Answer:
Dividend
Step-by-step explanation:
If you take a simple division problem like A = B / C
A is the quotient (result)
B is the dividend
C is the divisor
So, a number by which another number is to be divided is called a dividend, like A in the example above.
If C doesn't divide B in an exact manner (like in the case of 7 / 2), there's a remainder for the operation.
A divisor is a number by which another number, the dividend, is divided. In scientific notation, division involves dividing the coefficients and subtracting the exponents of the divisor from the dividend. Division is fundamentally related to multiplication, as it can be represented by multiplying by a reciprocal.
HURRY!!!!
The graph shows the education levels of individuals in one town. If 500 people were surveyed, how many have a college degree or some college?
135
175
300
310
Answer:
310
Step-by-step explanation:
62 percent of 500 is 310
Hope this helps :)
Answer:
Option D, 310
Step-by-step explanation:
In the given graph 500 people were surveyed.
Now we have to calculate the number of individuals who have a college degree or some college.
Now from the given pie chart.
College degree individuals = 25% of 500
= 0.25 × 500
= 175
Individual with some college = 27% of 500
= 0.27 × 500
= 135
So the total of college dgree + some college = 135 + 175 = 310
Option D 310 is the answer.
The length of a rectangle is (x+4) inches long and the width is 4 2/5 inches. If the area is 28 3/5 square inches wight and solve an equation to find the length of the rectangle
Area = length times width
Length = x + 4
Width = 4_2/5, which we can write as the improper fraction 22/5.
Area is given to be 28_3/5, which can be written as 143/5.
Here is the set up:
(143/5) = (x + 4)(22/5)
Take it from here.
When Marcie stands 5 feet from a light post, her shadow is 6 feet long. Find the height of the light post if Marcie is 4 feet tall.
22/3 or 7.3333333333333333333333333333 or 7 1/3 feet
Please check!!!! I've posted this already but no one is answering so I'm posting for more points.
By the law of sines,
[tex]\dfrac{\sin m\angle A}a=\dfrac{\sin m\angle B}b\implies\sin m\angle B=\dfrac{33.7\sin75^\circ}{51.2}[/tex]
We get one solution by taking the inverse sine:
[tex]m\angle B=\sin^{-1}\dfrac{33.7\sin75^\circ}{51.2}\approx39^\circ[/tex]
In this case there is no other solution!
To check: suppose there was. The other solution is obtained by recalling that [tex]\sin(180-x)^\circ=\sin x^\circ[/tex] for all [tex]x[/tex], so that
[tex]180^\circ-m\angle B=\sin^{-1}\dfrac{33.7\sin75^\circ}{51.2}\implies m\angle B\approx141^\circ[/tex]
But remember that the angles in any triangle must sum to 180 degrees in measure. This second "solution" violates this rule, since two of the known angles exceed 180: 75 + 141 = 216 > 180. So you're done.
This triangle is not a right triangle. How do we solve this then? You will use the law of sine with is shown below:
[tex]\frac{sin A}{a} =\frac{sin B}{b} = \frac{sinC}{c}[/tex]
What we know is shown in the image attached below:
Plug what you know into the law of sine
[tex]\frac{sin75}{51.2} =\frac{sinB}{33.7}[/tex]
To solve for sinB cross multiply
sin75*33.7 = sinB * 51.2
32.55 = sinB*51.2
Divide 51.2 to both sides to isolate sinB
32.55 / 51.2 = sinB / 51.2
0.63577 = sinB
To find B you must use arcsin:
[tex]sin^{-1} 0.63577[/tex]
39.477
^^^This is your rough estimate but you can simply keep it to 39 degrees
This means that your answer is correct!
Hope this helped!
YES IM LOOKING AT YOU ANSWER PLEAAASE
Answer:
The right answer is figure B
Step-by-step explanation:
* Lets talk about the complex number
- The complex number z = a + bi consists of two part:
# a is the real part and represented graphically by the x-axis
# b is the imaginary part and represented graphically by the y-axis
- We can add and subtract them by adding or subtracting the real parts
together and the imaginary parts together
# Ex: if z1 = 2 + 3i and z2 = -1 - i
∴ z1 + z2 = (2 + -1) + (3 + -1)i = 1 + 2i
∴ z1 - z2 = (2 - -1) + (3 - -1)i = (2 + 1) + (3 + 1)i = 3 + 4i
* Now lets solve the problem
- Let find from the graph z1 , z2 and point A
- Look to the any graph and find z1 through the axes
- We moved 6 units on the x-axis (real part) and 7 units up
(imaginary part)
∴ z1 = 6 + 7i
- Similarly find z2 through the axes
- We moved 5 units on the x-axis (real part) and 2 units down
(imaginary part)
∴ z2 = 5 - 2i
* Now lets solve z1 - z2
∵ z1 = 6 + 7i and z2 = 5 - 2i
∴ z1 - z2 = (6 + 7i) - (5 - 2i) = (6 - 5) + (7 - -2)i = 1 + 9i
* Lets find in which figure the coordinates of A are (1 , 9)
∵ In figure A point A is (1 , 6)
∵ In figure B point A is (1 , 9)
∵ In figure C point A is (11 , 5)
∵ In figure D point A is (11 , 9)
∴ The right answer is figure B
Which is an equation of the circle with a radius of 9 units and center at
(–4, 2)?
A.
(x − 9)2 + (y + 4)2 = 4
B.
(x − 4)2 + (y + 2)2 = 81
C.
(x + 4)2 + (y − 2)2 = 81
D.
(x − 2)2 + (y + 4)2 = 81
We want (x - h)^2 + (y - k)^2 = r^2.
This circle is not centered at the origin.
The point we want is in the form
(h, k).
We are given that h = -4 and k = 2.
We also know that the radius is 9.
Let r = 9 leading to (9)^2 or 81.
We know substitute in the form given above for circles not centered at the origin.
(x - (-4)^2 + (y - 2)^2 = 81
(x + 4)^2 + (y - 2)^2 = 81
Answer: Choice C
A piece of gum is stuck at the bottom of a tire...
Answer:
Step-by-step explanation:
This is the pre-calculus version of the arc length problem. The formula we need for this is:
[tex]s=r\theta[/tex]
where s is the arc length (here, the distance she has to travel to get the gum off the tire), r is the radius, and theta is the angle given (the angle here always always has to be in radians!!!) Filling in accordingly, we get
[tex]s=(6.5)(\frac{37\pi }{90})[/tex]
Do the math. You need the answer rounded to the nearest inch, so that means you have to multiply in the pi (I used 3.1415):
s = 8 inches
Answer:
8
Step-by-step explanation:
Give coordinates X(3,-4) and Y(-3,-4), midpoint D of XY is?
A. D(-4,0)
B. D(-3,4)
C. D(3,-4)
D. D(0,-4)
Answer:
[tex]\large\boxed{D.\ D(0,\ -4)}[/tex]
Step-by-step explanation:
The formula of a midpoint of the segment"
[tex]\left(\dfrac{x_1+x_2}{2};\ \dfrac{y_1+y_2}{2}\right)[/tex]
We have the points X(3, -4) and Y(-3 -4).
Substitute:
[tex]x=\dfrac{3+(-3)}{2}=\dfrac{0}{2}=0\\\\y=\dfrac{-4+(-4)}{2}=\dfrac{-8}{2}=-4[/tex]
Please help me out please
Answer:
True
Step-by-step explanation:
∠4 and ∠5 are congruent and alternate angles, hence
A and B are parallel lines
Please help me out please
Answer:
V = 400
Step-by-step explanation:
The volume (V) of the pyramid is
V = [tex]\frac{1}{3}[/tex] area of base × perpendicular height (h)
Consider a right triangle from the vertex to the midpoint of the base across to the slant height, with hypotenuse of 13
Using Pythagoras' identity on the right triangle, then
h² + 5² = 13²
h² + 25 = 169 ( subtract 25 from both sides )
h² = 144 ( take the square root of both sides )
h = [tex]\sqrt{144}[/tex] = 12
Area of square base = 10² = 100, thus
V = [tex]\frac{1}{3}[/tex] × 100 × 12 = 4 × 100 = 400
If you shift the linear parent function, f(x) = x, down 7 units, what is the equation of the new function?
A. g(x) = 7x
B. g(x) = x – 7
C. g(x) = x
D. g(x) = x + 7
if you shift it down 7, the new equation would be
g(x)=x-7
hope this helps
Answer:
B
Step-by-step explanation:
An upward shift or a downward shift is reflected in the +k or -k (k being some real number). If there is a number "stuck" to the x, that reflects the steepness (slope) of the line. The slope of this line is 1, and the y-intercept (where it goes through the y-axis) is down 7 from the origin. B is your answer.
What is the equation of a parabola with (4,6) as its focus and y = 2 as its directrix
Answer:
The equation of the parabola is (x - 4)² = 8(y - 4)
Step-by-step explanation:
* Lets revise the equation of a parabola
- If the equation is in the form (x − h)² = 4p(y − k), then:
• Use the given equation to identify h and k for the vertex, (h , k)
• Use the value of h to determine the axis of symmetry, x = h
• Use h , k and p to find the coordinates of the focus, (h , k + p)
• Use k and p to find the equation of the directrix, y = k − p
* Now lets solve the problem
∵ The directrix is y = 2
∴ The equation is (x - h)² = 4p(y - k)
∴ The focus is (h , k + p)
∵ The focus is (4 , 6)
∴ h = 4
∵ k + p = 6 ⇒ (1)
∵ The directrix is y = k - p
∴ k - p = 2 ⇒ (2)
* Add (1) and(2) to find k
∴ 2k = 8 ⇒ ÷ 2 for both sides
∴ k = 4
* Substitute the value of k in (1) to find p
∵ 4 + p = 6 ⇒ subtract 4 from both sides
∴ p = 2
* Now lets write the equation
∴ (x - 4)² = 4(2)(y - 4) ⇒ simplify
∴ (x - 4)² = 8(y - 4)
* The equation of the parabola is (x - 4)² = 8(y - 4)
PLEASE HELP ASAP!!!! Thanks!!
The sum of the lengths of two opposite sides of the circumscribed quadrilateral is 10 cm, and its area is 12 cm2. Find the radius of the inscribed circle.
Answer:
1.2 cm
Step-by-step explanation:
Quadrilateral circumscribing a circle is a quadrangle whose sides are tangent to a circle inside it (see attached diagram).
The area of circumscribed quadrilateral is
[tex]A=p\cdot r,[/tex]
where [tex]p=\dfrac{a+b+c+d}{2}[/tex] is semi-perimeter and r is radius of inscribed circle.
In your case, [tex]A=12\ cm^2[/tex]
If a quadrilateral is circumscribed over the circle, then the sum of opposite sides is equal, so
[tex]a+c=b+d=10\ cm,[/tex]
so
[tex]P=10+10=20\ cm\\ \\p=\dfrac{20}{2}=10\ cm[/tex]
Now
[tex]12=10\cdot r\Rightarrow r=\dfrac{12}{10}=1.2\ cm[/tex]
The equation for the position of an object at time t is represented by the equation f(t)=4t^2-2t. Which equation represents the instantaneous velocity at any given time, t?
Answer:
The equation that represents the instantaneous velocity at any given time, t is:
[tex]v (t) = 8t -2[/tex]
Step-by-step explanation:
In physics, the equation that describes the instantaneous velocity of an object is the derivative of the position of this object as a function of time.
In this problem we have the function that describes the position of the object at a time t.
[tex]f (t) = 4t ^ 2-2t[/tex]
Therefore to obtain the instantaneous velocity we derive f (t) with respect to time
[tex]\frac{df(t)}{dt} = 2(4)t-2\\\\\frac{df(t)}{dt} = 8t-2 = v (t)[/tex]
Finally the equation of velocity is:
[tex]v (t) = 8t -2[/tex]
Suppose the function g(x) = 7x + 6 is translated down 9 units to become a new function, h(x). What's the equation of the new function?
Answer:
g(x)=7x-3
Step-by-step explanation:
the y axis becomes -3 because 6-9=-3
cats can add but they do not multiply
Lol ok where’s the question is this just for fun?
Please help me please
Answer:
x = 36
Step-by-step explanation:
The angles 3x - y and 2x + y form a straight angle and are supplementary, so
3x - y + 2x + y = 180
5x = 180 ( divide both sides by 5 )
x = 36
-----------------------------------------------
5y and 3x - y are vertical angles and congruent, hence
5y = 3x - y ( add y to both sides )
6y = 3x ← substitute x = 36
6y = 3 × 36 = 108 ( divide both sides by 6 )
y = 18
(Pleaseeee dont ignore, need help) ❗️ Find the value of X.
Answer:
23.
Using Thales theorem, we have:
AP/BP = AQ/CQ
=> 8/40 = x/45
=> x = (45 · 8)/40 = 9
24.
Also using Thales theorem, we have:
5/6 = (x - 1)/12
x - 1 = (12 · 5)/6 = 60/6 = 10
x = 10 + 1 = 11
25.
Because we already have the bisector, we know that:
x/6.9 = 18.3/6.2
x = (6.9 · 18.3)/6.2 ≈ 20.4
Hopefully all of them are correct
Solve the system of equations given
5x+2y=9
2x-3y=15
A. (3,-3)
B. (-3,12)
C. (12,-3)
D. (-3,3)
Answer:
{x = 3 , y = -3 thus the answer is A
Step-by-step explanation:
Solve the following system:
{5 x + 2 y = 9 | (equation 1)
{2 x - 3 y = 15 | (equation 2)
Subtract 2/5 × (equation 1) from equation 2:
{5 x + 2 y = 9 | (equation 1)
{0 x - (19 y)/5 = 57/5 | (equation 2)
Multiply equation 2 by 5/19:
{5 x + 2 y = 9 | (equation 1)
{0 x - y = 3 | (equation 2)
Multiply equation 2 by -1:
{5 x + 2 y = 9 | (equation 1)
{0 x+y = -3 | (equation 2)
Subtract 2 × (equation 2) from equation 1:
{5 x+0 y = 15 | (equation 1)
{0 x+y = -3 | (equation 2)
Divide equation 1 by 5:
{x+0 y = 3 | (equation 1)
{0 x+y = -3 | (equation 2)
Collect results:
Answer: {x = 3 , y = -3
Answer:
A) 5x+2y=9
B) 2x-3y=15
Multiply A) by 1.5
A) 7.5x +3y = 13.5 then add it to B)
B) 2x-3y=15
9.5x = 28.5
x = 3
5*3 + 2y=9
2y = -6
y = -3
answer is A
Step-by-step explanation:
What is the volume of this solid?
A. 1104
B. 132
C. 96
D. 276
For this case we have that the volume of the figure is composed of the volume of a prism and the volume of a pyramid:
The volume of the prism is given by:
[tex]V = A_ {b} * h[/tex]
Where:
[tex]A_ {b}[/tex]: It is the area of the base
h: It's the height
Substituting:[tex]V = 6 * 6 * 6\\V = 216 \ units ^ 3[/tex]
The volume of the pyramid is given by:
[tex]V = \frac {1} {3} * L ^ 2 * h[/tex]
Where:
[tex]L ^ 2:[/tex]It is the area of the base
h: It's the height
Substituting:
[tex]V = \frac {1} {3} * 6 ^ 2 * 5\\V = \frac {1} {3} * 36 * 5\\V = 60units ^ 3[/tex]
We add and we have:
[tex]V = 276 \ units ^ 3[/tex]
ANswer:
Option D
Find the distance between these points.
W(-6, -8), X(6, 8)
20
10
√8
20 is the correct answer
For this case we have that by definition, the distance between two points is given by:
[tex]d = \sqrt {(x_ {2} -x_ {1}) ^ 2+ (y_ {2} -y_ {1}) ^ 2}[/tex]
We have the following points:
[tex](x_ {1}, y_ {1}) = (- 6, -8)\\(x_ {2}, y_ {2}) = (6,8)[/tex]
Substituting:
[tex]d = \sqrt {(6 - (- 6)) ^ 2+ (8 - (- 8)) ^ 2}\\d =\sqrt {(6 + 6) ^ 2 + (8 + 8) ^ 2}\\d = \sqrt {(12) ^ 2 + (16) ^ 2}\\d = \sqrt {144 + 256}\\d = \sqrt {400}\\d = 20[/tex]
ANswer:
20
Please please help me
A delicatessen offers 4 different breads, 4 cheeses, and 6 different meats. In how many ways can a sandwich be made with 1 bread, 2 cheese and 3 meats?
360
420
480
540
Answer:
360
Step-by-step explanation:
Answer:
360
Step-by-step explanation:
Solve the following system of equations:
-8x+3y=7
13-3y=-17
X=?
Y=?
Answer:
x = -2 and y = -3
Step-by-step explanation:
It is given that,
-8x + 3y =7 ----(1)
13x - 3y =-17 -----(2)
To find the value of x and y
eq(1) + eq(2) ⇒
-8x + 3y = 7 ----(1)
13x - 3y = -17 -----(2)
5x + = -10
x = -10/5 = -2
Substitute value of x in eq (1)
-8x + 3y =7 ----(1)
-8 * -2 + 3y = 7
16 + 3y = 7
3y = 7 - 16 = -9
y = -9/3 = -3
Therefore x = -2 and y = -3
For this case we must solve the following system of equations:
[tex]-8x + 3y = 7\\13x-3y = -17[/tex]
If we add both equations we have:
[tex]-8x + 13x + 3y-3y = 7-17\\5x = -10\\x = \frac {-10} {5}\\x = -2[/tex]
We find the value of the variable "y":
[tex]3y = 7 + 8x\\y = \frac {7 + 8x} {3}\\y = \frac {7 + 8 (-2)} {3}\\y = \frac {7-16} {3}\\y = \frac {-9} {3}\\y = -3[/tex]
Thus, the solution of the system is (-2, -3)
ANswer:
(-2, -3)
please help, i suck at these but i think its 3/6
Answer:
it is 1/6 because there is 6 colors and the probability of getting 3 which is 1 number is 1 out of 6
Step-by-step explanation:
100 POINTS, THANKS, 5 STARS, AND BRAINLIEST FOR GOOD ANSWERS!! HURRY!! BAD ANSWERS WILL BE REPORTED AND DELETED, REVOKING ALL POINTS YOU RECEIVED FROM ANSWERING!
Can someone help me create a good conclusion for this?
In the book Mice and Men, dreams are a driving theme as well as a form of characterization. This novel specifically focuses on “The American Dream”. Each character has their own dream. At one point or another, each of these characters’ dreams are ruined by one force or another.
Steinbach most likely used dreams as a driving theme to really explain each character’s viewpoint and feelings. He also may have done this to justify each character’s actions throughout the book. Along with this, he may have wanted to be able to create tension and conflicts in different places in the novel.
Dreams symbolize each character’s goal in life and how it is unattainable from most if not all means. The characters in this book all have one dream or another, yet none of them are capable to fully (for some characters, not even partially) fulfilling that dream. Along with that, I feel like the constant deaths in the book represent the feebleness of life in general.
I believe many authors use dreams as symbolism to create a drive for their characters. In this book, George and Lenny’s dream is to have a farm (Lenny mostly wanting to tend to the rabbits. This dream is ruined by a large series of events, for example, Lenny killing the Rabbit, Lenny killing Candy’s dog, Lenny killing Curly’s wife, and George killing Lenny.
Answer:
In conclusion, dreams are the driving theme and characterization in the novel. They help explain each character's motivation for the actions they take and the way they feel. All of the characters have a obstacles in their life stopping them from reaching their goal. Authors use dreams to give their characters something to live for and strive for. Without the character's dreams and goals for the future, the characters would have nothing to work towards and they would be much less complex
A conclusion for an essay on dreams in 'Of Mice and Men' should discuss the portrayal of the elusive American Dream, the use of dreams as a literary device, and the reflection of societal constraints and collective unconscious.
When crafting a conclusion for an essay about the theme of dreams in Of Mice and Men, you must strive to encapsulate the essence of the theme and its impact on the characters and the reader's understanding of the novel's message. The unattainable nature of the American Dream is vividly portrayed through the characters' struggles, symbolizing the universal experience of aspiration and loss. While each character harbors personal ambitions, the novel ultimately reveals the harsh reality of shattered dreams and the perseverance of hope, despite life's unpredictable and often tragic course. Understanding the role of dreams as a literary tool employed by John Steinbeck deepens one’s appreciation for his exploration of the human psyche and the societal constraints of the time period. Dreams in Steinbeck’s work reflect a combination of the characters' inner desires and the collective unconscious that connects them to the broader human experience, as Carl Jung would suggest.
K-12 Algebra 2. PLEASE HELP! 25 points
For a research project, students are asked to study how often students at an online high school look at social media while doing schoolwork.
A) Give an example of a question she could ask on her survey
B) How could Sofie select a simple random sample of students to take her survey?
C) she gives out 80 surveys but receives only 32 completed surveys. What are the sample and population for Sofies research?
D) of the 32 students who completed surveys, 16 said they use social media while doing schoolwork. If sofie uses only the completed surveys, what conclusion could she make about the percent of all high school students who use social media while doing schoolwork?
DO NOT ANSWER IF YOU DO NOT KNOW. I WILL REPORT YOUR ANSWER!!!!’
Answer:
A. how much of the students time is spent on social media during school hours.
B. By using some kind of selection technique Like Having students draw number from a hat, who ever have the specific numbers will take her survey.
C. The population for Sofies research would be a rate of 5/2. For every 5 people who take the survey only 2 turned it in.
D. She would conclude that 1 out of every 2 or 50 percent of students use social media while doing school work.
Step-by-step explanation:
The percent of all high school students who use social media while doing schoolwork, if Sofie uses only the completed surveys, is 50%.
What is random sample?Random sample is the way to choose a number or sample in such a manner that each of the sample of the group has an equal probability to be chosen.
For a research project, students are asked to study how often students at an online high school look at social media while doing schoolwork.
A) Example of a question she could ask on her survey-Sofie can use the question as, how many times a student look at social media while doing schoolwork?
B) The way, Sofie select a simple random sample of students to take her survey-Sofie can use a simple random sampling technique to select a simple random sample of students to take her survey.
C) Sample and population for Sofie's research-
As Sofie gives out 80 surveys but receives only 32 completed surveys. Thus, the sample is data of 32 completed surveys and the population is total 80 surveys.
D) Percent of all high school students who use social media while doing schoolwork-Of the 32 students who completed surveys, 16 said they use social media while doing schoolwork. Thus, the percentage is,
[tex]P=\dfrac{16}{32}\times100\\P=50\%[/tex]
Hence, the percent of all high school students who use social media while doing schoolwork if Sofie uses only the completed surveys, is 50%.
Learn more about the random sample here;
https://brainly.com/question/17831271
100 POINTS+BRAINLIEST!!! MATH
A diameter of a circle has endpoints P(-10, -2) and Q(4,6)
a. Find the center of the circle.
b. Find the radius. If your answer is not an integer, express it in radical form.
c. Write an equation for the circle.
If your answer is incorrect/incomplete or you are just answering for the points, your answer will be reported and removed and the points will get refunded.
P and Q are endpoints, so the center of the circle would be the midway point.
A. The midpoint is found using:
(x1 + x2 /2 , y1 +y2 /2)
-10 + 4 = -6 /2 = -3
-2 + 6 = 4 /2 = 2
The center of the circle is at (-3,2)
B) The radius would be the distance from the midpoint to an end point.
Using the distance formula:
√((x2-x1)^2 + (y2-y1)^2)
√(4 - -3^2 + 6-2^2)
√(7^2 + 4^2)
√(49+16)
√65
C) Using the circle equation form of (x-h)^2 + (y-k)^2 = r^2
H,K is the center point found in part A and r is the radius found in part B.
The equation becomes (x-(-3))^2 + (y -2)^2 = √65^2
Which simplifies to: (x+3)^2 + (y-2)^2 = 65
Please help me out if possible.
Answer:
C
Step-by-step explanation:
Plotting the points in a sketch quickly shows that the vertices are not at right angles to each other, thus excluding rectangle and square whose vertices are at right angles.
The best selection is a rhombus
PLEASE HELP DUE TOMORROW
Explain how the formulas V = lwh and V = Bh are alike