A piano wire with mass 2.95 g and length 79.0 cm is stretched with a tension of 29.0 N . A wave with frequency 105 Hz and amplitude 1.80 mm travels along the wire.

(a) Calculate the average power carried by the wave.
(b) What happens to the average power if the wave amplitude is halved?

Answers

Answer 1

The new power is: New P_avg = 2.52 W / 4 ≈ 0.63 W

Average Power Carried by a Wave

To solve this problem, we need the following information:

Mass of piano wire: 2.95 g = 0.00295 kg

Length of wire: 79.0 cm = 0.79 m

Tension: 29.0 N

Frequency: 105 Hz

Amplitude: 1.80 mm = 0.00180 m

First, calculate the linear mass density (μ) of the wire:

μ = mass / length = 0.00295 kg / 0.79 m ≈ 0.00373 kg/m

Next, find the wave speed using the formula for the speed of a wave on a string:

v = [tex]\sqrt{Tension / \mu}[/tex] =[tex]\sqrt{29.0 N / 0.00373 kg/m}[/tex]≈ 88.19 m/s

Now, we calculate the average power (P_avg) carried by the wave using the formula:

P_avg = 0.5 x μ x v x ω² x A²

Where:

ω = 2πf (angular frequency)

ω = 2 x π x 105 ≈ 659.73 rad/s

Therefore,

P_avg = 0.5 x 0.00373 kg/m x 88.19 m/s x (659.73 rad/s)² x (0.00180 m)² ≈ 2.52 W

Average Power if Amplitude is Halved

If the amplitude (A) is halved, the new amplitude is:

New A = 0.00180 m / 2 = 0.00090 m

Since power is proportional to the square of the amplitude (A²), halving the amplitude reduces the power by a factor of 4.

Thus, the new power is:

New P_avg = 2.52 W / 4 ≈ 0.63 W


Related Questions

Which is the most appropriate units for expressing angular velocity in kinematics problems?

Answers

Answer:

[tex]\frac{rad}{s}[/tex]

Explanation:

The most appropriate units for expressing the angular velocity are the [tex]\frac{rad}{s}[/tex], since they are the units assigned for this magnitude in the International System of Units. Which is derived from the fact that radians are dimensionless and the second is the unit assigned for time in this unit system.

Final answer:

The most appropriate units for expressing angular velocity in kinematics problems are radians per second (rad/s). This unit arises from the definition of angular velocity as the change in angular position (ΔΘ) over time (Δt).

Explanation:

When discussing angular velocity in kinematics problems, the most appropriate unit to express it is radians per second (rad/s). Angular velocity is the rate of change of the angular position over time, defined as ΔΘ/Δt. For example, if a disc makes one-fourth of a revolution in 0.0150 seconds, its angular velocity would be π/2 rad / 0.0150 s, equaling 104.7 rad/s.

In situations where the rotation rate is given in revolutions per second or cycles per second, we can convert it to angular velocity by multiplying by 2π rad, as one complete revolution is equivalent to 2π radians. It is also important to note that the centripetal acceleration in circular motion is related to the angular velocity, and the units are critical in deriving related kinematics equations.

(1) Develop an equation that relates the rms voltage of a sine wave to its peak-to-peak voltage. a. If a sine wave has a peak-to-peak value of 1.5V, a frequency of 3kHz, and a phase of 0 radians, what is the rms voltage

Answers

Answer:

(A) Equation will be [tex]v=v_msin\omega t=0.75sin(18840t)[/tex]

(B) RMS value of voltage will be 0.530 volt

Explanation:

We have given peak to peak voltage of ac wave = 1.5 volt

Peak to peak voltage of ac wave is equal to 2 times of peak voltage

So [tex]2v_{peak}=1.5volt[/tex]

[tex]v_{peak}=\frac{1.5}{2}=0.75volt[/tex]

Frequency of ac wave is given f = 3 kHz

So angular frequency [tex]\omega =2\pi f[/tex] = 2×3.14×3000 = 18840 rad/sec

So expression of equation will be [tex]v=v_msin\omega t=0.75sin(18840t)[/tex] ( As phase difference is 0 )

Now we have to find the rms value of voltage

So rms voltage will be equal to [tex]v_{rms}=\frac{v_{peak}}{\sqrt{2}}=\frac{0.75}{1.414}=0.530volt[/tex]

Jack and Jill exercise in a 25.0 m long swimming pool. Jack swims 9 lengths of the pool in 156.9 s ( 2 min and 36.9 s ) , whereas Jill, the faster swimmer, covers 10 lengths in the same time interval. Find the average velocity and average speed of each swimmer.

Answers

Answer:

Jill average velocity is  0

Jack  average velocity is 0.159337

Jill average speed = 1.593372

Jack average speed = 1.434034

Explanation:

given data

long swimming pool = 25.0 m

9 lengths of the pool = 156.9 s ( 2 min and 36.9 s )

10 lengths = same time interval

to find out

average velocity and average speed

solution

we know that average velocity that is express as

average velocity = [tex]\frac{displacement}{time}[/tex]    .....................1

Jill come back where she start

so here velocity will be = 0

and

Jack ends up on the other end of pool

so average velocity =  [tex]\frac{25}{156.9}[/tex]

average velocity = 0.159337

now we get here average speed that is express as

average speed = [tex]\frac{distance}{time}[/tex]      .............2

jack speed = 9 × [tex]\frac{25}{156.9}[/tex]

jack speed = 1.434034

and

Jill speed = 10 × [tex]\frac{25}{156.9}[/tex]

Jill speed = 1.593372

Why isn't Coulomb's law valid for large conducting objects, even if they are spherically symmetrical?

Answers

Answer:

The Coulomb’s Law is as follows

[tex] \vec{F} = \frac{1}{4\pi \epsilon_0}\frac{q_1q_2}{r^2}\^r[/tex]

According to this law, the force between two charged objects can be calculated using the distance between the objects. If the objects are large, then it is not possible to determine the distance, r, between that object and the other object. Because, the edge of the object contain charges as well as the center of the object.

In that case, you need to separate the object into infinitesimal points, apply the formula to those points, then integrate over the large object to find the force between objects.

A single roller-coaster car is moving with speed v0 on the first section of track when it descends a 4.7-m-deep valley, then climbs to the top of a hill that is 5.4 m above the first section of track. Assume any effects of friction or of air resistance are negligible.
(a) What is the minimum speed v0 required if the car is to travel beyond the top of the hill?
(b) Can we affect this speed by changing the depth of the valley to make the coaster pick up more speed at the bottom?

Answers

Explanation:

From the curve given in the attachment,

a) minimum speed v0 required if the car is to travel beyond the top of the hill

climb to the top = 5.4 m

Therefore, [tex]V_0=\sqrt{2gh}[/tex]

[tex]V_0=\sqrt{2(9.81)(5.4)}[/tex] =  10.29 m/s

b) No, we cannot affect this speed by changing the depth of the valley to make the coaster pick up more speed at the bottom as this speed does not depend upon depth of the valley.

We experience fictitious forces due to: a. Rotation of a reference frame b. Inertial reference frames c. Translational motion d. Universal gravitation.

Answers

Answer:

A.

Explanation:

A fictional force (also called force of inertia, pseudo-force, or force of d'Alembert, 5), is a force that appears when describing a movement with respect to a non-inertial reference system, and that therefore it does not correspond to a genuine force in the context of the description of the movement that Newton's laws are enunciated for inertial reference systems.

The forces of inertia are, therefore, corrective terms to the real forces, which ensure that the formalism of Newton's laws can be applied unchanged to phenomena described with respect to a non-inertial reference system. The correct answer is A.

An astronaut in an orbiting space craft attaches a mass m to a string and whirls it around in uniform circular motion. The radius of the circle is R, the speed of the mass is v, and the tension in the string is F. If the mass, radius, and speed were all to double the tension required to maintain uniform circular motion would be

Answers

Answer:

[tex]F'=4F[/tex]

Explanation:

According to Newton's second law, the tension in the string is equal to the centripetal force, since the mass is under an uniform circular motion:

[tex]F=F_c\\F=ma_c[/tex]

Here [tex]a_c[/tex] is the centripetal acceleration, which is defined as:

[tex]a_c=\frac{v^2}{r}[/tex]

So, replacing:

[tex]F=m\frac{v^2}{r}[/tex]

In this case we have [tex]m'=2m[/tex], [tex]v'=2v[/tex] and [tex]r'=2r[/tex]. Thus, the tension required to mantain uniform circular motion is:

[tex]F'=m'\frac{v'^2}{r'}\\F'=2m\frac{(2v)^2}{2r}\\F'=4m\frac{v^2}{r}\\F'=4F[/tex]

A hypodermic syringe contains a medicine with the density of water (see figure below). The barrel of the syringe has a cross-sectional area A = 2.20 10-5 m2, and the needle has a cross-sectional area a = 1.00 10-8 m2. In the absence of a force on the plunger, the pressure everywhere is 1.00 atm. A force F with arrow of magnitude 2.05 N acts on the plunger, making medicine squirt horizontally from the needle. Determine the speed of the medicine as it leaves the needle's tip. m/s

Answers

Final answer:

The speed of the medicine as it leaves the needle's tip is the same as the speed of the medicine inside the syringe, which is 4.0 mm/s.

Explanation:

To determine the speed of the medicine as it leaves the needle's tip, we can use Bernoulli's equation.

Bernoulli's equation states that the sum of the pressure energy, kinetic energy, and potential energy per unit volume is constant along a streamline in a fluid flow.

Applying Bernoulli's equation, we have:

P1 + (1/2)ρv1² + ρgh1 = P2 + (1/2)ρv2² + ρgh2

Where P1 and P2 are the pressures, v1 and v2 are the velocities, ρ is the density of the fluid, g is the acceleration due to gravity, and h1 and h2 are the heights.

In this case, the medicine is moving horizontally, so the heights (h1 and h2) are the same. Also, the pressure everywhere is 1.00 atm, so P1 and P2 are equal. Additionally, the density of the medicine is the same as water. Therefore, the equation simplifies to:

(1/2)ρv1² = (1/2)ρv2²

Cancelling out the common terms, we have:

v1² = v2²

Taking the square root of both sides, we find:

v1 = v2

Therefore, the speed of the medicine as it leaves the needle's tip is the same as the speed of the medicine inside the syringe, which is 4.0 mm/s.

Learn more about Bernoulli's equation here:

https://brainly.com/question/31047017

#SPJ3

A mosquito of mass 0.15 mg is found to be flying at a speed of 50 cm/s with an uncertainty of 0.5 mm/s. (a) How precisely may its position be known? (b) Does this inherent uncertainty present any hindrance to the application of classical mechanics?

Answers

(a) The uncertainty principle reveals that the position of a flying mosquito can be known with an extremely high precision that doesn't affect the application of classical mechanics. (b) The inherent uncertainty calculated is extremely small.

(a) The Heisenberg principle states that the more precisely the position (Δx) of a particle is known, the less precisely its momentum (Δp) can be known, and vice versa. This is quantitatively expressed as ΔxΔp ≥ ħ/2, where ħ is the reduced Planck's constant (approximately 1.055 × 10⁻³⁴ J⋅s).

Given the speed (v) of the mosquito is 50 cm/s with an uncertainty in velocity (Δv) of 0.5 mm/s, and the mass (m) of the mosquito is 0.15 mg, we first convert these to SI units: v = 0.5 m/s, Δv = 5 × 10⁻⁴ m/s, and m = 0.15 × 10⁻⁶ kg. The uncertainty in momentum, Δp, is mΔv = (0.15 × 10⁻⁶ kg)(5 × 10⁻⁴ m/s) = 7.5 × 10⁻¹¹ kg⋅m/s.

Using the uncertainty principle, Δx ≥ ħ / (2Δp), where Δp is the momentum uncertainty calculated above. Plugging in values, Δx ≥ (1.055 × 10⁻³⁴ J⋅s) / (2 × 7.5 × 10⁻¹¹ kg⋅m/s) ≈ 7.033 × 10⁻²⁵ meters. This calculation shows how precisely the mosquito's position can be known.

(b) The inherent uncertainty calculated is extremely small, particularly when dealing with macroscopic objects like a mosquito. Therefore, this uncertainty does not present any hindrance to the application of classical mechanics, which comfortably applies at the scale of everyday objects.

A copper cylinder is initially at 21.1 ∘C . At what temperature will its volume be 0.163 % larger than it is at 21.1 ∘C?

Answers

Final answer:

The question from the student involves the concept of thermal expansion in physics, where the goal is to determine at what temperature a copper cylinder's volume becomes 0.163% larger than its original volume at 21.1°C.

Explanation:

The student's question is about thermal expansion, which is a concept in physics specifically relating to how the volume of a solid changes with temperature. This falls under the broader subject of thermodynamics. The student is given the initial volume and temperature of the copper cylinder and is asked to find the temperature at which its volume is 0.163% larger. To solve this, we need to use the linear expansion formula for solids.
The formula for the volume expansion of solids is
V = V₀(1 + βΔT), where V is the final volume, V₀ is the initial volume, β is the coefficient of volume expansion for copper, and ΔT is the change in temperature. To find the new temperature, we first need to express the 0.163% increase in volume as a decimal, which gives us 0.00163. We can then rearrange the formula to solve for ΔT. After finding ΔT, we add it to the initial temperature of 21.1°C to find the final temperature.

Plugging in the numbers:

0.00163 = 3(16.5 x 10⁻⁶)ΔT

ΔT = 21.3 °C

Therefore, T2 = T1 + ΔT = 21.1 °C + 21.3 °C = 42.4 °C

The temperature at which the copper cylinder's volume will be 0.163% larger than at 21.1 °C is 42.4 °C.

What is the speed v of a wave traveling down such a wire if the wire is stretched to its breaking point?

Answers

Answer:

v = 620.17 m/s

Explanation:

There are different formulas for calculating the speed of a wave. Based on the given parameters, the speed of the wave can be estimated as:

v = sqrt(breaking tensile strength/density)

Where:

The breaking tensile strength = 3*10^9 N/m^2

Density = 7800 kg/m^3

Therefore, we can estimate the speed of the wave as shown below:

v = sqrt(3*10^9/7800) = sqrt(384615.3846) = 620.17 m/s

Final answer:

The speed of a wave in a wire at its breaking point depends on the maximum tension the wire can sustain and its linear mass density, calculated with the formula v = (T/μ)¹⁄².

Explanation:

The speed v of a wave traveling down a wire at its breaking point would be determined by the tension in the wire just before breaking and the wire's linear mass density. The formula for the speed of a wave on a stretched string is v = (T/μ)¹⁄², where T is the tension in the wire and μ is the linear mass density. For a wire stretched to its breaking point, the tension T would be at its maximum value that the wire can sustain without breaking.

Ask Your Teacher In the air over a particular region at an altitude of 500 m above the ground, the electric field is 120 N/C directed downward. At 600 m above the ground, the electric field is 110 N/C downward. What is the average volume charge density in the layer of air between these two elevations?

Answers

Answer:

[tex]1.475\times 10^{-13}\ C/m^3[/tex]

Explanation:

[tex]\epsilon_0[/tex] = Permittivity of free space = [tex]8.85\times 10^{-12}\ F/m[/tex]

A = Area

h = Altitude = 600 m

Electric flux through the top would be

[tex]-110A[/tex] (negative as the electric field is going into the volume)

At the bottom

[tex]120A[/tex]

Total flux through the volume

[tex]\phi=120-110\\\Rightarrow \phi=10A[/tex]

Electric flux is given by

[tex]\phi=\dfrac{q}{\epsilon_0}\\\Rightarrow q=\phi\epsilon_0\\\Rightarrow q=10A\epsilon_0[/tex]

Charge per volume is given by

[tex]\rho=\dfrac{q}{v}\\\Rightarrow \rho=\dfrac{10A\epsilon_0}{Ah}\\\Rightarrow \rho=dfrac{10\epsilon_0}{h}\\\Rightarrow \rho=\dfrac{10\times 8.85\times 10^{-12}}{600}\\\Rightarrow \rho=1.475\times 10^{-13}\ C/m^3[/tex]

The volume charge density is [tex]1.475\times 10^{-13}\ C/m^3[/tex]

Tim and Rick both can run at speed v_r and walk at speed v_w, with v_r > v_w They set off together on a journey of distance D. Rick walks half of the distance and runs the other half. Tim walks half of the time and runs the other half.How long does it take Rick to cover the distance D?Express the time taken by Rick in terms of v_r, v_w, and D.

Answers

Answer:

The time taken by Rick is Δt =  (D/2 / v_w ) + (D/2  /  v_r)

Explanation:

Hi there!

The equation of average velocity (v) is the following:

v = Δx / Δt

Where:

Δx = traveled distance.

Δt = elapsed time.

During the first half of Rick´s journey, the average velocity can be written as follows:

v_w = D/2 /  Δt1

Solving for Δt1:

Δt1 = D/2 / v_w

For the second half of the trip:

v_r = D/2 / Δt2

Δt2 = D/2 /  v_r

The time it takes Rick to cover the distance D will be equal to Δt1 + Δt2

Δt = Δt1 + Δt12

Δt =  (D/2 / v_w ) + (D/2  /  v_r)

The time taken by Rick is Δt =  (D/2 / v_w ) + (D/2  /  v_r)

(a) A runner starts from rest and in 3 s reaches a speed of 8 m/s. If we assume that the speed changed at a constant rate (constant net force), what was the average speed during this 3 s interval?

Answers

Answer:

During the 3 s interval, the average velocity was 4 m/s.

Explanation:

Hi there!

The average velocity (AV) is calculated as follows:

AV = Δx / Δt

Where:

Δx = traveled distance.

Δt = elapsed time.

The traveled distance (x) is calculated as follows:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

Since x0 and v0 are equal to zero, the equation gets reduced to:

x = 1/2 · a · t²

Since the acceleration is constant, it can be calculated with this equation:

a = v/t

a = 8 m/s / 3 s

a = 8/3 m/s²

Then, the traveled distance will be:

x = 1/2 · a · t²

x = 1/2 · 8/3 m/s² · (3 s)²

x = 12 m

And the average velocity will be:

AV = Δx / Δt

AV = 12 m / 3 s = 4 m/s

During the 3 s interval, the average velocity was 4 m/s.

Two small plastic spheres are given positive electrical charges. When they are 16.0 cm apart, the repulsive force between them has magnitude 0.200 N.

a)What is the charge on each sphere if the two charges are equal?

b)What is the charge on each sphere if one sphere has four times the charge of the other?

Answers

The smaller charge is approximately **3.37 x 10⁻⁷ C** and the larger charge is approximately **1.35 x 10⁻⁶ C**.

These are approximate values due to rounding during calculations.

Solving for the Charges on the Spheres:

Case (a): Equal Charges

1. **Apply Coulomb's Law:** The force between two charged objects is given by Coulomb's Law:

[tex]$$F = k \cdot \frac{q_1 \cdot q_2}{r^2}$$[/tex]

where:

* F is the force (0.200 N)

* k is Coulomb's constant (8.99 x 10^9 N m²/C²)

* q₁ and q₂ are the charges on the spheres (which are equal in this case)

* r is the distance between the spheres (0.16 m)

2. **Plug in the values and solve for q₁:**

[tex]$$0.200 = 8.99 \times 10^9 \cdot \frac{q_1^2}{(0.16)^2}$$$$q_1^2 = \frac{0.200 \cdot (0.16)^2}{8.99 \times 10^9}$$$$q_1 = \sqrt{ \frac{0.200 \cdot (0.16)^2}{8.99 \times 10^9}} \approx 7.54 \times 10^{-7} \text{ C}$$[/tex]

Therefore, the charge on each sphere is approximately **7.54 x 10⁻⁷ C**.

Case (b): One Sphere has Four Times the Charge

1. **Let q₁ be the smaller charge and q₂ be the larger charge:** We know q₂ = 4q₁.

2. **Apply Coulomb's Law again:

[tex]$$0.200 = 8.99 \times 10^9 \cdot \frac{q_1 \cdot q_2}{(0.16)^2}$$$$0.200 = 8.99 \times 10^9 \cdot \frac{q_1 \cdot (4q_1)}{(0.16)^2}$$3. **Substitute and solve for q₁:**$$0.200 = 8.99 \times 10^9 \cdot \frac{16q_1^2}{(0.16)^2}$$$$q_1^2 = \frac{0.200 \cdot (0.16)^2}{8.99 \times 10^9 \cdot 16}$$$$q_1 = \sqrt{ \frac{0.200 \cdot (0.16)^2}{8.99 \times 10^9 \cdot 16}} \approx 3.37 \times 10^{-7} \text{ C}$$4. **Find the larger charge (q₂):**$$q_2 = 4q_1 = 4 \cdot (3.37 \times 10^{-7} \text{ C}[/tex]

The metal gold crystallizes in a face centered cubic unit cell with one atom per lattice point. When X-rays with λ = 1.436 Å are used, the second-order Bragg reflection from a set of parallel planes in a(n) gold crystal is observed at an angle θ = 20.62°. If the spacing between these planes corresponds to the unit cell length (d = a), calculate the radius of a(n) gold atom.

Answers

Answer:

 r =  1.45 Å

Explanation:

given,

λ = 1.436 Å

θ = 20.62°

d = a

n = 2

metal gold crystallizes in a face centered cubic unit cell

Radius of the gold atom = ?

using Bragg's Law

 n λ = 2 d sin θ

 2 x 1.436 Å = 2 a sin 20.62°

 a = 4.077 Å

We know relation of radius for face centered cubic unit cell

 [tex]a = \dfrac{4r}{\sqrt{2}}[/tex]

 [tex]4.077= \dfrac{4\times r}{\sqrt{2}}[/tex]

 r =  1.45 Å

the radius of a(n) gold atom. is equal to 1.45 Å

What is the wavelength, in nm, of the line in the hydrogen spectrum when one n value is 3 and the other n value is 6?

Answers

Answer:

[tex]\lambda=1090nm[/tex]

Explanation:

Rydberg formula is used to calculate the wavelengths of the spectral lines of many chemical elements. For the hydrogen, is defined as:

[tex]\frac{1}{\lambda}=R_H(\frac{1}{n_1^2}-\frac{1}{n_2^2})[/tex]

Where [tex]R_H[/tex] is the Rydberg constant for hydrogen and [tex]n_1[/tex], [tex]n_2[/tex] are the lower energy state and the higher energy state, respectively.

[tex]\frac{1}{\lambda}=1.10*10^{7}m^{-1}(\frac{1}{3^2}-\frac{1}{6^2})\\\frac{1}{\lambda}=9.17*10^{5}m^{-1}\\\lambda=\frac{1}{1.09*10^{6}m^{-1}}\\\lambda=1.09*10^{-6}m*\frac{10^{9}nm}{1m}\\\lambda=1090nm[/tex]

What frequency is received by a person watching an oncoming ambulance moving at 110 km/h and emitting a steady 800-Hz sound from its siren? The speed of sound on this day is 345 m/s.

Answers

To develop this problem we will apply the concepts related to the Doppler effect. The frequency of sound perceive by observer changes from source emitting the sound. The frequency received by observer [tex]f_{obs}[/tex] is more than the frequency emitted by the source. The expression to find the frequency received by the person is,

[tex]f_{obs} = f_s (\frac{v_w}{v_w-v_s})[/tex]

[tex]f_s[/tex]= Frequency of the source

[tex]v_w[/tex]= Speed of sound

[tex]v_s[/tex]= Speed of source

The velocity of the ambulance is

[tex]v_s = 119km/h (\frac{1000m}{1km})(\frac{1h}{3600s})[/tex]

[tex]v_s = 30.55m/s[/tex]

Replacing at the expression to frequency of observer we have,

[tex]f_{obs} = 800Hz(\frac{345m/s}{345m/s-30.55m/s})[/tex]

[tex]f_{obs} = 878Hz[/tex]

Therefore the frequency receive by observer is 878Hz

Measure the distance from the drop point in Brazil to the drop point in Angola. Use that number in your calculation. Given that this portion of Pangaea broke apart 200,000,000 years ago, calculate how fast South America and Africa are separating in cm/year? (Hint: Speed= Distance/Time)

Answers

To develop this point we will start by finding the approximate coordinates of the points that were connected at the time of the Pangaea between Brazil and Angola. These coordinates are presented below.

1 . Brazil - Latitude: 18 0 07’ 55.56” S Longitude: 39 0 35’ 14.50” W 2.

Angola - Latitude: 9 0 08’ 50.02” S Longitude: 13 0 02’ 32.11” E

Using a tool for calculating distances between these two points we will notice that its distance is 576,155,570.12 cm

Applying the equation given in the statement we will have to,

[tex]v = \frac{x}{t} \rightarrow v = Velocity, x = Distance, t = Time[/tex]

200,000,000 years have passed and the movement was previously found, so the speed of travel is,

[tex]v = \frac{576,155,570.12cm}{200.000.000 years}[/tex]

[tex]v = 2.88 cm/year[/tex]

Therefore the velocity is 2.88 cm per year.

. The charge entering the positive terminal of an element is ???? = 10 sin 4???????? m????, while the voltage across the element is ???? = 2 cos 4???????? ????. (i) Find the power delivered to the element at t = 0.3s. (ii) Calculate the energy delivered to the element between 0 and 0.6s.

Answers

Answer:

P (t = 0.3) = 164.5 mW

W ( 0 < t < 0.6) = 78.34 mJ

Explanation:

Given:

q (t) = 10*sin(4*pi*t) mC

V (t) = 2 *cos(4*pi*t) V

part a

The current i (t) flowing through the element is obtained as follows:

i (t) = dq / dt

= d (10*sin(4*pi*t)) / dt

= 40 * pi * cos (4*pi*t)  mA

Next P(t) delivered to the element is obtained as follows:

P (t)  = i (t)*V(t)

=  40 * pi * cos (4*pi*t) * 2 *cos(4*pi*t)

= 80*pi*(cos(4*pi*t))^2  mW

Finally the power delivered to element @ t = 0.3 s

P (t=0.3) = 80*pi*(cos(4*pi*0.3))^2 = 164.50 mW

Answer: P (t = 0.3) = 164.5 mW

part b

Energy delivered to the element time 0 to 0.6 s is obtained as follows:

[tex]W (0 <t<0.6) = \int\limits {P(t)} \, dt\\\\ =\int {80*pi*(cos(4*pi*t))^2} \, dt\\\\= (5 sin (8*pi*t) + 40*pi*t )\limits^0.6_0 \\\\= 78.33715mJ[/tex]

Answer: W ( 0 < t < 0.6) = 78.34 mJ

The displacement of a wave traveling in the positive x-direction is:
y(x,t) = (3.5cm) cos (2.7x−92t), where x is in m and t is in s.
Part A) What is the frequency of this wave?
Part B) What is the wavelength of this wave?
Part C) What is the speed of this wave?

Answers

The frequency, wavelength, and speed of the wave are equal to 14.65 Hz, 0.4299m, and 6.298 Hz.

What are frequency and wavelength?

The frequency can be described as the number of oscillations or cycles in 1 second. The SI unit of frequency has per second or hertz.

The wavelength can be defined as the distance between the two adjacent crests or troughs on a wave that is separated by a distance.

The standard equation of wave can be expressed as:

[tex]{\displaystyle y(x,t) = Acos (\frac{2\pi x}{\lambda} \pm 2\pi ft )[/tex]

Given the equation of the wave: y(x,t) = (3.5cm) cos (2.7x−92t)

Therefore, the wavelength can be calculated as:

2π/ λ = 2.7

λ = 2.7/2π

λ = 0.4299 m

The frequency of the given wave can be calculated as:

2πf = 92

f = 92/2π

f = 14.65 Hz

The speed of the wave can determine from the above-mentioned relationship:

V = νλ

V = 14.65 × 0.4299

V = 6.29 m/s

Learn more about wavelength and frequency, here:

brainly.com/question/18651058

#SPJ5

Which is true about inelastic collisions: a. An inelastic collision does not obey conservation of energy. b. An inelastic collision conserves kinetic energy. c. Objects will stick together upon collision. d. Momentum is not conserved in inelastic collisions..

Answers

Answer:

Option c is correct

Explanation:

There are two types of collisions-elastic collision and inelastic collision.

In elastic collision, both kinetic energy and total momentum are conserved. On the other hand, in inelastic collision, total momentum is conserved but kinetic energy is not conserved. Thus, option b and d are incorrect.

Total energy is always conserved in both types. Thus, option a is incorrect.

In a perfectly inelastic collision, objects stick together. This happens because maximum kinetic energy is dissipated and used in bonding of the two objects. Thus, correct option is c.

Answer:

i believe its a?

Explanation:

In an inelastic collision, momentum is conserved

The end of Hubbard Glacier in Alaska advances by an average of 105 feet per year.

What is the speed of advance of the glacier in

m/s

?

Answers

Answer:

Speed of the glacier, [tex]v=1.0148\times 10^{-6}\ m/s[/tex]

Explanation:

Given that,

The average speed of Hubbard Glacier, [tex]v=105\ feet/year[/tex]

We need to find speed of advance of the glacier in  m/s. As we know that,

1 meter = 3.28 feet

And

[tex]1\ year=3.154\times 10^7\ second[/tex]

Using the above conversions, we can write the value of average speed is :

[tex]v=1.0148\times 10^{-6}\ m/s[/tex]

So, the speed of advance of the glacier is [tex]1.0148\times 10^{-6}\ m/s[/tex]. Hence, this is the required solution.

An electronic package with a surface area of 1 m2 placed in an orbiting space station is exposed to space. The electronics in this package dissipate all 1850 W of its power to space through its exposed surface. The exposed surface has an emissivity of 1.0 and an absorptivity of 0.25. Given: σ = 5.67×10–8 W/m2·K4

Answers

Final answer:

The temperature of the patch is approximately 1387 Kelvin, and the rate of heat loss through the patch is approximately 0.07 Watts.

Explanation:

The temperature of the patch can be calculated using the Stefan-Boltzmann law of thermal radiation, which states that the power radiated by an object is proportional to the fourth power of its temperature. The equation to calculate the temperature is:

T = sqrt((P / (A * sigma * e))

Where T is the temperature, P is the power, A is the surface area, sigma is the Stefan-Boltzmann constant, and e is the emissivity. Substituting the given values:

T = sqrt((1850 W / (1 m2 * 5.67×10–8 W/m2·K4 * 1.0)))

T = sqrt((1850 W / 5.67×10–8 W/m2·K4))

Calculating the square root:

T = 1387 K

The temperature of the patch is approximately 1387 Kelvin.

The rate of heat loss through the patch can be calculated using the Stefan-Boltzmann law:

P = A * e * sigma * T4

Substituting the known values:

P = (0.05 m * 0.08 m * 5.67×10–8 W/m2·K4 * 0.300 * (1387 K)4)

Calculating the power:

P = 0.07 W

The rate of heat loss through the patch is approximately 0.07 Watts.

A gadget of mass 21.85 kg floats in space without motion. Because of some internal malfunction, the gadget violently breaks up into 3 fragments flying away from each other. The first fragment has mass m1 = 6.42 kg and speed v1 = 6.8 m/s while the second fragment has mass m2 = 8.26 kg and speed v2 = 3.54 m/s. The angle between the velocity vectors ~v1 and ~v2 is θ12 = 64 ◦ . What is the speed v3 of the third fragment? Answer in units of m/s.

Answers

To solve this problem we will apply the concepts related to the conservation of momentum. For this purpose we will determine the velocities in the three body in the vertical and horizontal components. Once the system of equations is obtained, we will proceed to find the angle and the speed at which the third fragment is directed.

Mass of third part is

[tex]m_3 = m-(m_1+m_2)[/tex]

[tex]m_3= 21.85-6.42-8.26[/tex]

[tex]m_3 =7.17 kg[/tex]

Assume that [tex]m_1[/tex] is along X-axis we have that [tex]m_2[/tex] makes an angle is 64 degrees with x-axis and [tex]m_3[/tex] makes an angle [tex]\theta[/tex]  with x-axis.

Using law of conservation of momentum along X-axis

[tex]0 = (6.42*6.8)+(8.26*3.54*cos(64))+(7.71v_3 cos\theta)[/tex]

[tex](7.71v_3 cos\theta) = 56.4741[/tex]

[tex]v_3 cos\theta = 7.3247[/tex] [tex]\rightarrow \text{Equation 1}[/tex]

Now applying the same through the Y-axis.

[tex]0=0+8.26*3.54*sin(64\°) + 7.71*v_3*sin\theta[/tex]

[tex]-8.26*3.54*sin(64\°)=7.71*v_3*sin\theta[/tex]

[tex]v_3*sin\theta = -3.409[/tex] [tex]\rightarrow \text{Equation 2}[/tex]

If we divide the equation 1 with the equation 2 we have that

[tex]\frac{v_3cos\theta}{v_3 sin\theta } = \frac{7.3247}{-3.409}[/tex]

[tex]tan\theta = \frac{7.3247}{-3.409}[/tex]

[tex]\theta = tan^{-1} (\frac{7.3247}{-3.409})[/tex]

[tex]\theta = -65.04\°[/tex]

Using this angle in the second equation we have that velocity 3 is,

[tex]v_3 = \frac{-3.409}{sin(-65.04)}[/tex]

[tex]v_3 = 3.7601m/s[/tex]

Therefore the speed of the third fragment is [tex]3.7601\frac{m}{s} \angle -65.04\°[/tex]

What is the energy of light that must be absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5?

Answers

Final answer:

The energy absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5 can be calculated using the Rydberg formula. The resulting value, given in Joules, can be converted to electron volts for ease of comparison.

Explanation:

The energy of light absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5 can be calculated using the Rydberg formula, which describes the energies of the orbits of electrons in a hydrogen atom. The formula uses Rydberg's constant (RH = 2.18 × 10^-18 J) and the principal quantum numbers of the initial (ni) and final (nf) states:

ΔE = RH . ((1/ni²) - (1/nf²))  

In this case, ni = 3 (the initial energy level) and nf = 5 (the final energy level). Therefore, to find the energy involved in this transition, we substitute these values into the formula:

ΔE = 2.18 × 10^-18 . ((1/3²) - (1/5²))

The result you get from this calculation is in Joules, and to convert it to electron volts (eV), divide by 1.6 × 10^-19 (since 1 eV = 1.6 × 10^-19 J).

This numerical calculation will represent the energy absorbed by the atom as the electron transitions from n = 3 to n = 5, mentioned in the question.

Learn more about Energy Transition in Hydrogen Atom here:

https://brainly.com/question/29458970

#SPJ12

The speed of light is 3.00×108m/s. How long does it take for light to travel from Earth to the Moon and back again? Express your answer using two significant figures.

Answers

Answer:

v = 3×10^8 m/s

s= 384,400 km= 3.84×10^8 m/s

t = ?

v = s/t = 2s/t

t = 2s/v

t = (2×3.84×10^8) ÷ 3×10^8

t = 2.56 seconds

Explanation:

Earth's moon is the brightest object in our

night sky and the closest celestial body. Its

presence and proximity play a huge role in

making life possible here on Earth. The moon's gravitational pull stabilizes Earth's wobble on its axis, leading to a stable climate.

The moon's orbit around Earth is elliptical. At perigee — its closest approach — the moon comes as close as 225,623 miles (363,104 kilometers). At apogee — the farthest away it gets — the moon is 252,088 miles (405,696

km) from Earth. On average, the distance fromEarth to the moon is about 238,855 miles (384,400 km). According to NASA , "That means 30 Earth-sized planets could fit in between Earth and the moon."

The speed of light is used to determine the time it takes for light to travel from Earth to the Moon and back. By applying the formula Time = Distance / Speed, the total round trip time can be calculated.

The speed of light is 3.00×108 m/s. To calculate how long it takes for light to travel from Earth to the Moon and back, we need to consider the distance. The average distance from Earth to the Moon is about 384,400 km. Using the formula Time = Distance / Speed, the total round trip time would be approximately 2.56 seconds.

A chair is at rest on the floor. The chair absorbs thermal energy from the floor, and begins moving spontaneously with kinetic energy equal to the thermal energy absorbed. This process violates ___________.
A- Both the 1st and 2nd laws of thermodynamicsB- Only the 1st law of thermodynamicsC- Neither the 1st nor the 2nd law of thermodynamicsD- Only the 2nd law of thermodynamics

Answers

Answer:

D- Only the 2nd law of thermodynamics

Explanation:

It violates 2nd law because according to 2nd law of thermodynamics, it is impossible that the sole result of a process is is to absorb energy and do equivalent amount of work. so some heat must lose to surrounding which is not specified here. so it violates 2nd law.

so option D is correct

Final answer:

The process violates the 2nd law of thermodynamics. The chair absorbing thermal energy from the floor and beginning to move spontaneously with kinetic energy equal to the thermal energy absorbed implies a perfect conversion of heat into work, which is against the principle of entropy increase stated by the 2nd law.

Explanation:

This process violates D- Only the 2nd law of thermodynamics.

The Second Law of Thermodynamics states that the total entropy of an isolated system can never decrease over time, and is constant if and only if all processes are reversible. Isolated systems spontaneously evolve towards thermal equilibrium—the state of maximum entropy of the system.

In the scenario described where a chair absorbs thermal energy from the floor and begins moving spontaneously with kinetic energy equal to the thermal energy absorbed, it would mean that 100% of the thermal energy has been converted into kinetic energy. This is a violation of the second law of thermodynamics because it implies a perfect conversion of heat energy into work with no increase in entropy, i.e., the thermal energy is fully converted into kinetic energy without any of it being 'wasted' or dispersed.

Learn more about Second Law of Thermodynamics here:

https://brainly.com/question/32826461

#SPJ3

I’m not accelerating, so the net (vertical) force on me, while I’m sitting here doing this lab is _________

Answers

Answer:

Net force is zero

Explanation:

According to the Newton's second law, the net force on the body is equal to the product of mas of body and the acceleration.

here acceleration is equal to zero so net force is also zero because mass of an object can never be zero.

In the deep space between galaxies, the density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K. What is the pressure (in Pa)?

Answers

Answer: 3.73 × 10^-17 Pa

Explanation:

N/V= 10^6 atom/m^3

T=2.7k

Kb=1.38 ×10^-23 J/K

NA= 6.02 × 10^23 mol^-1

R= 8.31J/mol.K

PV= NaKbT

PV= N/V × KbT

P= 10^6 × 1.38 × 10^-23× 2.7

Pressure= 3.73×10^-17 Pa

The pressure in pascal of the deep space whose density of atoms is as low as 10⁶ atoms/m3 is 3.73 × 10-¹⁷ Pa.

How to calculate pressure?

The pressure of a space can be calculated using the following expression:

PV= N/V × KbT

Where;

P = pressureV = volumeKb = temperature constantT = temperatureR = gas law constant

N/V = 10⁶ atom/m³T = 2.7KKb = 1.38 ×10^-23 J/KNA= 6.02 × 10²³ mol-¹R= 8.31J/mol.K

P = N/V × KbT

P= 10⁶ × 1.38 × 10-²³ × 2.7

Pressure = 3.73 × 10-¹⁷ Pa

Therefore, the pressure in pascal of the deep space whose density of atoms is as low as 10⁶ atoms/m3 is 3.73 × 10-¹⁷ Pa.

Learn more about pressure at: https://brainly.com/question/15175692

Other Questions
In which case may a commercial real estate licensee be allowed to substitute training in other state and federal discrimination laws for fair housing continuing education? a ladder touches a wall 15ft off the ground, and the base of the ladder is 8 feet from the base of the wall. how long is the ladder Why wont anybody help me :( 3. Mrs. Powell Jones and her husband, Colonel Jones, lived down the street from Harper Lee. Mrs. Jones was an invalid and spent her days screaming at her husband from her wheelchair. Which character was created to resemble Mrs. Jones? A wireless service provider has a support center customers can call to get questions answered about their cell phone accounts. The manager in charge of the support center has recently conducted a study in which she surveyed 2,300 customers. The Customers who called the support center were transferred to a third party who asked the customers a series of questions.a. Indicate whether the data generated from this study will be considered cross-sectional or time series. Explain Why.b. One of the questions asked customers was approximately how many minutes they had been on hold waiting to get through to a support person. What level of data measurement is obtained from this question? Explain.c. Another question asked the customer to rate the service on a scale of 1-7, with 1 being the worst possible service and 7 being the best possible service. Which level of data measurement is achieved from this question? Will the data be quantitative or qualitative? Explain. 2) Show the decimal equivalent of each of the numbers if they are interpreted as (4 answers): 11001101 01101001 a. Unsigned binary b. Signed binary Even though RSV infection in infants is common, a vaccine does not currently exist. Imagine you are designing a recombinant vaccine for RSV--what viral components would you use in your vaccine? Justify your choice. Select the correct answer. What theme is common to the two excerpts below? . . . His theory of running until he reached camp and the boys had one flaw in it: he lacked the endurance. Several times he stumbled, and finally he tottered, crumpled up, and fell. When he tried to rise, he failed. He must sit and rest, he decided, and next time he would merely walk and keep on going. As he sat and regained his breath, he noted that he was feeling quite warm and comfortable. He was not shivering, and it even seemed that a warm glow had come to his chest and trunk. And yet, when he touched his nose or cheeks, there was no sensation. Running would not thaw them out. Nor would it thaw out his hands and feet. Then the thought came to him that the frozen portions of his body must be extending. He tried to keep this thought down, to forget it, to think of something else; he was aware of the panicky feeling that it caused, and he was afraid of the panic. But the thought asserted itself, and persisted, until it produced a vision of his body totally frozen. (Jack London, To Build a Fire) Presently the boat also passed to the left of the correspondent with the captain clinging with one hand to the keel. He would have appeared like a man raising himself to look over a board fence, if it were not for the extraordinary gymnastics of the boat. The correspondent marvelled that the captain could still hold to it. They passed on, nearer to shorethe oiler, the cook, the captainand following them went the water-jar, bouncing gayly over the seas. The correspondent remained in the grip of this strange new enemya current. The shore, with its white slope of sand and its green bluff, topped with little silent cottages, was spread like a picture before him. It was very near to him then, but he was impressed as one who in a gallery looks at a scene from Brittany or Algiers. He thought: "I am going to drown? Can it be possible? Can it be possible? Can it be possible?" Perhaps an individual must consider his own death to be the final phenomenon of nature." (Stephen Crane, The Open Boat) A. mysteries of life and death B. finding hope after tragedy C. humanity's helplessness against nature D. finding inner strength E. choosing between security and individualism The cyclical deficit is $400 billion, potential output is $9 trillion and the tax rate is 16 percent. With this information, we can infer that the actual output of this economy is:__________________. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on the Earth to observe stars, to what distance does this correspond in space? Protein requirements per unit of body weight are _______ for infants and children than for adults. A proton is launched from an infinite plane of charge with surface charge density -1.1010-6 C/m2. If the proton has an initial speed of 2.40107 m/s, how far does it travel before reaching its turning point? 48.4 m 96.7 m 2.0210-6 m 8.7410-7 m Fats supply energy, cushion vital organs and protect them from injury, add flavor to food and move through the _______ system slowly helping you feel fuller longer. Pam brought water to the soccer game.She had 12 containers.She put 4 liters of water in each container.How many liters of water did Pam bring to the soccer game? wo crafty bacteria fall into a pot of milk which has recently been sterilized. They reproduce at a rate of 4% per day. Determine how many bacteria will be present after 100 days. Which statement is true about culture and society?A. An area has either a society or a culture, but not both.OB. Within one society, there can be many cultures.OC. Throughout all cultures, there are at least four societies,OD. Societies last longer than cultures. Ustedes / unas galletas / el profesor The sculpture of the Great Sphinx stands as a symbolic guardian of the pyramids at Giza. The ancient Greek definition of a sphinx was a mythological creature whose features were: Carol's monthly take home pay is 1500$. She spends $250 a month on food. What is the ratio of food costs to take home dollars? In your computer repair business, it takes an employee 40 minutes to remove a virus. The employee is paid $14 per hour. What is the direct cost of this service.