A ray in glass arrives at the glass-water interface at an angle of 48° with the normal. The refracted ray, in water, makes a 72° angle with the normal. The index of refraction of water is 1.33. Then the ray in glass is redirected so its new angle of incidence is 37°. What is the new angle of refraction in the water? Show all work.

A Ray In Glass Arrives At The Glass-water Interface At An Angle Of 48 With The Normal. The Refracted

Answers

Answer 1

Answer:

50.4°

Explanation:

Snell's law states:

n₁ sin θ₁ = n₂ sin θ₂

where n is the index of refraction and θ is the angle of incidence (relative to the normal).

When θ₁ = 48°:

n sin 48° = 1.33 sin 72°

n = 1.702

When θ₁ = 37°:

1.702 sin 37° = 1.33 sin θ

θ = 50.4°

Answer 2

The new angle of refraction in the water is [tex]50.35^{\circ}[/tex].

Given data:

The angle made by ray at glass-water interface is, [tex]\theta _{1} = 48^{\circ}[/tex].

The angle made by the refracted ray with the normal is, [tex]\theta_{2} = 72^{\circ}[/tex].

The index of refraction of water is, [tex]n=1.33[/tex].

The angle of incidence for the redirected glass is, [tex]\theta_{3} = 37^{\circ}[/tex].

The entire problem is based on the concepts of Snell's law, which says that the ratio of sine of angle of incidence to sine of angle of refraction is equal to the ratio of refractive index and incident index.

So on applying the Snell's law as,

[tex]n' \times sin \theta_{1} = n \times sin \theta_{2}[/tex]

Here, n' is the index of refraction of glass.

Solving as,

[tex]n' \times sin 48 = 1.33 \times sin 72\\\\n' = \dfrac{ 1.33 \times sin 72}{sin 48} \\\\n' =1.702[/tex]

For redirected condition, again apply the Snell' law as,

[tex]n' \times sin \theta_{3} = n \times sin \theta_{4}[/tex]

Here, [tex]\theta_{4}[/tex]  is the new angle of refraction in the water.

Solving as,

[tex]1.702 \times sin 37 = 1.33 \times sin \theta_{4}\\\\sin \theta_{4} = \dfrac{1.702 \times sin 37}{1.33} \\\\\theta_{4} =sin^{-1}(0.770)\\\\\theta_{4} =50.35^{\circ}[/tex]

Thus, we can conclude that the new angle of refraction in the water is [tex]50.35^{\circ}[/tex].

Learn more about the Snell's law here:

https://brainly.com/question/24181353


Related Questions


The human eye can respond to as little as 10^-18J of light energy. For a wavelength at the peak of visual sensitivity, 550 nm, how many photons lead to an observable flash?

Answers

Answer:

Approximately 3 photons

Explanation:

The energy of a photon at the peak of visual sensitivity is given by:

[tex]E=\frac{hc}{\lambda}[/tex]

where

h is the Planck constant

c is the speed of light

[tex]\lambda=550 nm = 5.5\cdot 10^{-7}m[/tex] is the wavelength of the photon

Substituting into the formula,

[tex]E_1=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^( m/s)}{5.50\cdot 10^{-7} m}=3.6\cdot 10^{-19} J[/tex]

This is the energy of one photon. The human eye can detect an amount of energy of

[tex]E=10^{-18} J[/tex]

So the amount of photons contained in this energy is

[tex]n=\frac{E}{E_1}=\frac{10^{-18} J}{3.6\cdot 10^{-19}J}=2.8 \sim 3[/tex]

so approximately 3 photons.

A ray of light traveling in air strikes the surface of water at an angle of incidence of 35 degrees. Calculate the angle of refraction of the light in water. Index of refraction of water is 1.33, while that for air is 1.00.


Remember to identify all of your data, write the equation, and show your work.

Answers

Answer:

[tex]25.5^\circ[/tex]

Explanation:

To calculate the angle of refraction you can use Snell's law:

[tex]\text{n}_1*\sin\theta_1 = \text{n}_2*\sin\theta_2[/tex]

With what we have:

[tex]\text{n}_1 =1\\\text{n}_2= 1.33\\sin\theta_1 = 35^\circ\\sin\theta_2=x[/tex]

[tex]\therefore 1 *sin35^\circ =1.33*sin\theta_2\\\\sin\theta_2=\frac{1 *sin35^\circ}{1.33}\\\\\theta_2=\sin^{-1}(\frac{1 *sin35^\circ}{1.33})\\\\\theta_2= 25.5476^\circ\approx 25.5^\circ[/tex]

Final answer:

The angle of refraction of light in water can be calculated using Snell's Law, which compares the angles of incidence and refraction and the refractive indices of the two media. In this case, the angle of refraction is approximately 23 degrees.

Explanation:

The angle of refraction of light can be calculated using Snell's Law which states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the ratio of the refractive indices of the two media.



In this case, the angle of incidence is 35 degrees, the refractive index of air is 1.00, and the refractive index of water is 1.33.



Using the formula:



sin(angle of incidence) / sin(angle of refraction) = (refractive index of air) / (refractive index of water)



We can solve for the angle of refraction:



sin(35) / sin(angle of refraction) = 1.00 / 1.33



Simplifying the equation, we find that the angle of refraction is approximately 23 degrees.

Learn more about Angle of refraction in water here:

https://brainly.com/question/32684646

#SPJ3

Person X pushes twice as hard against a stationary brick wall as person Y. Which one of the following statements is correct?
A) Both do positive work, but person X does four times the work of person Y.
B) Both do positive work, but person X does twice the work of person Y.
C) Both do the same amount of positive work.
D) Both do zero work.
E) Both do positive work, but person X does one-half the work of person Y.

Answers

Answer:

D) Both do zero work

Explanation:

The work done by a force is given by:

[tex]W=Fd cos \theta[/tex]

where

F is the force applied

d is the displacement

[tex]\theta[/tex] is the angle between the direction of the force and the displacement

From the formula, we notice that work is done online when the displacement is non-zero, so when the object is moving.

In this problem, the wall is stationary: this means that the displacement is zero, d = 0, so no work is done.

Final answer:

Even though Person X is pushing twice as hard as Person Y, both of them are doing zero work, because the brick wall is not moving. Thus, the displacement is zero, and the work done, according to the Physics formula, is also zero.

Explanation:

The correct answer is D) Both do zero work.

According to the concept of work in Physics, work is defined as the amount of energy transferred by a force over a displacement. It is given by the formula Work = Force x Distance x cosθ. Here, even though Person X is pushing twice as hard, the brick wall isn't moving (i.e., displacement is zero). When the displacement is zero, no matter how much force is applied the work done will be zero because the distance over which the force is applied is zero. Therefore, both Person X and Person Y are doing zero work.

Learn more about Work in Physics here:

https://brainly.com/question/26750189

#SPJ6

Due tomorrow pls help.
Review the properties of meters used in electric circuits by placing an X in the correct column.

Answers

Answer:

Ammeter:

- measures current

-connected in series

-measurement expressed in amperes

-measures the amount of charge per second passing through

The rest is for voltmeter

Explanation:

Properties of an Ammeter:

Measures current.Connected in series.Measurement expressed in amperes.Measures the amount of charge per second passing through.

Properties of a Voltmeter:

Measures potential difference.Connected in parallel.Measurement expressed in volts.Measures the change in energy per unit charge between two points.

What is an Ammeter?An ammeter is a device which used to measure the electric current in a circuit.The SI unit of electric current is Amperes (A).The ammeter is usually connected in series to measure the current. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured.

What is Voltmeter?A voltmeter is a device which used for measure the electric potential difference between two points in an electric circuit.It is connected in parallel.The SI unit of potential difference or voltage is Volts (V).It usually has a high resistance so that it takes negligible current from the circuit.

Learn more about resistance for an ideal ammeter and voltmeter here -https://brainly.com/question/82784

#SPJ2

What is the largest tsunami ever recorded

Answers

Answer:

A tsunami with a record run-up height of 1720 feet occurred in Lituya Bay, Alaska. On the night of July 9, 1958, an earthquake along the Fairweather Fault in the Alaska Panhandle loosened about 40 million cubic yards (30.6 million cubic meters) of rock high above the northeastern shore of Lituya Bay.

Explanation:

The largest tsunami ever recorded was a megatsunami in Lituya Bay, Alaska, reaching 1722 ft (525 m) due to a rockslide caused by a magnitude 7.8 earthquake in 1958.

The largest tsunami ever recorded occurred in Lituya Bay, Alaska, on July 9, 1958. A magnitude 7.8 earthquake triggered a massive rockslide, which caused a megatsunami, creating a wave that reached 1722 ft (525 m) above sea level. The landslide displaced a huge amount of water, which surged up the opposite side of the bay.

This is the highest wave ever known, dwarfing other catastrophic events like the Chilean earthquake tsunami of 1960 and the Tohoku-oki Earthquake tsunami in Japan in 2011. Despite the height of the 1958 megatsunami, it should be noted that the most devastating in terms of loss of life was the 2004 Indian Ocean tsunami, triggered by a magnitude 9 earthquake that took approximately 230,000 lives.

The separation of white light into its component colors is
a. reflectionb. refractionc. dispersiond. transmission

Answers

Answer: dispersion

The dispersion of light occurs when a beam of white light (which is compound of many wavelengths or "colors") is refracted (the different rays of light are diverted depending on their wavelengths) in some medium, leaving their constituent colors separated.

The best known case is when a beam of white light from the sun passes through a prism, thus obtaining rays of different colors like those of the rainbow.

This phenomenom was named by Isaac Newton in the  eighteenth century, who performed the experiment explained above.

Hence, the correct option is C.

Acceleration is defined as the change in velocity divided by

Answers

Answer:

Time elapsed

Explanation:

Acceleration is a vector quantity. It is defined as:

[tex]a=\frac{v-u}{t}[/tex]

where

v is the final velocity

u is the initial velocity

t is the time elapsed

Acceleration is measured in meters per second squared (m/s^2). It must be noticed that acceleration is a vector, so it also has a direction. In particular:

- when acceleration is negative, it means that the object is slowing down, so acceleration is in opposite direction to the velocity

- when acceleration is positive, it means that the object is speeding up, so acceleration is in the same direction as the velocity

Final answer:

Acceleration is the rate of change in velocity over a time period. It is a vector with direction and magnitude and is measured in m/s². The average acceleration is calculated by the formula 'change in velocity ÷ time interval'.

Explanation:

Acceleration is defined as the change in velocity divided by the time period during which this change occurs. It is the rate at which velocity changes, represented by the formula 'average acceleration = change in velocity ÷ time interval' over which it changed. This concept can be understood well with a velocity versus time graph, where the slope represents acceleration. Namely, slope = change in velocity ÷ change in time.

Acceleration is a vector, indicating it possesses both magnitude and direction. It is measured in SI units as meters per second squared or m/s², indicating how velocity changes every second. Thus, acceleration can occur due to a change in speed (magnitude of velocity), change in direction, or both.

Learn more about Acceleration here:

https://brainly.com/question/11789833

#SPJ6

Christopher came down with chicken pox after spending time in his child's day care. The chicken pox represents what link in the chain of transmission in this scenario? A. Susceptible host B. Infectious agent C. Mode of transmission D. Portal of entry E. Reservoir Reset Next

Answers

B the chicken pox is the infectious agent

Which scientist’s notebooks are still too radioactive to handle?

Answers

Answer: Marie Curie's notebooks

Explanation:

Marie Curie's notebooks, as well as all of her belongings, including her clothes, were contaminated with ionizing radiation. In fact, also those of her husband, because this couple of scientists discovered the radioactivity of several elements, helping the advance of science, but did not know about the consequences of dealing with these materials without adequate protection.  

It should be noted that Curie's notes are stored in the basements of the National Library of France, stored in thick lead boxes and those who wish to access these documents must follow the appropriate protocol to treat radioactive material, wear appropriate clothing and sign a responsibility agreement before allowing them to review the documents.

What is the longest wavelength light capable of ionizing a hydrogen atom in the ground state?

Answers

Answer:

[tex]9.12\cdot 10^{-8} m[/tex]

Explanation:

The energy needed to ionize a hydrogen atom in the ground state is:

[tex]E=13.6 eV= 2.18\cdot 10^{-18}J[/tex]

The energy of the photon is related to the wavelength by

[tex]E=\frac{hc}{\lambda}[/tex]

where

h is the Planck constant

c is the speed of light

[tex]\lambda[/tex] is the wavelength

Solving the formula for the wavelength, we find

[tex]\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{2.18\cdot 10^{-18}J}=9.12\cdot 10^{-8} m[/tex]

Final answer:

The longest wavelength of light that can ionize a hydrogen atom in its ground state is approximately 91.2 nanometers (nm), which falls in the ultraviolet range of the electromagnetic spectrum.

Explanation:

The longest wavelength light capable of ionizing a hydrogen atom in the ground state is associated with the energy required to remove an electron from a hydrogen atom that is in its ground state (n=1). In physics, the process of ionization involves providing enough energy to an atom to remove its electron. The energy of a photon of light is inversely proportional to its wavelength, according to the relationship E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength.

The energy required to ionize hydrogen from the ground state is 13.6 eV, which is the ionization energy of hydrogen. We can calculate the longest wavelength of light capable of ionizing hydrogen using the formula λ = hc/E. The constant values are h = 6.626 x 10-34 J·s, and c = 3 x 108 m/s. Therefore, the longest wavelength, λ, is given by λ = (6.626 x 10-34 J·s * 3 x 108 m/s) / (13.6 eV * 1.602 x 10-19 J/eV), which calculates to approximately 91.2 nm.

Thus, the longest wavelength of light that can ionize hydrogen in its ground state is about 91.2 nanometers (nm), which falls in the ultraviolet (UV) range of the electromagnetic spectrum.

2. Why is estimating the number of species on Earth so difficult and why do these estimates vary so greatly?

Answers

Answer:

its beacuse there are millions of species in the world, and there are still mooooore speacies we still dont know about. its impossible to study all of them it will take a great amount of time to discover and study them.but, the most mysterious place is the ocean we know more about space than we know about the ocean. the ocean is sooo HUUUUUGGGGGE and  massive it covers 70% of the world, imagine how many species will be in a place that covers 70% we still dont know about.

~batmans wife dun dun dun....

Estimating the number of species on Earth so difficult due to man not

discovering all the species on earth yet.

There is a large amount of species yet to be discovered by scientists due to

how big the earth is. The earth comprises of the land and various water

bodies. Most discoveries have been with land organisms as that is where we

live.

In water bodies such as seas, oceans there are many species yet to discover

as they are very large and humans don't live in it giving rise to less

discoveries.

Read more on https://brainly.com/question/17354219

An incompressible fluid flows steadily through a pipe that has a change in diameter. The fluid speed at a location where the pipe diameter is 8.0 cm is 1.28 m/s. What is the fluid speed at a location where the diameter has narrowed to 4.0 cm?

Answers

Answer:

5.10 m/s

Explanation:

The volumetric flow rate for an incompressible fluid through a pipe is constant, so we can write:

[tex]A_1 v_1 = A_2 v_2[/tex] (1)

where

[tex]A_1[/tex] is the cross-sectional area of the first part of the pipe

[tex]A_2[/tex] is the cross-sectional area of the second part of the pipe

[tex]v_1[/tex] is the speed of the fluid in the first part of the pipe

[tex]v_2[/tex] is the speed of the fluid in the second part of the pipe

Here we have:

[tex]v_1 = 1.28 m/s[/tex]

[tex]r_1 = \frac{8.0 cm}{2}=4.0 cm = 0.04 m[/tex] is the radius in the first part of the pipe, so the area is

[tex]A_1 = \pi r_1^2 = \pi (0.04 m)^2 =5.02\cdot 10^{-3}m^2[/tex]

[tex]r_2 = \frac{4.0 cm}{2}=2.0 cm = 0.02 m[/tex] is the radius in the first part of the pipe, so the area is

[tex]A_2 = \pi r_2^2 = \pi (0.02 m)^2 =1.26\cdot 10^{-3}m^2[/tex]

Using eq.(1), we find the fluid speed at the second location:

[tex]v_2 = \frac{A_1 v_1}{A_2}=\frac{(5.02\cdot 10^{-3} m^2)(1.28 m/s)}{1.26\cdot 10^{-3} m^2}=5.10 m/s[/tex]

The fluid speed at a location where the diameter has narrowed to 4.0 cm is 5.12 m/s

[tex]\texttt{ }[/tex]

Further explanation

The basic formula of pressure that needs to be recalled is:

Pressure = Force / Cross-sectional Area

or symbolized:

[tex]\large {\boxed {P = F \div A} }[/tex]

P = Pressure (Pa)

F = Force (N)

A = Cross-sectional Area (m²)

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

diameter of pipe at location 1 = d₁ = 8.0 cm

speed of fluid at location 1 = v₁ = 1.28 m/s

diameter of pipe at location 2 = d₂ = 4.0 cm

Asked:

speed of fluid at location 2 = v₂ = ?

Solution:

We will use Continuity Equation as follows:

[tex]A_1 v_1 = A_2 v_2[/tex]

[tex]\frac{1}{4}\pi (d_1)^2 v_1 = \frac{1}{4} \pi (d_2)^2 v_2[/tex]

[tex](d_1)^2 v_1 = (d_2)^2 v_2[/tex]

[tex]v_2 = (\frac{d_1}{d_2})^2 v_1[/tex]

[tex]v_2 = (\frac{8}{4})^2 \times 1.28[/tex]

[tex]v_2 = 2^2 \times 1.28[/tex]

[tex]v_2 = 4 \times 1.28[/tex]

[tex]v_2 = 5.12 \texttt{ m/s}[/tex]

[tex]\texttt{ }[/tex]

Learn moreMinimum Coefficient of Static Friction : https://brainly.com/question/5884009The Pressure In A Sealed Plastic Container : https://brainly.com/question/10209135Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Pressure

[tex]\texttt{ }[/tex]

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant , Liquid , Pressure

Jason fought in the war in Iraq and witnessed some horrific sights. When he got home from the war, Jason didn't seem to remember these shocking events anymore. What happened?

Jason probably has repressed the memories.
Jason's experiences were stored in his false memory.
Jason has amnesia.

Answers

Answer:

Jason has repressed the memories

Explanation:

Answer:

Jason has amnesia.

Explanation:

Amnesia is a kind of memory loss. Some people cannot learn new things and this is known as anterograde amnesia. Some people forget events from their past and this is called as retrograde amnesia. Jason has retrograde amnesia because he has forgotten his past events. The causes for this disease are given below:

i) Brain injuries  

ii) Certain drugs and alcohol  

iii) Traumatic events  

The impulse experienced by a body is equivalent to the body’s change in

Answers

Answer:

Momentum

Explanation:

The momentum of a particle is defined as the product of the particle mass and the particle velocity as follows:

[tex]\overrightarrow{p}=m\overrightarrow{v}[/tex]

On the other hand, the impulse of a constant force is defined as:

[tex]\overrightarrow{J}=\varSigma\overrightarrow{F}(t_{2}-t_{1})=\varSigma\overrightarrow{F}\Delta t[/tex]

We also know that the net force acting on  a particle equals the rate of change  of the particle’s momentum, so:

[tex]\varSigma\overrightarrow{F}=m\overrightarrow{a}=m\frac{d}{dt}(\overrightarrow{v})=\frac{d}{dt}(m\overrightarrow{v})=\frac{d\overrightarrow{p}}{dt}[/tex]

If the force is constant, then [tex]\frac{d\overrightarrow{p}}{dt}[/tex] equals the total change in momentum over a period of time:

[tex]\varSigma\overrightarrow{F}=\frac{\overrightarrow{p_{2}}-\overrightarrow{p_{1}}}{t_{2}-t_{1}} \\ \\ \varSigma\overrightarrow{F}(t_{2}-t_{1})=\overrightarrow{p_{2}}-\overrightarrow{p_{1}} \\ \\ \boxed{\overrightarrow{J}=\Delta \overrightarrow{p}}[/tex]

Final answer:

The impulse experienced by a body is equivalent to its change in momentum. This principle is based on Newton's second law of motion. Impulse is the product of the force and the duration over which it is applied.

Explanation:

The impulse experienced by a body is equivalent to the body’s change in momentum. This principle is based on Newton's second law, which in terms of momentum states that the net force applied to a system equals the rate of change of the momentum that the force causes. In simpler terms, when a force is applied on an object for a certain amount of time, the object experiences an impulse. This impulse is the difference between the initial and final momentum of the object.

For example, consider a ball bouncing off a floor. If the force of the floor on the ball is constant over a specific duration, then the resulting impulse or change in momentum can be calculated by multiplying the force by the duration of the force application. So, an impulse can cause the object's motion to change due to the effect it has on the ball's momentum.

Learn more about Impulse and Momentum here:

https://brainly.com/question/33450468

#SPJ3

The coefficient of static friction between waxed skis and now snow is 0.14. What force will be needed to get a 700 N skier at rest moving?
A: 28 N
B: 70 N
C: 98 N
D: 980 N

Answers

Answer:

C. 98 N

Explanation:

The force needed to get the skier at rest moving must be at least equal to the maximum static frictional force acting on the skier, which is given by

[tex]F=\mu W[/tex]

where

[tex]\mu = 0.14[/tex] is the coefficient of static friction

W = 700 N is the weight of the skier

Substituting into the equation, we find

[tex]F=(0.14)(700 N)=98 N[/tex]

Answer:

c

Explanation:

μ = f/N where μ is the coefficient of friction; f is the amount of force that resists motion, and N is the normal force. You must solve for f here so 700 N x .14 = 98 N.

About 0.1 eV is required to break a "hydrogen bond" in a protein molecule. Calculate the minimum frequency and maximum wavelength of a photon that can accomplish this.minimum frequencyHzmaximum wavelengthm

Answers

Answer:

Frequency: [tex]2.41\cdot 10^{13}Hz[/tex], Wavelength: [tex]1.24\cdot 10^{-5}m[/tex]

Explanation:

The energy of the photon is equal to the energy required to break the bond, so 0.1 eV.

First of all, we need to convert the energy of the photon from eV to Joule:

[tex]E=0.1 eV \cdot (1.6\cdot 10^{-19}J/eV)=1.6\cdot 10^{-20} J[/tex]

The energy of the photon is related to its frequency by:

[tex]E=hf[/tex]

where h is the Planck constant and f is the frequency.

Solving for f,

[tex]f=\frac{E}{h}=\frac{1.6\cdot 10^{-20}J}{6.63\cdot 10^{-34}Js}=2.41\cdot 10^{13}Hz[/tex]

The wavelength instead is given by

[tex]\lambda=\frac{c}{f}[/tex]

where c is the speed of light. Substituting,

[tex]\lambda=\frac{3\cdot 10^8 m/s}{2.41\cdot 10^{13} Hz}=1.24\cdot 10^{-5}m[/tex]

The minimum frequency required to break a hydrogen bond in a protein molecule is approximately[tex]\(2.4 \times 10^{13}\)[/tex] Hz, and the maximum wavelength of a photon that can accomplish this is approximately[tex]\(1.2 \times 10^{-5}\)[/tex] m.

To calculate the minimum frequency of a photon that can break a hydrogen bond in a protein molecule, we use the energy of a photon given by the equation [tex]\(E = h \nu\),[/tex]where E is the energy of the photon, (h) is Planck's constant, and [tex]\(\nu\)[/tex] is the frequency. We can rearrange this equation to solve for the frequency:

[tex]\[\nu = \frac{E}{h}\][/tex]

Given that [tex]\(E = 0.1\) eV[/tex], we first convert this energy to joules (J), knowing that 1 eV is equivalent to[tex]\(1.602 \times 10^{-19}\) J:[/tex]

[tex]\[E = 0.1 \times 1.602 \times 10^{-19} \text{ J} = 1.602 \times 10^{-20} \text{ J}\][/tex]

Now, using Planck's constant[tex]\(h = 6.626 \times 10^{-34}\)[/tex] J·s, we can find the minimum frequency:

[tex]\[\nu = \frac{1.602 \times 10^{-20} \text{ J}}{6.626 \times 10^{-34} \text{ J}} =2.416 \times 10^{13} \text{ Hz}\][/tex]

We can rearrange this equation to solve for the wavelength:

[tex]\[\lambda = \frac{c}{\nu}\][/tex]

Using the speed of light [tex]\(c = 3 \times 10^8\) m/s,[/tex] we can find the maximum wavelength:

[tex]\[\lambda = \frac{3 \times 10^8 \text{ m/s}}{2.416 \times 10^{13} \text{ Hz}} =1.243 \times 10^{-5} \text{ m}\][/tex]

How will a current change if the voltage in a circuit is held constant while the resistance doubles?

Answers

Answer:

The current will drop to half of its original value.

Explanation:

To solve this problem, we must use Ohm's law that states that in a circuit the voltage [tex]v[/tex] across a resistor is directly proportional to the current that flows through that circuit. In other words:

[tex]v \propto Ri \\ \\ or: \\ \\ v=Ri \\ \\ It's \ also \ valid: i=\frac{v}{R}[/tex]

According to our problem, if the voltage in the circuit is held constant while the resistance double, that is [tex]R_{New}=2R \ and \ v_{New}=v[/tex]. So:

[tex]v=R_{New}i_{New} \\ \\ v=2Ri_{New} \\ \\ Isolating \ i_{New}: \\ \\ i_{New}=\frac{v}{2R} \therefore i_{New}=\frac{1}{2}\frac{v}{R} \therefore i_{New}=\frac{1}{2}i[/tex]

In conclusion, the current will drop to half of its original value.

which unit describes the amount of potential energy that each charge has in a circuit?
A.Voltage
B.Resistance
C.Current
D.Power

Answers

Answer:

I believe the answer is A. Voltage

Explanation:

Answer:

[tex]A. Voltage[/tex]

Explanation:

As we know that electric potential is defined as the work done to move a unit charge from one potential to other potential.

Here the unit charge is moved from lower potential to higher potential then in that case the work done to move the charge is stored in the form of potential energy

this is given as

[tex]V = \frac{W}{q}[/tex]

so here we can say that the correct answer for the amount of potential energy for each charge is given as

[tex]A. Voltage[/tex]

Please help on this one?

Answers

the upside down image means an inverted image and for an inverted image, magnification is negative

so the answer is -m

A hockey puck is set in motion across a frozen pond. If ice friction and air resistance are neglected, the force required to keep the puck sliding at constant velocity is A) zero. B) equal to its weight divided by its mass. C) equal to the product of its mass times its weight.

Answers

Answer:

Zero

Explanation:

According to Newton's second law, the net force acting on an object is equal to the product between the object's mass and its acceleration:

F = ma

For the hockey puck, there are no forces acting on it during its motion, since ice friction and air resistance are negligible. This means that the net force is zero:

F = 0

But this means that the acceleration is also zero:

a = 0

So the hockey puck is moving already at constant velocity. Therefore, there is no need for additional forces.

Final answer:

The force required to maintain a hockey puck's constant velocity across a frictionless ice pond, where air resistance is also neglected, is zero, in accordance with Newton's first law of motion.

Explanation:

The question pertains to dynamics in classical mechanics, specifically to Newton's first law of motion which states that an object in motion will remain in motion at a constant velocity if no net external force acts upon it. Since the question specifies a scenario where air resistance and ice friction are neglected, the force required to keep the puck sliding at constant velocity is zero. This is because there are no external forces acting on the puck to change its state of motion.

In a hypothetical frictionless environment, once the hockey puck is set in motion, it does not require any additional force to maintain its velocity due to the absence of resistive forces such as friction and air resistance. Indeed, this is an idealized situation, but it helps us understand the principle that, without external forces, a moving object will continue to move at a constant speed and direction.

A measure of the average kinetic energy of the individual particles in an object is called

Answers

Answer: Temperature

Temperature is a physical quantity that reflects the amount of heat in a body or medium. This amount of heat is related to the internal energy of a system (thermodynamically speaking), according to the movement (speed) of each of the particles that compose it, this means that it is related to its kinetic energy.

Therefore, the higher the kinetic energy, the higher the thermal energy in the system and the higher the temperature.

Answer:

All matter is made up of tiny particles. These particles are always moving even if the matter they make up is stationary. Recall that the energy motion is called kinetic energy. So all particles of matter have kinetic energy. Temperature is a measure of the average kinetic energy of the individual particles in matter.

Explanation:

Which types of electromagnetic waves have wavelengths that are longer than those of visible light but shorter than those of microwaves? gamma rays X-rays infrared light radio waves

Answers

Answer:

Infrared

Explanation:

An electromagnetic spectrum is an arrangement of electromagnetic waves in order of increasing frequency and decreasing wavelengths.The spectrum ranges from gamma rays which have the highest frequency and the shortest wavelength to radio waves which have the longest wavelength and the lowest frequency and energy.Other electromagnetic waves in the spectrum are, microwaves, infrared, Visible light, ultra-violet radiation and X-rays.The infrared light of electromagnetic wave has wavelength that is longer than the visible light but shorter than the microwave.

Answer:

Infrared

Explanation:

which best demonstrates friction
A)an iceskater sliding across the ice without noticeably slowing down
B)a car rolling to a stop at a traffic light
C)a baseball moving in a projectile motion
D)the free fall of astronauts in orbit

Answers

Answer:

B!

Explanation:

(I suck at explaining things) Basically the car has friction with the road as it slows to a stop.

The option that best demonstrates friction is a car rolling to a stop at a traffic light. Thus, the correct option for this question is B.

What is Friction?

Friction may be defined as a type of force that significantly resists or opposes the relative motion between two surfaces of objects when they come in direct contact with each other. In a more simple sense, friction is characterized as the rubbing of one body over the surface of another.

Option C and option D do not involve the contact of one body with the surface of another. So, both these options are eliminated. In option A, an ice skater slides across the ice, but it is not noticeably slowing down, so friction is zero.

Therefore, the option that best demonstrates friction is a car rolling to a stop at a traffic light. Thus, the correct option for this question is B.

To learn more about Friction, refer to the link:

https://brainly.com/question/24338873

#SPJ2

Select the correct answer. Veins carry blood from the capillaries to the venules. A. True B. False

Answers

Answer:

false

Explanation:

veins carry blood towards the heart after blood passes through the capillaries.

Answer:

False

Explanation:

Veins are vessels that carry  deoxygenated blood back to the heart.

A convex mirror, like the passenger-side rearview mirror on a car, has a focal length of -3.0 m . An object is 6.0 m from the mirror.Part A) Use ray tracing to determine the location of its image. How far is the image from the mirror? Input positive value if the image is on the same side from the mirror as an object and negative if the image is on the other side.Part B) Is the image upright or inverted? Is it real or virtual?

Answers

A) -2.0 m

Look at the ray diagram attached in the picture, where:

p identifies the location of the object

q identifies the location of the image

F identifies the focus of the mirror

Each tick represents 1 m

We have

p = 6.0 m is the distance of the object from the mirror

f = -3.0 m is the focal length

From the ray diagram, we see that q has a distance of 2.0 m from the mirror, and it's on the other side of the mirror compared to the object, so

q = -2.0 m

This can also be verified by using the mirror equation:

[tex]\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{-3.0 m}-\frac{1}{6.0 m}=-\frac{3}{6.0 cm}\\q = \frac{-6.0 cm}{3}=-2.0 cm[/tex]

B) Upright and virtual

As we see from the picture, the image is upright, since it has same orientation as the object.

Also, we notice that the image is on the other side of the mirror, compared to the object. For a mirror,

- An image is said to be real if it is on the same side of the object

- An image is said to be virtual if it is on the opposite side of the mirror

Therefore, this means that the image is virtual.

Final answer:

The image is located 2.0 m behind a convex mirror when the object is 6.0 m away, and the image will be virtual and upright.

Explanation:

To determine the location of the image formed by a convex mirror with a focal length of -3.0 m when an object is placed 6.0 m from it, we use the mirror equation:

1/f = 1/do + 1/di

Where f is the focal length, do is the object distance, and di is the image distance. Since we know that the focal length is -3.0 m and the object distance is 6.0 m, we can plug these values into the equation:

1/(-3.0) = 1/6.0 + 1/di

Calculating the image distance di, we find:

di = -2.0 m

This means the image is located 2.0 m behind the mirror, hence we use a negative value to indicate that the image is on the other side of the mirror, which corresponds to a virtual image.

For Part B), since convex mirrors always form virtual, upright images, the image formed will be upright and virtual.

Why do thunderstorms most often occur in the summer months?

Answers

Answer:

Because moisture and warmth are crucial to thunderstorms

Orbital velocity is the average speed ofa planet moving through space in itsorbit around the sun. Which of thefollowing planets has the fastestorbital velocity?A MercuryB JupiterC MarsD Pluto

Answers

Answer:

Mercury

Explanation:

The force of gravity is equal to the mass times the centripetal acceleration:

Fg = m v² / r

Also, the force of gravity is defined by Newton's law of universal gravitation, which states the Fg = mMG / r², where m and M are the masses of the objects, G is the universal constant of gravitation, and r is the distance between the objects.

mMG / r² = m v²/ r

MG / r = v²

This means the square of the orbital velocity is equal to the mass of the sun times the universal constant of gravity divided by the orbital radius.  So whichever planet has the smallest orbital radius will have the highest orbital velocity.  Of the four options, that would be Mercury.

Two very small spherical metal objects, each with 1 coulomb of charge, are brought together in a vacuum so that the separation distance between their centers is 1 mm. what is the force of repulsion between the two object? (coulomb's constant is k=9.0 × 109 n.m2/c2.)

Answers

Answer: 9*10^15 N

Force=kqq/r^2

F=[(9*10^9)(1)(1)]/.001^2=9.0*10^15

Answer:

The force of repulsion between the two object is 9*10¹⁵ N

Explanation:

Coulomb's law indicates that charged bodies suffer a force of attraction or repulsion when approaching. The value of said force is proportional to the product of the value of its loads and inversely proportional to the square of the distance that separates them. This is expressed mathematically by the expression:

[tex]F=K*\frac{Q*q}{r^{2} }[/tex]

where:

F is the electrical force of attraction or repulsion. In the International System it is measured in Newtons (N). Q and q are the values ​​of the two point charges. In the International System they are measured in Culombios (C). r is the value of the distance that separates them. In the International System it is measured in meters (m). K is a constant of proportionality called constant of Coulomb's law.   It depends on the medium in which the loads are located. For vacuum K is approximately 9*10⁹ [tex]\frac{N*m^{2} }{C^{2} }[/tex] in the International System.

From this law it is possible to predict the electrostatic force of attraction or repulsion between two particles according to their electrical charge and the distance between them.

The force will be of attraction if the charges are of opposite sign and of repulsion if they are of the same sign.

In this case:

Q=q= 1 Cr=1 mm= 0.001 m

Then:

[tex]F=9*10^{9} \frac{N*m^{2} }{C^{2} } *\frac{1 C*1C}{(0.001m)^{2} }[/tex]

So:

F=9*10¹⁵ N

The force of repulsion between the two object is 9*10¹⁵ N

Suppose a bicycle was coasting on a level surface, and there was no friction. What would happen to the bicycle?

Answers

If there is no friction and no horizontal force acting on the bicycle, then the bicycle keeps rolling at a constant speed in a straight line, until the cows come home, Dante's Inferno freezes over, and the POTUS accepts some responsibility for his words, actions, and consequences.

Answer:

It would keep going at constant speed.

Explanation:

an object is placed along the principal axis of a thin converging lens that has a focal length of 14 cm. if the distance from the object to the lens is 21 cm, what is the distance from the image to the lens

Answers

Answer:

42 cm

Explanation:

For a converging lens, the focal length is positive:

f = +14 cm

In this problem, the distance of the object from the lens is 21 cm:

p = +21 cm

The distance of the image from the lens can be found by using the lens equation:

[tex]\frac{1}{f}=\frac{1}{p}+\frac{1}{q}[/tex]

where q is the image distance. Solving the formula for q and substituting the numbers, we find

[tex]\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{14 cm}-\frac{1}{21 cm}=\frac{1}{42 cm}\\q= 42 cm[/tex]

Other Questions
A certain city has a population of 10000 and increases by 4% per year. What will the population be 5 years later? (The answer has been simplified.)53782121671200030000 if i have a 0.75 ( F ) and i get an A x2 what will my grade be How do the bodys exterior lines of defense prevent illness? (7th grade Science)A) They prevent pathogens from entering the body.B) They make antibodies to protect against new pathogens. C) They warn the body that pathogens have entered the body.D) They cause fevers so that the body is too hot for pathogens to survive. Who is called the Father of Humanism because he led the way in reviv-ing interest and study in classical literature? The phone company NextFell has a monthly cellular plan where a customer pays a flat monthly fee and then a certain amount of money per minute used on the phone. If a customer uses 210 minutes, the monthly cost will be $108.5. If the customer uses 620 minutes, the monthly cost will be $252.A) Find an equation in the form y=mx+b, where x is the number of monthly minutes used and y is the total monthly of the NextFell plan.Answer: y=B) Use your equation to find the total monthly cost if 979 minutes are used.Answer: If 979 minutes are used, the total cost will be dollars.Get help: Video The distance versus this plot for a particular object shows a quadratic relationship. Which column of distance data is possible for this solution? A mining company has two mines. One day's operation at mine #1 produces ore that contains 30 metric tons of copper and 600 kilograms of silver, while one day's operation at mine #2 produces ore that contains 40 metric tons of copper and 380 kilograms of silver. Let v1 = (30, 600) [vector] and v2 = (40, 380) [vector]. Then v1 and v2 represent the "output per day" of mine #1 and mine #2, respectively.a) What physical interpretation can be given to the vector 5v1?b) Suppose the company operates mine #1 for x1 days and mine #2 for x2 days. Write a vector equation whose solution gives the number of days each mine should operate in order to produce 240 tons of copper and 2824 kilograms of silver. Do not solve the equation.c) [M] Solve the equation in (b). Dan runs a busy desktop-publishing company. His company want to increase its exposure, so it runs a new a new promotion each week. The tool dan most likely choses to publicize this is a promotion is a Who was the first chief justice of the supreme court If it takes John 10 hours to paint the fence, how long will it take John and his 2 friends to do the job if they work at the same rate? If it takes John 10 hours to paint the fence, how long will it take John and his 2 friends to do the job if they work at the same rate? A nerve impulse travels from one cell to another by passing A- one axon to another axonB- one dentrite to an axonC- one axon to a dentrite D- one dentrite to another dentrite When jill tried on a very fashionable but expensive coat, she thought it looked great. however, she initially felt guilty about buying the coat because she couldn't afford it. later that night, she rationalized her decision by saying that the coat is one of a kind, and considering how lovely it looks, it is quite a bargain. this example illustrates:? The ratio of men to women working for a company is 5 to 7. If there are 156 employees total, how many women work for the company? i have 5 MIN hurry please Read the sentence.The boy ate the fresh broccoli.Which sentence diagram correctly represents this sentence? PLEASE HELP I NEED THE ANSWER QUICK!!! Can you Solve |2a-1|=7 Which part of a sperm cell is responsible for providing the cell's energy? A.round head B.mitochondria section C.flagellum D.cell wall (14x^(2)-21x)/(2x-3)need answer now please! show work Which statement describes the rate of change of the following function?f(x) = 9x - 4A. The function has a constant rate of change, decreasing for all x at a rate of 4. B. The function has a constant rate of change, increasing for all x at a rate of 9. C. The function has a varying rate of change when x > 9. D. The function has a varying rate of change when x < 4. Probability of getting HH