Answer:
Answer:
a) k = 0.1875 m
b) r2 = 0.46875 m
c) q = -1.125*10^-8 C
Step-by-step explanation:
Given:
- The total Length of rod L = 1.5 m
- The total charge of the rod Q = -9 * 10^8 C
- Total section of a rod n = 8
Find:
1. What is the length of one of these pieces?
2. What is the location of the center of piece number 2?
3. How much charge is on piece number 2?
Solution:
- The entire rod is divided into 8 pieces, so the length of each piece would be k:
k = L / n
k = 1.5 / 8
k = 0.1875 m
- The distance from center of entire rod and center of section 2 is 2.5 times the section length
r2 = 2.5*k
r2 = 2.5*(0.1875)
r2 = 0.46875 m
- Assuming the charge on the rod is uniformly distributed. The the charge for each section of rod is given by q:
q = Q / n
q = -9 * 10^8 / 8
q = -1.125*10^-8 C
The length of one of the eight pieces of the rod is 0.1875 m. The center of piece number 2 is at <0.28125, 0, 0> m. The charge on piece number 2 is -1.125e-08 Coulombs.
Explanation:The problem involves the concepts of electric field, charge distribution, and coordinate system in Physics. Let's answer the question part by part:
The length of one of these pieces is the total length divided by the number of pieces. That is, 1.5 m / 8 = 0.1875 m.The center of piece number 2 would be one and a half times the length of one piece, to the right of the origin in the x-direction; hence, it is at <0.28125, 0, 0> m.The charge on piece number 2 is the total charge divided by the number of pieces. That is, -9e-08 C / 8 = -1.125e-08 Coulombs.Learn more about Electric Field Calculation here:https://brainly.com/question/34817608
#SPJ3
Evan has $0.45 worth of pennies and nickels. He has a total of 21 pennies and nickels altogether. Determine the number of pennies and the number of nickels that Evan has.
The number of pennies and nickels that has a worth of $0.45 is 15 and 6 respectively
Given:
total worth = $0.45
Total coins = 21
let
number of pennies = x
number of nickels = y
x + y = 21 (1)
0.01x + 0.05y = 0.45 (2)
multiply (1) by 0.01
0.01x + 0.01y = 0.21 (3)
0.01x + 0.05y = 0.45 (2)
subtract (2) from (1)
0.05y - 0.01y = 0.45 - 0.21
0.04y = 0.24
y = 0.24 / 0.04
y = 6
substitute y = 6 into (1)
x + y = 21 (1)
x + 6 = 21
x = 21 - 6
x = 15
Therefore, the number of pennies and nickels that has a worth of $0.45 is 15 and 6 respectively.
Learn more about equation:
https://brainly.com/question/13136492
Mr. Daniels is building a clubhouse for his children. He has decided that the floor will be square with an area of 64 square feet. Write this number using a power greater than 1 and a lesser base.
Step-by-step explanation:
Here, given:
The area of the square floor = 64 sq. ft
Now, as given the floor is in the shape of a square.
Let us assume the side length of the floor = k ft
Area of a square = (Side) x (Side)
= k x k = 64 sq ft
⇒ k ² = 64 = (8) ²
⇒ k = 8 ft
Hence, 64 sq ft = ( 8 ft) ²
Here, base = 8 and power = 2, which is greater than 1.
Beth is writing out the steps using the "Shortest Route Algorithm". She just finished writing out all the routes for the third step. What route should she circle next?
Group of answer choices
AD; 8
ACE; 6
ACBE; 8
ACBD; 7
Answer:
ACBD; 7Explanation:
The "Shortest Route Algorigtm" aims to determine the most efficient or short route, when a several alternative pahtways can connect or be used to implement a solution.
A graph is drawn with the different nodes and paths that connect them. The distance between every pair of consecutive nodes is written.
The picture shows that for the step #1, there are, in principle, three routes: AB, AC, and AD.
AB must be discarded because it is not viable (a negative distance is not possible).
AC is more efficient than AD because the distance of AC is 3 and the distance of AD is 8. Thus AC is selected and circled.
To continue from AC, the possible routes are shown in step #2. They are ACB; 3 and ACE; 6.
ACB i s shorter, thus ACB is circled.
In step #3, the possible routes are ACBE; 8 and ACBD; 7. Thus, route ACBD is shorter, and it shall be circled.
The conclusion of the algorithm is that the route ACBD is the shoretes (most efficient).
The route to circle next is route ACBD; 7
From the question, we understand that she wants to determine the shortest route.
This means that, she has to circle the node with the smallest value in each step.
From the diagram, the smallest node in step 3 is ACBD; 7
Hence, the route to circle next is route ACBD; 7
Read more about algorithms at:
https://brainly.com/question/24793921
Using the distance formula, d = √(x2 - x1)2 + (y2 - y1)2, what is the distance between point (-2, 2) and point (4, 4) rounded to the nearest tenth?
5.7 units
4 units
6.3 units
1 unit
Answer:
The distance is 6.3 units
In the past, every ten-percentage-point increase in cigarette prices in the country of Coponia has decreased per capita sales of cigarettes by four percent. Coponia is about to raise taxes on cigarettes by 9 cents per pack. The average price of cigarettes in Coponia is and has been for more than a year 90 cents per pack. So the tax hike stands an excellent chance of reducing per capita sales of cigarettes by four percent.
Which of the following is an assumption on which the argument depends?
A. Tobacco companies are unlikely to reduce their profit per pack of cigarettes to avoid an increase in the cost per pack to consumers in Coponia.
B. Previous increases in cigarette prices in Coponia have generally been due to increases in taxes on cigarettes.
C. Any decrease in per capita sales of cigarettes in Coponia will result mainly from an increase in the number of people who quit smoking entirely.
D. At present, the price of a pack of cigarettes in Coponia includes taxes that amount to less than ten percent of the total selling price.
E. The number of people in Coponia who smoke cigarettes has remained relatively constant for the past several years.
Answer:
The assumption will depend on the argument that C. Any decrease in per capita sales of cigarettes in Coponia will result mainly from an increase in the number of people who quit smoking entirely.
Step-by-step explanation:
Per capita income or average income measures the average income earned per person in a given area in a specified year. It is calculated by dividing the area's total income by its total population. Per capita income is national income divided by population size.
Tax is a compulsory contribution to state revenue, levied by the government on workers' income and business profits, or added to the cost of some goods, services, and transactions.
The population of a city is expected to increase by 7.5% next year. If p represents the current popultion, which expression represents the expected populations next year?
Answer: P = Po ( 1 + 0.075)
Step-by-step explanation: let Po = initial population
P = final population.
The increase in population is by 7.5%, which implies that if the initial population Increases by 7.5%, we would have a new (current) population.
Final population = initial population + increament of initial population.
Where increment of initial population = 7.5% of Po = 0.075 Po
P = Po + 0.075Po
P = Po ( 1 + 0.075)
A recycling bin is in the shape of a right rectangular prism. The bin is 12 meters long, 5 1/2 meters wide, and 6 1/2 meters tall. What is the volume of the recycling bin? Omg Help me!Please i dont get this?
Answer: The volume is 143
Step-by-step explanation:
Need help on problem 40 part b for integrating in respect to y! Thanks!
Answer: [tex]\bold{(a)\quad \dfrac{32}{3}\qquad (b)\quad \dfrac{32}{3}}[/tex]
Step-by-step explanation:
(a) First, find the x-coordinates where the two equations cross
y = -1 and y = 3 - x²
-1 = 3 - x²
-4 = -x²
4 = x²
± 2 = x → These are the upper and lower limits of your integral
Then subtract the two equations and integrate with upper bound of x = 2 and lower bound of x = -2
[tex]\int_{-2}^{+2}[(3-x^2)-(-1)]dx\\\\\\=\int_{-2}^2(4-x^2)dx\\\\\\=4x-\dfrac{x^3}{3}\bigg|_{-2}^{+2}\\\\\\=\bigg(8-\dfrac{8}{3}\bigg)-\bigg(-8+\dfrac{8}{3}\bigg)\\\\\\=\large\boxed{\dfrac{32}{3}}[/tex]
(b) We know the upper and lower bounds of the y-axis as y = 3 and y = -1
Next, find the equation that we need to integrate by solving for x.
y = 3 - x²
x² + y = 3
x² = 3 - y
x [tex]=\pm\sqrt{3-y}\\[/tex]
[tex]\rightarrow \qquad x=\sqrt{3-y}\quad and \quad x=-\sqrt{3-y}[/tex]
Now, subtract the two equations and integrate with upper bound of y = 3 and lower bound of y = -1
[tex]\int_{-1}^{+3}[(\sqrt{3-y})-(-\sqrt{3-y})]dy\\\\\\=\int_{-1}^{+3}(2\sqrt{3-y})dy\\\\\\=\dfrac{-4\sqrt{(3-y)^3}}{3}\bigg|_{-1}^{+3}\\\\\\=\bigg(0\bigg)-\bigg(-\dfrac{32}{3}\bigg)\\\\\\=\large\boxed{\dfrac{32}{3}}[/tex]
). Bees are one of the fastest insects on Earth. They can fly 22 miles in 2 hours, and 55 miles in 5 hours. Write an algebraic expression to show how many miles a bee can fly in h hours. If a bee flies 4 hours at this speed, how many miles will it travel?
Answer:
Step-by-step explanation:
Look at the info given as (x, y) coordinates with the number of hours as x and the number of miles as y. The first coordinate then is (2, 22) and the second is (5, 55). The rate at which the bee flies is the same as the slope of the coordinates.
[tex]\frac{55-22}{5-2}=11[/tex]
This means that the bee flies 11 miles per hour. Use either one of the coordinates now to find the equation for the line. I pick (2, 22) and point-slope form:
y - 22 = 11(x - 2) and
y - 22 = 11x - 22 so
y = 11x
That's the equation. If we want to use it as a model, we can find how many miles it will fly in a given time, or how long it will take to fly a given number of miles. We are asked to find how far it can fly in 4 hours. So we will use our equation and replace x with 4:
y = 11(4) so
y = 44 miles
Jolene drove to a state park. She drove 1/4 of the distance the first day. She drove farther the second day. What pat of the distance might Jolene have driven the second day?
Answer: [tex]\frac{2}{4}[/tex] or [tex]\frac{3}{4}[/tex]
Step-by-step explanation:
You need to analize the information given in the exercise.
Let be "x" represents the whole distance part that Jolene have driven to the state park.
According the the explained in the problem, in the first day Jolene drove [tex]\frac{1}{4}[/tex] of the distance.
Knowing that, you can identify that the whole distance (or the value of "x"), is the following:
[tex]x=\frac{4}{4}[/tex]
(If you simplify it, you get: [tex]x=1[/tex])
You also know that the second day Jolene drove farther than the first day; therefore, there are two possible cases for the part of the distance she might have driven the second day. These cases are:
Case 1: [tex]\frac{2}{4}[/tex] of the distance the second day.
Case 2: [tex]\frac{3}{4}[/tex] of the distance the second day.
PLS HELP What is the value of cos (sin−1(−0.435))?
Answer:
0.900
Step-by-step explanation:
The easiest way to solve this problem is by putting it into a calculator.
When put into a calculator, the answer comes out to be 0.9004304526, which can be rounded to 0.900, or just 0.9.
Good morning ☕️
Answer:
0.900
Step-by-step explanation:
using a calculator you’ll find:
sin⁻¹(-0.435) = -25.785293878311
now
cos(sin⁻¹(-0.435)) = cos(-25.785293878311)
= 0.900430452617
If we round 0.900430452617 to nearest thousandth we get: 0.900
:)
Quadrilateral ABCD is inscribed in this circle.
What is the measure of angle A?
Enter your answer in the box.
°
Answer: [tex]m\angle A=116\°[/tex]
Step-by-step explanation:
The missing figure is attached.
For this exercise it is important to remember that, by definition, the opposite interior angles of an inscribed quadrilateral are supplementary, which means that their sum is 180 degrees.
Based on this, you can identify that the angle D and the angle B are opposite and, therefore, supplementary.
Knowing that, you can write the following equation:
[tex]x+28\°=180\°[/tex]
Now you must solve for "x" in order to find its value. This is:
[tex]x=180\°-28\°\\\\x=152\°[/tex]
Then:
[tex]m\angle D=152\°[/tex]
You know that:
[tex]m\angle A=(x-36)\°[/tex]
Therefore, since you know the value of "x", you can substitute it into [tex]m\angle A=(x-36)\°[/tex] and then you must evaluate, in order to find the measure of the angle A. This is:
[tex]m\angle A=152\°-36\°\\\\m\angle A=116\°[/tex]
Two poles are connected by a wire that is also connected to the ground. The first pole is 20 ft tall and the second pole is 10 ft tall. There is a distance of 30 ft between the two poles. Where should the wire be anchored to the ground to minimize the amount of wire need
Answer:
Therefore the wire should be anchored at 10 ft away from pole which is 10 ft long.
Step-by-step explanation:
Given that , The distance between two poles is 30 ft.
The length of 1st pole is = 20 ft
The length of second pole is = 10 ft.
Let the wire anchored to the ground at a distance x ft from the second pole.
Then, the distance of anchored from the first pole is = (30-x)
The total length of the wire is L = m+n
We know the pythagorean theorem,
Height²+base² = hypotenuse²
To find the value of m and n we use pythagorean theorem
From the left side triangle in the picture we get,
10²+x²= m²
⇒m²=100+x²
[tex]\Rightarrow m= \sqrt {100+x^2[/tex]
and right side triangle in the picture we get,
20²+(30-x)² = n²
⇒n²= x²-60x+1300
[tex]\Rightarrow n= \sqrt {x^2 -60x+1300}[/tex]
Then ,
[tex]L= \sqrt{(100+x^2)}+\sqrt{(x^2-60x+1300) }[/tex]
Differentiating with respect to x
[tex]L'= \frac {2x}{2\sqrt{100+x^2}}+ \frac{2x-60}{2\sqrt {x^2-60x+1300}}[/tex]
For minimize, L' =0
[tex]\frac {2x}{2\sqrt{100+x^2}}+ \frac{2x-60}{2\sqrt {x^2-60x+1300}}=0[/tex]
[tex]\Rightarrow \frac {x}{\sqrt{100+x^2}}=- \frac{x-30}{\sqrt {x^2-60x+1300}}[/tex]
Squaring both sides
[tex]\Rightarrow( \frac {x}{\sqrt{100+x^2}})^2=(- \frac{x-30}{\sqrt {x^2-60x+1300}})^2[/tex]
[tex]\Rightarrow x^2(x^2-60x+1300)= (x^2-60x+900)(100+x^2)[/tex]
[tex]\Rightarrow x^4 -60x^3+1300x^2= 100x^2-6000x+90000+x^4-60x^3+900x^2[/tex]
[tex]\Rightarrow 300x^2+6000x-90000=0[/tex]
[tex]\Rightarrow x^2+20x-300=0[/tex]
[tex]\Rightarrow x=10,-30[/tex]
Therefore x = 10. [x=-30 negligible, since distance can not negative]
Therefore the wire should be anchored at 10 ft away from pole which is 10 ft long.
The problem can be solved geometrically through the principles of trigonometry. By setting up two right triangles formed by the telephone poles and the anchoring point, we can create two equations by Pythagorean Theorem. By taking the derivative of the total wire length and setting it to zero, we can find the optimal value for 'x' (location of the anchoring point) which results in the minimal amount of wire used.
Explanation:To solve for the minimal amount of wire needed, we can use the principles of mathematics. More specifically, we will use the concept of trigonometry and geometry to create two right triangles. The taller pole (20ft), the shorter pole (10ft) and the point on the ground where the wire is anchored form the two right triangles, one with 20ft height and another with 10ft height.
Let's denote the length of wire between the taller pole and ground as 'a', between the shorter pole and the ground as 'b', and the distance between the point on the ground where the wire is anchored and the base of the first pole as 'x'. We have:
Relationship 1: a = sqrt((20)^2 + x^2), based on the Pythagorean theorem; Relationship 2: b = sqrt((10)^2 + (30 - x)^2)
The total length of wire used (which we want to minimize) is a + b.
To find the minimal length, we can take the derivative of 'a+b' with respect to 'x' and set the derivative equation to 0 then solve for 'x'. This will give you where to place the anchor on the ground (minimal amount of wire used) between the two poles. You may find out an optimal 'x' value that is less than 30ft, ensuring that the anchoring point is between the two poles.
Learn more about Minimization in Mathematics here:https://brainly.com/question/29034147
#SPJ11
A tank holds 50 gal of water, which drains from a leak at the bottom, causing the tank to empty in 20 min. The tank drains faster when it is nearly full because the pressure on the leak is greater. Torricelli's Law gives the volume of water remaining in the tank after t minutes as V(t)=50(1−t20)20≤t≤20 (a) Find V(0) and V(20). (b) What do your answers to part (a) represent? (c) Make a table of values of V(t) for t = 0, 5,10, 15, 20. (d) Find the net change in the volume V as t changes from 0 min to 20 min.
Answer:
(a) V(0) = 50 gal, V(20) = 0 gal
(b)At t= 0 the tank is full.
At t=0 the tank is empty
(c)
Time volume
0 50 gal
5 37.5 gal
10 25 gal
15 12.5 gal
20 0 gal
(d)
Net change of volume = 50 gal
Step-by-step explanation:
Given that the capacity of the tank is 50 gal.
Torricelli's Law gives the volume of water remaining in the tank after t minutes as
[tex]V(t)=50(1-\frac{t}{20})^2[/tex]
(a)
To find V(0), we put t = 0 in the above equation
[tex]V(0)=50(1-\frac{0}{20})^2[/tex]
[tex]=50(1-0)^2[/tex]
= 50 gal
To find V(20), we put t =2 0 in the above equation
[tex]V(20)=50(1-\frac{20}{20})^2[/tex]
[tex]=50(1-1)^2[/tex]
= 0 gal
(b)
At t= 0 the tank is full.
At t=0 the tank is empty.
(c)
Time V(t)
0 [tex]50(1-\frac{0}{20})^2=50 \ gal[/tex]
5 [tex]50(1-\frac{5}{20})^2=37.5 \ gal[/tex]
10 [tex]50(1-\frac{10}{20})^2=25 \ gal[/tex]
15 [tex]50(1-\frac{15}{20})^2=12.5 \ gal[/tex]
20 [tex]50(1-\frac{20}{20})^2=0[/tex]
(d)
Net change of volume = V(0) -V(20)
=(50-0) gal
= 50 gal
The volume V(t) of water remaining in the tank after t minutes is given by V(t) = 50(1−t/20). V(0) represents the initial volume of water in the tank, which is 50 gallons. V(20) represents the volume of water remaining in the tank after 20 minutes, which is 0 gallons.
Explanation:(a) To find V(0), substitute t = 0 into the equation V(t) = 50(1−t/20).
V(0) = 50(1−0/20) = 50(1−0) = 50(1) = 50
Similarly, to find V(20), substitute t = 20 into the equation V(t) = 50(1−t/20).
V(20) = 50(1−20/20) = 50(1−1) = 50(0) = 0
(b) V(0) represents the initial volume of water in the tank, which is 50 gallons. V(20) represents the volume of water remaining in the tank after 20 minutes, which is 0 gallons.
(c) Creating a table of values of V(t) for t = 0, 5, 10, 15, 20:
t | V(t)
--------------------
0 | 50
5 | 37.5
10 | 25
15 | 12.5
20 | 0
(d) The net change in volume V as t changes from 0 min to 20 min is V(20) - V(0).
V(20) - V(0) = 0 - 50 = -50 gallons
Learn more about Torricelli's Law here:https://brainly.com/question/30479009
#SPJ3
Of the two production methods, a company wants to identify the method with the smaller population mean completion time. One sample of workers is selected and each worker first uses one method and then uses the other method. The sampling procedure being used to collect completion time data is based on
a.
matched samples.
b.
worker samples.
c.
pooled samples.
d.
independent samples.
Answer:
a) matched samples.
Step-by-step explanation:
Matched samples (also known as matched pairs, paired samples or dependent samples) are those samples which can be matched in pairs for one set of item and the sample data are not independent of each other. The pairs don’t have to be different people, it could be the same individuals at different time or tested on different activities for example
sampling the blood pressures of the same people before and after they receive a dosethe same people being measured when the group is given two different tests at different timesThe completion time data collection method used by the company, which involves each worker using both production methods, is based on matched samples.
Explanation:The current method used to collect completion time data involves each worker being required to use both production methods. This method is known as matched samples. It involves using the same subjects in two different conditions to measure the difference in outcomes. In this case, the matched samples design is being used to compare the completion times of the workers using both production methods. The design is a test of dependent means, classified as a matched pairs design. This design is useful in situations where the same subject is being tested in two different conditions. The matched pairs design allows for a more accurate comparison of the two conditions, as it eliminates the variability between different subjects.
find the coordinate of U' after a 90° counterclockwise rotation of the triangle about the origin and then a translation of 2 units down and 5 units left.
Answer: U' = (0, 1)
Step-by-step explanation:
U = (3, -5)
rotate 90° counterclockwise means (x, y) = (-y, x)
new U = (5, 3)
down 2 units means subtract 2 from the y-coordinate
newer U = (5, 1)
left 5 units means subtract 5 from the x-coordinate
U' = (0, 1)
Machine A and Machine B can produce 1 widget in 3 hours working together at their respective constant rates. If Machine A’s speed were doubled, the two machines could produce 1 widget in 2 hours working together at their respective rates. How many hours does it currently take Machine A to produce 1 widget on its own?
[tex]\boldsymbol{\mathbf{Answer}}[/tex]
[tex]\boldsymbol{\mathbf{Machine \, A \,will\, take \,6 \,hours\, to \,produce\, 1 \,widget \,on\, its\, own.}}[/tex]
[tex]\boldsymbol{\mathbf{Step-by-step \,explanation:}}[/tex]
Let,
performance rate of machine A is x widget per hour.
performance rate of machine A is y widget per hour.
As given, Machine A and Machine B can produce 1 widget in 3 hours working together.
I.e mathemetically,
[tex]\boldsymbol{x + y=\frac{1}{3}......(1)}[/tex]
lly for second statement, Machine A’s speed were doubled, the two machines could produce 1 widget in 2 hours working together.
i.e mathematically,
[tex]\boldsymbol{2x + y=\frac{1}{2}......(2)}[/tex]
Substact equation (1) in (2)
[tex]x + y=\frac{1}{3}[/tex]
[tex]-2x + y=\frac{1}{2}[/tex]
Resultant equation will be,
[tex]-x=\frac{-1}{6}[/tex]
[tex]\boldsymbol{x = \frac{1}{6}}[/tex]
Performance rate of machine A is \frac{1}{6} widget per hour.
what is time Machine A will take to produce 1 widget on its own.
i.e = [tex]\frac{1}{\frac{1}{6}}[/tex]
[tex]\boldsymbol\mathbf{{=\, 6 \,hours.}}[/tex]
Which scatterplot has a negative r value? There are 3 graphs
Answer:
Step-by-step explanation:
The relationship is negative, negative correlation
Identify the sample chosen for the study. The number of hours a group of 12 children in Mrs. Smith's kindergarten class sleep in a day. Answer2 Points The 12 children selected in Mrs. Smith's kindergarten class. All children in Mrs. Smith's kindergarten class. The number of hours children sleep.
The sample in the study refers to the 12 children in Mrs. Smith's kindergarten class. A sample is a subset of people selected from a larger group for study purposes. In this research, the data being analyzed only pertains to these selected individuals.
Explanation:In this study, the sample chosen is the group of 12 children in Mrs. Smith's kindergarten class. This is because the data being collected and scrutinized is related to these particular individuals. In this context, 'sample' refers to the subset of people chosen from a larger group (the population) for research or study purposes. It is the set of individuals on which the study or experiment is conducted. In this case, the larger population could be considered all children in kindergarten, but the sample for the study is specifically the 12 children in Mrs. Smith's class, as the study only includes their sleep patterns.
Learn more about Sample in a study here:https://brainly.com/question/37770653
#SPJ3
Marcus is working at a local pizzeria where he makes $12.50 per hour and is also working at the university bookstore where he makes $9.50 per hour. He must make at least $300 per week to cover his expenses but cannot work more than 30 hours per week in order to attend classes. Write a system of inequalities that models this situation where p represents the hours he works at the pizzeria and b represents the hours he works at the bookstore.
Answer:
p+b[tex]\leq[/tex]30 .......(i)
12.50p+9.50b[tex]\geq[/tex]300 .......(ii)
Step-by-step explanation:
Marcus Hourly Rate at the local pizzeria = $12.50 per hour
Marcus Hourly Rate at the university bookstore = $9.50 per hour
Let the number of hours worked at the local pizzeria=p
Let the number of hours worked at the university bookstore=b
Since he cannot work more than 30 hours per week in order to attend classes, the total of the hours:
p+b[tex]\leq[/tex]30 .......(i)
If he earns $12.50 for p hours at the local pizzeria,
Income from local pizzeria=12.50p
If he earns $9.50 for b hours at the university bookstore,
Income from university bookstore=9.50b
He must make at least $300 per week, therefore his total income must not be less than $300
Total Income=Income from Pizzeria + Income from University bookstore
12.50p+9.50b[tex]\geq[/tex]300 .......(ii)
Therefore the system of inequalities that models this situation is given as:
p+b[tex]\leq[/tex]30 .......(i)
12.50p+9.50b[tex]\geq[/tex]300 .......(ii)
A researcher asks a sample of brothers and sisters to rate how positive their family environment was during childhood. In this study, the differences in ratings between each brother and sister pair were compared. The type of design described here is called a
Answer:
Matched sample design
Step-by-step explanation:
- A matched subject design uses separate experimental groups for each particular treatment, ( A sample of brothers and sisters - genders ).
- But relies upon matching every subject in one group with an equivalent in another. (The differences in ratings between each brother and sister pair were compared. )
- The idea behind this is that it reduces the chances of an influential variable skewing the results by negating it.
Which of the following is the solution to the quadratic equation x2 - 10x + 24 = 0?
x = -4, 6
x = 4, -6
x = 4, 6
x= -4, -6
Answer: the third option is the correct answer.
Step-by-step explanation:
The given quadratic equation is expressed as
x² - 10x + 24 = 0
We would apply the method of factorization by finding two numbers such that their sum or difference is -10x and their product is 24x^2. The two numbers are - 6x and - 4x. Therefore,
x² - 6x - 4x + 24 = 0
x(x - 6) - 4(x - 6) = 0
(x - 6)(x - 4) = 0
Therefore, the solutions to the equation are
x = 4 or x = 6
Juan purchased an antique that had a value of \$200$200dollar sign, 200 at the time of purchase. Each year, the value of the antique is estimated to increase 10\, percent over its value the previous year. The estimated value of the antique, in dollars, 222 years after purchase can be represented by the expression 200a200a200, a, where aaa is a constant. What is the value of aaa?
Final answer:
The antique purchased by Juan increases in value by 10% each year. The value of the antique after 2 years can be found by calculating the expression $200a, where a is a constant. The value of [tex]\( a \) is \( 1.21 \).[/tex]
Explanation:
To find the value of a, we need to represent the annual increase of 10% in terms of multiplication.
After the first year, the value of the antique increases by [tex]\( 10\% \) of its previous value, which is \( 0.10 \times 200 \) dollars.[/tex]
After the second year, the value of the antique increases by [tex]\( 10\% \) of its value at the end of the first year, which is \( 0.10 \times (200 + 0.10 \times 200) \) dollars.[/tex]
Generally, after \( n \) years, the value of the antique will be [tex]\( 200 \times (1 + 0.10)^n \) dollars.[/tex]
The expression given for the value of the antique 2 years after purchase is 200a , where a is a constant. This represents the value of the antique after 2 years.
Equating the expression to the value of the antique after 2 years, we have:
[tex]\[ 200a = 200 \times (1 + 0.10)^2 \][/tex]
Now, let's solve for \( a \):
[tex]\[ 200a = 200 \times (1.10)^2 \][/tex]
200a = 200 \times 1.21
200a = 242
Dividing both sides by 200:
[tex]\[ a = \frac{242}{200} \][/tex]
[tex]\[ a = 1.21 \][/tex]
Therefore, the value of [tex]\( a \) is \( 1.21 \).[/tex]
I am confused about the wording on this problem and also when I used the Pythagorean theorem it came out as wrong.
Answer:
Step-by-step explanation: they are asking “What is x + 3 + y”. So use Pythagorean’s theorem to get x (it should be 4) and then find y and I think u get square root of 13, then add 4 + 3 + square root 13
Sanjay bought 12 granola bars,which was 4 times as many granola bars as Lena bought.which equation shows the number of granola bars,b,that Lena bought?
Option D is cut off but option d is 6a+16
Please Help
Answer:
A
Step-by-step explanation:
8(2) = 16
17 (2) = 34
34^2 = 16^2 + x^2
1156 = 256 + x^2
1156- 256 = x^2
900 = x^2
square root of 900 = x
x = 30
15(2) = 30
Answer:
A 15a
Step-by-step explanation:
This is a right triangle so we can use the Pythagorean theorem
a^2 +b^2 = c^2 where a and b are the legs and c is the hypotenuse
Letting the unknown side be x
(8a)^2 + x^2 = (17a)^2
64a^2 + x^2= 289a^2
Subtracting 64a^2 from each side
64a^2 -64a^2 + x^2= 289a^2-64a^2
x^2 =225a^2
Taking the square root of each side
sqrt(x^2) =sqrt(225a^2)
x = 15a
A batch of 479 containers for frozen orange juice contains 3 that are defective. Two are selected, at random, without replacement from the batch. a) What is the probability that the second one selected is defective given that the first one was defective? Round your answer to five decimal places (e.g. 98.76543).
Answer:
0.00418
Step-by-step explanation:
The probability of the first one being defected is 3/479, as we have 3 defectives containers in a total of 479 containers.
If the first one is defected and removed, now we have 478 containers, with 2 being defective.
So the probability of the second one being picked being defective, given that the first one was defective, is 2/478 = 1/239 = 0.00418
Heron wants to buy a video game. The price is regularly priced at 55 dollars. The store has a discount of 20% off and a sales tax of 6%. How much will Heron pay for the video game
The amount paid by Heron for the video game is $46.64.
Step-by-step explanation:
Here, the marked price of the video game = $55
The discount percentage on the video game = 20%
Calculating 20% of the $55, we get:
[tex]\frac{20}{100} \times 55 = 11[/tex]
So, the discount offered on the video game = $11
Selling Price = Marked Price - Discount
=$55 - $11 = $44
Now, the tax percentage on the video game = 6%
Calculating 6% of the $44, we get:
[tex]\frac{6}{100} \times 44 =2.64[/tex]
So, the tax on the video game = $2.64
New Selling Price = Selling Price + Tax
=$44 + $2.64 = $46.64
So, the amount paid by Heron for the video game is $46.64.
The distribution of SAT scores of all college-bound seniors taking the SAT in 2014 was approximately normal with a mean of 149714971497 and standard deviation of 322322322. Let XXX represent the score of a randomly selected tester from this group. Find P(X>1800)P(X>1800)P, (, X, is greater than, 1800, ).
Answer:
P ( X > 1800) = 0.1734
Step-by-step explanation:
Given:-
- The mean, u = 1497
- The standard deviation, s.d = 322
Find:-
P(X>1800)
Solution:-
- We will denote a random variable X that follows a normal distribution for the SAT scores in 2014 with parameters mean (u) and standard deviation (s.d) as follows:
X ~ N ( 1497 , 322 )
- The following probability can be calculated by first computing the Z-score value:
P ( X < x ) = P ( X < Z )
Where,
Z = ( x - u ) / s.d
- P(X > 1800) have the corresponding Z-score value:
Z = ( 1800 - 1497 ) / 322
Z = 0.941
- Hence, using Z-table:
P ( X > 1800) = 1 - P ( Z < 0.9471 )
P ( X > 1800) = 1 - 0.8266
P ( X > 1800) = 0.1734
The probability that a randomly selected person scored above 1800 on the SAT is approximately 17.36%, after calculating the corresponding z-score and looking up the probability in the Standard Normal Distribution table.
Explanation:To find P(X>1800), we first need to calculate the z-score for an SAT score of 1800. The z-score is computed as:
z = (X - μ) / σ
Where X is the SAT score, μ is the mean, and σ is the standard deviation. Given μ = 1497 and σ = 322, we have:
z = (1800 - 1497) / 322 = 303 / 322 ≈ 0.941
Once we have the z-score, we can use the Standard Normal Distribution table to find P(Z > 0.941). We find that P(Z > 0.941) ≈ 0.1736. Thus, the probability that a randomly selected college-bound senior has an SAT score above 1800 is approximately 0.1736 or 17.36%.
An object is traveling at a steady speed of 10 and one tenth km/h. How long will it take the object to travel 4 and nine tenths km ? First round to the nearest integer to find the estimated answer. Then find the exact answer.
Final answer:
To find the time it will take for an object to travel a certain distance at a given speed, divide the distance by the speed. The estimated time to travel 4.9 km at a speed of 10 km/h is approximately 0.5 hours. The exact time, considering the speed as 10.1 km/h, is also approximately 0.5 hours.
Explanation:
To find the time it will take for an object to travel a certain distance at a given speed, we can use the formula:
Time (in hours) = Distance (in kilometers) / Speed (in kilometers per hour)
First, let's round the speed to the nearest integer, which is 10 km/h. To estimate the time it will take to travel 4.9 km, we can divide the distance by the estimated speed:
Estimated Time = 4.9 km / 10 km/h ≈ 0.49 hours ≈ 0.5 hours
To find the exact time, we will use the given speed of 10 and one-tenth km/h. We can convert this speed to decimal form, which is 10.1 km/h. Now, we can calculate the exact time:
Exact Time = 4.9 km / 10.1 km/h ≈ 0.485 hours ≈ 0.5 hours
Therefore, it will take approximately 0.5 hours or 30 minutes for the object to travel 4.9 km.