2-6x+8[/tex]

With the given zeros x=-2,1,4 the polynomial function is [tex]x^3-3x^2-6x-8[/tex]

The dot plot represents a sampling of ACT scores:


(picture below)


Which box plot represents the dot plot data?:


(choices in second picture below)

Answers

Last/bottom answer. The medium is 28.

Answer:

Option D.

Step-by-step explanation:

Form the given line plot, first we need to find the data set. So, our data set is

24, 26, 26, 26, 27, 27, 27, 28, 28, 28, 28, 28, 30, 30, 30, 32, 32, 32, 35

Divide the data in two equal parts.

(24, 26, 26, 26, 27, 27, 27, 28, 28), 28, (28, 28, 30, 30, 30, 32, 32, 32, 35)

Divide each of the parenthesis in two equal parts.

(24, 26, 26, 26), 27, (27, 27, 28, 28), 28, (28, 28, 30, 30), 30, (32, 32, 32, 35)

Now, we get

Minimum value = 24

First quartile = 27

Median = 28

Third quartile = 30

Maximum value = 35

It means the box lies between 27 and 30. The line inside the box at 28. Left point of the line isi 24 and right point of the line 35.

This description represented by the box plot in option D.

Hence, the correct option is D.

There are 81 pencils in a box. Abigail removes 5 pencils, Barry removes 2 pencils, Cathy removes 6 pencils and David adds 5 pencils to the box. How many pencils are left in the box?

Answers

Answer:

73 pencils

Step-by-step explanation:

There are 81 pencils in a box.

Abigail removes 5 pencils, thus we have 81-5 = 76 left

Barry removes 2 pencils,  it becomes 76-2 = 74

Cathy removes 6 pencils, now it is 74-6= 68

and David adds 5 pencils to the box,

Now we have 68+5=73 pencils left in the box.

Consider the following code segment: primes = {2, 3, 5, 7} odds = {1, 3, 5, 7} Which line of code will result in x containing {1}? a. x = primes.difference(odds) b. x = odds.difference(primes) c. x = primes.intersection(odds) d. x = odds.intersection(primes)

Answers

Answer:

a. x = primes.difference(odds)

Step-by-step explanation:

Given the list of numbers primes and odds, the list x is made subtracting odds to primes. To do that in a object oriented language you use: x = primes.difference(odds) which is equivalent to x = primes  - odds

Final answer:

The correct line of code that will result in x containing {1} is option b: x = odds.difference(primes). This provides the set of elements in the 'odds' set that are not in the 'primes' set, which is {1}.

Explanation:

The question revolves around the concept of set operations in mathematics. Specifically, it focuses on the difference and intersection operations between two sets named primes and odds. To find the set containing only the number {1}, we should look for the difference between the odds and primes sets because 1 is in the odds but not in the primes.

Answer option a, x = primes.difference(odds), would result in a set that contains elements present in primes but not in odds, which would be {2}. However, that's not what we are looking for.

Answer option b, x = odds.difference(primes), is correct. It would result in a set containing elements that are in odds but not in primes, which is exactly {1}.

Answer options c and d, which refer to the intersection of the two sets, would result in the set {3, 5}, which are elements common to both primes and odds, and therefore not the correct answer.

For visual representation, you could draw a Venn diagram with two circles, one for primes containing {2, 3, 5, 7} and another for odds containing {1, 3, 5, 7}. The number 1 would be in the part of the odds circle that does not overlap with the primes circle.

Learn more about Set Operations here:

https://brainly.com/question/14245533

#SPJ3

What are the factors of the polynomial function?

Answers

Good evening ,

Answer:

(x-1) ; (x+3) and (x+5).

Step-by-step explanation:

Since  1 , -3 , -5 are roots of the polynomial function

then the factors of f are:

(x-1) ; (x+3) and (x+5).

:)

Can someone please explain how to do this?? I got the wrong answer and I don't know how to do this question

Find the area of the triangle with a = 19, b = 14, c = 19. Round to the nearest tenth.

thank you

Answers

Answer:

[tex]\displaystyle 133\:square\:units[/tex]

Step-by-step explanation:

[tex]\displaystyle \frac{1}{2}hb = A, \frac{1}{2}bh = A, or\: \frac{hb}{2} = A[/tex]

For the two legs, no matter what you do, you can either take half of 19 [9½] and multiply it by 14, take half of 14 [7] and multiply it by 19, or you could multiply both 14 and 19 [266] then take of that.

I am joyous to assist you anytime.

A boat whose speed in 15km/hr in still water goes 30 km downstream and come back in a total of 4 hours 30 minutes.The speed of the stream(in km/hr) is

Answers

Answer: total Distance = 60km

Time = 4.5hrs

Speed = 60/4.5

13⅓km/hr

Step-by-step explanation:

Mindy divides a rectangular piece of fabric into a equal-sized pieces for to suing projects for project a she will need she will use 1/2 of the fabric for Project B she will use 1/4 of the fabric draw a model to show how the fabric was divided and which piece will be used what unit fraction represents one of the pieces write an equation to find how much of the fabric will not be used let F represent the fraction of leftover fabric what is the answer?

Answers

Answer:F=A-(A/2+A/4)

=> F=1/4

Step-by-step explanation:

Let A represent the initial quality of rectangular fabric.

Half of A was used for the sewing project

Quarter of the left over was used for project B

Hence a quarter of unused fabric(F) will be left.

Two thirds of a number reduced by 11 is equal to 4 more than the number. Find the number. n= Answer

Answers

Answer:

-45

Step-by-step explanation:

2/3x - 11 = x + 4

I created an inequality representing the above statement first. This makes things look less complicated than what the question is asking.

2/3x = x + 15

solve for x. I started by adding 11 to both sides.

-1/3x = 15

multiply both sides by -3

x = -45

Answer:

-45.

Step-by-step explanation:

2/3 x - 11 = x + 4

2/3 x - x = 4 + 11

-1/3x = 15

x = 15 * -3

x = -45.

A piece of paper in the shape of an equilateral triangle with side length 3 and a circular piece of paper with radius 1 are glued together so that their centers coincide. How long is the outer perimeter of the resulting 2-dimensional shape?

Answers

Answer:

Outer perimeter of the resulting 2-dimensional shape will be 18.84 units

Step-by-step explanation:

From the figure, we could see

AE =  FB = 1

And  minor arc EF  

=> [tex]\frac{2 \pi (1) }{6}[/tex]  

=>[tex]= \frac{2 \pi}{ 6}[/tex]

=>[tex]= \frac{ \pi}{ 3}[/tex]

So by symmetry the perimeter  is

=>[tex]3(2 + \frac { \pi}{3} )[/tex]

=>[tex]3(\frac {6 \pi}{3} )[/tex]

=>[tex]6 \pi[/tex]

=> [tex]6 \times 3.14[/tex]

=> 18.84 units

Answer:

6+pi or 9.14

Step-by-step explanation:

Question 3 (1 point)

What is the midpoint of E (9, 7) and F (-1, 5)?

Question 3 options:

(4, 6)

(10, 2)

(5, 1)

(8, 12)

Answers

Answer:

The answer to your question is (4, 6)

Step-by-step explanation:

Data

E ( 9 , 7 )

F ( - 1, 5)

Formula

[tex]Xm = \frac{x1 + x2}{2}[/tex]

[tex]Ym = \frac{y1 + y2}{2}[/tex]

Substitution and simplification

[tex]Xm = \frac{9 -1}{2}[/tex]

[tex]Xm = \frac{8}{2}[/tex]

      Xm = 4

[tex]Ym = \frac{7 + 5}{2}[/tex]

[tex]Ym = \frac{12}{2}[/tex]

      Ym = 6

Result

            (4 , 6)  

Shear strength measurements for spot welds have been found to have standard deviation 1 0 pounds per square inch (psi). If 100 test welds are to be measured, what is the approximate probability that the sample mean will be within 1 psi of the true population mean.

Answers

Answer:

[tex]P(\mu -1< \bar X <\mu +1)=0.6826[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Let X the random variable that represent the Shear strength of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(\mu,10)[/tex]  

Where [tex]\mu[/tex] and [tex]\sigma=10[/tex]

And let [tex]\bar X[/tex] represent the sample mean, the distribution for the sample mean is given by:

[tex]\bar X \sim N(\mu,\frac{\sigma}{\sqrt{n}})[/tex]

On this case  [tex]\bar X \sim N(\mu,\frac{10}{\sqrt{100}})[/tex]

We are interested on this probability

[tex]P(\mu -1<\bar X<\mu +1)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

If we apply this formula to our probability we got this:

[tex]P(\mu -1<\bar X<\mu +1)=P(\frac{\mu- 1-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{\mu +1-\mu}{\frac{\sigma}{\sqrt{n}}})[/tex]

[tex]=P(\frac{\mu -1-\mu}{\frac{10}{\sqrt{100}}}<Z<\frac{\mu +1-\mu}{\frac{10}{\sqrt{100}}})=P(-1<Z<1)[/tex]

And we can find this probability on this way:

[tex]P(-1<Z<1)=P(Z<1)-P(Z<-1)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-1<Z<1)=P(Z<1)-P(Z<-1)=0.8413-0.1587=0.6826[/tex]

Final answer:

The probability that the sample mean will be within 1 psi of the true population mean is approximately 68.2%, according to the properties of a normal distribution and the central limit theorem.

Explanation:

This is a problem of standard deviation and probability in relation to the sample mean. This type of problem can be solved by knowing the properties of a normal distribution.

The central limit theorem states that if we have a large enough sample, the distribution of the sample mean will approximate a normal distribution regardless of the distribution of the population.

For this scenario, where the true population mean is unknown, the standard deviation of the sampling distribution (also known as the standard error) can be calculated as the original standard deviation (10 psi) divided by the square root of the sample size (100 test welds in this case), hence 10 ÷ √100 = 1 psi.

Then, to find the probability that the sample mean is within 1 psi of the true population mean, we can refer to the Z-table (a standard normal distribution table) to find the corresponding probability for z = ±1 (because the z-score for ±1 standard error from the mean is ±1). This value is approximately 68.2%

Learn more about Standard Deviation and Probability here:

https://brainly.com/question/5671215

#SPJ11

Describe your research question, and explain its importance. Describe how you would use the four-step hypothesis test process to answer your research question. Explain how using a t test could help you answer your research question.

Answers

Answer:

See explanation below

Step-by-step explanation:

Data given and notation  

First we need to find the sample mean and deviation from the data with the following formulas:

[tex]\bar X =\frac{\sum_{i=1}^n X_i}{n}[/tex]

[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}[/tex]

[tex]\bar X[/tex] represent the sample mean  

[tex]s[/tex] represent the sample standard deviation

[tex]n[/tex] sample size  

[tex]\mu_o [/tex] represent the value that we want to test  

[tex]\alpha[/tex] represent the significance level for the hypothesis test.  

z would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.  

We have three possible options for the null and the alternative hypothesis:

Case Bilateral  

Null hypothesis:[tex]\mu = \mu_o[/tex]  

Alternative hypothesis:[tex]\mu \neq \mu_o[/tex]

Case Right tailed

Null hypothesis:[tex]\mu \leq \mu_o[/tex]  

Alternative hypothesis:[tex]\mu > \mu_o[/tex]

Case Left tailed

Null hypothesis:[tex]\mu \geq \mu_o[/tex]  

Alternative hypothesis:[tex]\mu < \mu_o[/tex]

We assume that w don't know the population deviation, so for this case is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic  

We can replace in formula (1) and the value obtained is assumed as [tex]t_o[/tex]

Calculate the P-value  

First we need to find the degrees of freedom:

[tex] df=n-1[/tex]

Case two tailed

Since is a two-sided tailed test the p value would be:  

[tex]p_v =2*P(t_{df}>|t_o|)[/tex]  

Case Right tailed

Since is a one-side right tailed test the p value would be:  

[tex]p_v =P(t_{df}>t_o)[/tex]  

Case Left tailed

Since is a one-side left tailed test the p value would be:  

[tex]p_v =P(t_{df}<t_o)[/tex]  

Conclusion  

The rule of decision is this one:

[tex]p_v >\alpha[/tex] We fail to reject the null hypothesis at the significance level [tex]\alpha[/tex] assumed

[tex]p_v <\alpha[/tex] We reject the null hypothesis at the significance level [tex]\alpha[/tex] assumed

A​ 150-pound person burns 5.1 calories per minute when walking at a speed of 4 miles per hour. While​ walking, this person eats a snack that has 60 calories. This snack subtracts from the calories burned while walking. How long must the person walk at this speed to burn at least 150 calories​? Use pencil and paper. Describe what values the person could change so that the amount of time spent walking would be less.

Answers

Answer:

He needs to walk 41 mins or 2,76 miles to burn 150 calories.

If he increases the speed of walking or eats snack with less calories, he will spend less time for walking.

Step-by-step explanation:

The person is burning

[tex]5,1*60=306[/tex]

calories per hour.

He needs to burn 150 calories plus 60 calories that comes from the snack. In total 210 calories to burn.

[tex]210/306=0,69[/tex]

He needs to walk 0,69 hours (aprrox. 41 mins) to burn 210 calories

[tex]0,69*4=2,76[/tex]

In total he need to walk 2,76 miles to burn 210 calories.

Final answer:

A 150-pound person must walk approximately 17.65 minutes at 4 mph to burn at least 150 calories, after accounting for a 60-calorie snack. To decrease walking time, they can increase activity intensity or choose lower-calorie snacks.

Explanation:

To calculate the time required for a 150-pound person to burn at least 150 calories at a rate of 5.1 calories per minute while walking at 4 miles per hour, we must account for the 60-calorie snack they consumed. We first subtract the 60 calories from the 150-calorie goal, which leaves 90 calories to be burned through exercise. Dividing 90 calories by the 5.1 calories burned per minute gives us the time needed in minutes.

Calculation:
Total calories to burn = 150 - 60 (from snack) = 90 calories
Calories burned per minute = 5.1
Time (in minutes) = Total calories to burn ÷ Calories burned per minute = 90 ÷ 5.1 = 17.65 minutes

So, the person must walk approximately 17.65 minutes to burn at least 150 calories, minus the calories from the snack. To reduce the time spent walking, the person could increase their walking speed, engage in a more vigorous exercise, or consume a lower-calorie snack.

Kira goes running Kira goes running Monday, Wednesday, and Friday of each week. Each Monday she runs 2.5 miles, each Wednesday she runs 5.75 miles, and each Friday she runs 7.75 miles. How many total miles does she run in 9 weeks?

Answers

Kira runs a total of 144 miles in 9 weeks.

Step-by-step explanation:

Given,

Distance covered on Monday = 2.5 miles

Distance covered on Wednesday = 5.75 miles

Distance covered on Friday = 7.75 miles

Total distance covered per week = 2.5+5.75+7.75 = 16 miles

Total distance in 9 weeks = Distance per week * 9

Total distance in 9 weeks = 16*9 = 144 miles

Kira runs a total of 144 miles in 9 weeks.

Keywords: addition, multiplication

Learn more about addition at:

brainly.com/question/10633485brainly.com/question/10672611

#LearnwithBrainly

In a student government election, 7,000 students cast a vote for the incumbent, 900 vote for the opponent, and 100 cast a protest vote. What was the ratio of the incumbent”s votes in the total number of votes?

-Jarvis

Answers

Answer:

The ratio of the incumbent”s votes in the total number of votes = 7:8

Step-by-step explanation:

Given:

Number of students who cast vote for the incumbent = 7,000

Number of students who cast vote for the opponent = 900

Number of protest votes = 100

To find ratio of the incumbent”s votes in the total number of votes.

Solution:

Total number of votes cast = [tex]7000+900+100=8000[/tex]

Number of votes for incumbent = [tex]7000[/tex]

Ratio of incumbent”s votes in the total number of votes can be calculated as:

⇒ [tex]\frac{\textrm{The incumbent's votes}}{\textrm{Total number of votes}}[/tex]

⇒ [tex]\frac{7000}{8000}[/tex]

Simplifying to simplest fraction by dividing numerator and denominator by 1000.

⇒ [tex]\frac{7000\div1000}{8000\div1000}[/tex]

⇒ [tex]\frac{7}{8}[/tex]

Thus, ratio of the incumbent”s votes in the total number of votes = 7:8

If the sum of two positive integers is 24 and the difference of their squares is 48, what is the product of the two integers?(A) 108(B) 119(C) 128(D) 135(E) 143

Answers

Answer:

143

Step-by-step explanation:

Denote by x and y such integers. The hypotheses given can be written as:

[tex]x+y=24, x^2-y^2=48[/tex]

Use the difference of squares factorization to solve for x-y

[tex]48=x^2-y^2=(x-y)(x+y)=24(x-y)\text{ then }x-y=2[/tex]

Remember that

[tex](x+y)^2=x^2+2xy+y^2[/tex]

[tex](x-y)^2=x^2-2xy+y^2[/tex]

Substract the second equation from the first to obtain

[tex](x+y)^2-(x-y)^2=4xy[/tex]

Substituting the known values, we get

[tex]4xy=24^2-2^2=572\text{ then }xy=\frac{572}{4}=143[/tex]

Final answer:

The sum of the two integers is 24, and the difference of their squares is 48. By setting up a system of equations, we find the integers are 13 and 11. The product of these integers is 143.

Explanation:

We are given the sum of two positive integers is 24 and the difference of their squares is 48. Let's denote the integers as x and y, with x being the larger integer. So, we have:

x + y = 24 (Equation 1)x^2 - y^2 = 48 (Equation 2)

We can factor Equation 2, which is a difference of squares, into (x + y)(x - y) = 48. Using the fact that x + y = 24 (from Equation 1), we can substitute into this to get 24(x - y) = 48, which simplifies to x - y = 2. Now we have a system of equations:

x + y = 24x - y = 2

Adding these two equations, we get 2x = 26, so x = 13. Subtracting the second equation from the first, we get 2y = 22, so y = 11. Now to find the product of the two integers, we multiply x and y together: 13 * 11 = 143.

Therefore, the product of the two integers is 143.

Blaire walked around her garden in the morning and saw that 18 of her tomato plants had tomatoes ready to pick. If this was 90% of her tomato plants, how many tomato plants does Blaire have altogether?

Answers

Blaire has 20 tomato plants altogether.

Step-by-step explanation:

Given,

Tomatoes plants ready to pick = 18

This represents 90% of total tomato plants.

Let,

x be the original number of tomato plants.

90% of x = 18

[tex]\frac{90}{100}*x=18[/tex]

[tex]0.9x=18[/tex]

Dividing both sides by 0.9

[tex]\frac{0.9x}{0.9}=\frac{18}{0.9}[/tex]

[tex]x=20[/tex]

Blaire has 20 tomato plants altogether.

Keywords: percentage, division

Learn more about division at:

brainly.com/question/10666510brainly.com/question/10699220

#LearnwithBrainly

To illustrate the effects of driving under the influence (DUI) of alcohol, a police officer brought a DUI simulator to a local high school. Student reaction time in an emergency was measured with unimpaired vision and also while wearing a pair of special goggles to simulate the effects of alcohol on vision. For a random sample of nine teenagers, the time (in seconds) required to bring the vehicle to a stop from a speed of 60 miles per hour was recorded.
Subject 1 2 3 4 5 6 7 8 9
Normal, Xi 4.47 4.24 4.58 4.65 4.31 4.80 4.55 5.00 4.79
Impaired, Yi 5.77 5.67 5.51 5.32 5.83 5.49 5.23 5.61 5.6
(a) Whether the student had unimpaired vision or wore goggles first was randomly selected. Why is this a good idea in designing the experiment?
(b) Use a 95% confidence interval to test if there is a difference in braking time with impaired vision and normal vision where the differences are computed as "impaired minus normal. "Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers.

Answers

Answer:

a) If we design the experiment on this way we can check if we have an improvement with the method used.

We assume that we have the same individual and we take a value before with the normal impaired condition and the final condition is the normal case.  

b) [tex]-0.96-2.306\frac{0.359}{\sqrt{9}}=-1.24[/tex]  

[tex]-0.96+2.306\frac{0.359}{\sqrt{9}}=-0.69[/tex]

The 95% confidence interval would be given by (-1.24;-0.69)

Step-by-step explanation:

Part a

If we design the experiment on this way we can check if we have an improvement with the method used.

We assume that we have the same individual and we take a value before with the normal impaired condition and the final condition is the normal case.

Part b

For this case first we need to find the differences like this :

Normal, Xi 4.47 4.24 4.58 4.65 4.31 4.80 4.55 5.00 4.79

Impaired, Yi 5.77 5.67 5.51 5.32 5.83 5.49 5.23 5.61 5.6

Let [tex]d_i = Normal -Impaired[/tex]

[tex] d_i : -1.3, -1.43, -0.93, -0.67,-1.52, -0.69, -0.68, -0.61, -0.81[/tex]

The second step is calculate the mean difference  

[tex]\bar d= \frac{\sum_{i=1}^n d_i}{n}=-0.96[/tex]

The third step would be calculate the standard deviation for the differences, and we got:

[tex]s_d =\frac{\sum_{i=1}^n (d_i -\bar d)^2}{n-1} =0.359[/tex]

The confidence interval for the mean is given by the following formula:  

[tex]\bar d \pm t_{\alpha/2}\frac{s_d}{\sqrt{n}}[/tex] (1)  

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:  

[tex]df=n-1=9-1=8[/tex]  

Since the Confidence is 0.95 or 95%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.025,8)".And we see that [tex]t_{\alpha/2}=2.306[/tex]  

Now we have everything in order to replace into formula (1):  

[tex]-0.96-2.306\frac{0.359}{\sqrt{9}}=-1.24[/tex]  

[tex]-0.96+2.306\frac{0.359}{\sqrt{9}}=-0.69[/tex]  

So on this case the 95% confidence interval would be given by (-1.24;-0.69)

Final answer:

Random selection for first testing condition (impaired or unimpaired) was used to avoid order effects. The confidence interval on whether braking times under impaired and unimpaired conditions were significantly different can be determined using a paired t-test and if the interval includes zero, we can say that there is no significant difference.

Explanation:

(a) Random selection of whether the student had unimpaired or impaired vision was a good idea because it helps to prevent any order effects. An order effect occurs if the order in which the tests are performed can influence the results. For example, if the unimpaired test was always done first, the driver might be more cautious in the second test as they have learned from the first test.

(b) The confidence interval for a difference between two means (in this case the braking times) can be calculated with a paired t-test. We will compare the average of differences (impaired vision braking time - normal vision braking time) to zero, assuming that they follow a normal distribution.

The formula to calculate the confidence interval for paired data is:

(Avg(D) - (t * StdDev(D) / sqrt(n)), Avg(D) + (t * StdDev(D) / sqrt(n)))

Where Avg(D) is the average of the differences, StdDev(D) is the standard deviation of the differences, n is the sample size (9 in this case), and t is the t-value from the t-distribution table (which will be 2.306 considering 95% confidence for 8 degrees of freedom).

After calculating you'll get the confidence interval for the differences. If this interval includes zero, we can say there is no significant difference for the braking time under impaired and unimpressed conditions using the 95% confidence interval.

Learn more about Statistics here:

https://brainly.com/question/31538429

#SPJ11

please help
with my geomtry homework

Answers

Answer:

Therefore, HL theorem we will prove for Triangles Congruent.

Step-by-step explanation:

Given:

Label the Figure first, Such that

Angle ADB = 90 degrees,  

angle ADC = 90 degrees, and

AB ≅ AC

To Prove:

ΔABD ≅ ΔACD    by   Hypotenuse Leg theorem

Proof:

In  Δ ABD and Δ ACD

AB ≅ AC     ……….{Hypotenuse are equal Given}

∠ADB ≅ ∠ADC     ……….{Each angle measure is 90° given}

AD ≅ AD     ……….{Reflexive Property or Common side}

Δ ABD ≅ Δ ACD ….{By Hypotenuse Leg test} ......Proved

Therefore, HL theorem we will prove for Triangles Congruent.

By [n][n] we denote the set {1,…,n}. A function f:[m]→[n] is called monotone if f(i) \leq f(j)f(i)≤f(j)whenever i < ji

Answers

Answer:

There are a total of  [tex] { 6 \choose 3} = 20 [/tex] functions.

Step-by-step explanation:

In order to define an injective monotone function from [3] to [6] we need to select 3 different values fromm {1,2,3,4,5,6} and assign the smallest one of them to 1, asign the intermediate value to 2 and the largest value to 3. That way the function is monotone and it satisfies what the problem asks.

The total way of selecting injective monotone functions is, therefore, the total amount of ways to pick 3 elements from a set of 6. That number is the combinatorial number of 6 with 3, in other words

[tex] {6 \choose 3} = \frac{6!}{3!(6-3)!} = \frac{720}{6*6} = \frac{720}{36} = 20 [/tex]  

Other Questions
A person suffering from bulimia nervosa will binge on food and then do which of the following: How does the practice of storing personal genetic data in privately owned computer databases raise issues affecting information ownership and property-rights? Describe a situation that might place a medical assistant in the position of being negligent or to be charged with medical malpractice. The Best Company produces two commercial products : blenders and mixers. Both products require a two step production process involving delivery of parts (JIT process) and assembly. It takes 1 hour to deliver parts for each blender and 2 hours for each mixer. Final assembly of mixers and blenders require 3 and 2 hours, respectively. The production capability is such that only 24 hours of delivery time and 30 hours of assembly time are available. Each blender produced nets the firm $7 and each mixer $6. a) How many of each should be produced to maximize profit? Partial production of each product is allowed. b) What is the $ amount of this profit? Which word does not go with the other four?A crumbleB crushC stackD shredE rip What does not usually synchronize among devices using the same E-Reader app?Account informationBookmarksDownloadsPurchases What is the solution to the equation 5a^2 - 44 = 81 A. Plus minus 25B. -5C. Plus minus 5 D. Plus minus 125 Drag each label to the appropriate bin. If an organism is both a secondary consumer and a tertiary consumer, drag it to the "both secondary and tertiary consumer" bin. Bins : -Detritus -primary producer -primary consumer/decomposer -secondary consumer -tertiary consumer -both secondary and tertiary consumer labels (options): -dead animal -living maple leaves -fungus -millipede -earthworm -maggots -rotting log -cricket -robin alligator lizard A buyer defaulted some time ago on a written contract to purchase a seller's real estate. Can the seller sue for damages? Small vesicles containing pigment inside of pigmented fish epidermal cells aggregate or disperse in response to treatment with certain chemicals. When nocodazole is added to cells in which the pigment granules have been induced to aggregate, the granules cannot disperse again. Small vesicles containing pigment inside of pigmented fish epidermal cells aggregate or disperse in response to treatment with certain chemicals. When nocodazole is added to cells in which the pigment granules have been induced to aggregate, the granules cannot disperse again. Pigment granules can either aggregate or disperse. Once aggregated the granules cannot disperse again, and vice versa. Intermediate filaments have a large effect on the pigment granule dispersal process and can stabilize resulting aggregates. Pigment granule dispersal is a microtubule-dependent process. When does the most significant drop in physical activity typically occur in people's lives? How many people have been president of the United States of America? How many presidents have there been? Two step equations -5n+8=-7 A horizontal beam of unpolarized light is incident on a stack of three polarizing filters with their polarization axes oriented, in sequence, 30, 60 and 90 clockwise from the vertical. The intensity of the light emerging from the stack is measured to be 275 W/m2. What is the intensity of the emerging light (in W/m2) if the middle polarizing filter is removed? In Albany, Georgia, the conflicts between kings leadership style and what broke into the open As the chief executive of our nation, I respectfully suggest that you unwittingly crush the spirit of freedom in Negroes by constantly urging forbearance and give hope to those pro-segregation leaders like Governor Faubus who would take from us even those freedoms we now enjoy. Your own experience with Governor Faubus is proof enough that forbearance and not eventual integration is the goal the pro-segregation leaders seek. To which specific historic event is Jackie Robinson referring to in the letter calculate the mass of 6.45 x 10^22 atoms of carbon In Africa, AIDS takes its toll on the population, but deaths occur most frequently in the 20-40 age group. Show a survivorship curve that would illustrate this pattern. Read the following sentences from "The Third Bank of the River."My father was a dutiful, orderly, straightforward man. And according to several reliablepeople of whom I enquired, he had had these qualities since adolescence or evenchildhood. By my own recollection, he was neither jollier nor more melancholy than theother men we knew. Maybe a little quieter.Which of the following sentences is the best paraphrase of this excerpt?My father always seemed to be somewhat sad and withdrawn.As far as I knew, my father had always been a loyal family man.Ever since he was a child, my father was both serious and subdued.From childhood to adulthood, my father was very honest and open. If the normal nucleotide sequence was TACGGCATG, what type of gene mutation is present if the resulting sequence becomes TAGGCATG?A. additionB. deletionC. substitutionD. inversion