A fully penetrating well in a 33 m thick confined aquifer pumps at a constant rate of 2000 m3/day for a long time. If the head in an observation well located160 m from the well is 249 m and the undisturbed head calculated at 453 m radius of influence is 250 m, determine the aquifer’s hydraulic conductivity (in m/d), transmissivity, and the drawdown 100 m away from the well. Problem

Answers

Answer 1

Answer:

the aquifer’s hydraulic conductivity  is K = 10.039 m/day

transmissivity T = 331.287 m/day

the drawdown 100 m away from the well is s = 1.452 m

Explanation:

Given that :

The  constant pumps rate Q = 2000 m³/day

R₁ =160 m     →    H₁  = 249 m

R₂ = 453 m    →    H₂ = 250 m

The  confined aquifer B is 33 m thick

The hydraulic conductivity K = [tex]\frac{Q*In (\frac{R_1}{R_2}) }{2 \pi B(H_2-H_1)}[/tex]

K = [tex]\frac{2000*In (\frac{160}{453}) }{2 \pi *33(250-249)}[/tex]

K = [tex]\frac{2081.43662}{207.3451151}[/tex]

K = 10.039 m/day

Transmissivity T = K × B

T = 10.039×33

T = 331.287 m/day

TO find the drawdown 100 m away from the well; we have:

K = [tex]\frac{Q* In(\frac{R_2}{R_1} )}{2 \pi B (H_2-H_1)} =\frac{Q* In(\frac{R_2}{R_3} )}{2 \pi B (H_2-H_3)}[/tex]

[tex]\frac{ In(\frac{453}{160} )}{(250-249)} =\frac{ In(\frac{453}{100} )}{ (250-H_3)}[/tex]

H₃ = 248.548 m

Drawdown (s) = H₂ - H₃

s = (250 -  248.548)m

s = 1.452 m


Related Questions

While Dr. Chesnutt is making breakfast, she turns on her 1060 W toaster, 500 W coffee pot, and 1230 W microwave at the same time. Part Description Answer Save Status A. If all three appliances are connected in parallel across a 120 V power source, what total current would they draw from the source? (include units with answer) Format Check Click here to check your answer 4 pts.100% 13% try penalty 8 try limit # tries: 0

Answers

Answer:23.25 A

Explanation:

Given

Rating of toaster [tex]P_1=1060\ W[/tex]

Coffee pot [tex]P_2=500\ W[/tex]

microwave [tex]P_3=1230\ W[/tex]

Voltage applied [tex]V=120\ V[/tex]

if they are connected in parallel then all three operates at same voltage

so their resistance are

[tex]P=\frac{V^2}{R}[/tex]

thus [tex]R_1=\frac{V^2}{P_1}=\frac{120^2}{1060}[/tex]

[tex]R_1=13.58\ \Omega[/tex]

[tex]R_2=\frac{V^2}{P_2}=\frac{120^2}{500}[/tex]

[tex]R_2=28.8\ \Omega[/tex]

[tex]R_3=\frac{V^2}{P_3}=\frac{120^2}{1230}[/tex]

[tex]R_3=11.707\ \Omega[/tex]

and [tex]V=IR[/tex]

where I=current

thus [tex]I_1=\frac{V}{R_1}=\frac{120}{13.58}[/tex]

[tex]I_1=8.83\ A[/tex]

[tex]I_2=\frac{V}{R_2}=\frac{120}{28.8}[/tex]

[tex]I_2=4.16\ A[/tex]

[tex]I_3=\frac{V}{R_3}=\frac{120}{11.707}[/tex]

[tex]I_3=10.25\ A[/tex]

Total current [tex]I=I_1+I_2+I_3=23.24\ A[/tex]

Sarah is 14 years old and skips school twice a week without any written explanation. What can she be charged with?

Answers

Answer:

Too many people are unaware or indifferent to that.” Fines can cost up to $500 per truancy, due within 30 days unless a judge gives an extension. For many students and families, it's another debt they can't pay. And if fines aren't paid, they can convert into an arrest warrant when a student turns 17.

Explanation:

A square loop of wire with a small resistance is moved with constant speed from a field free region into a region of uniform B field (B is constant in time) and then back into a field free region to the right. The self inductance of the loop is negligible

True/False:

a. When leaving the field the coil experiences a magnetic force to the left.

b. Upon entering the field, a clockwise current flows in the loop.

c. Upon leaving the field, a clockwise current flows in the loop.

d. When entering the field the coil experiences a magnetic force to the right.

Answers

Final answer:

The loop experiences a magnetic force to the left when leaving the field, a counterclockwise current flows when entering, a clockwise current flows when leaving, and a magnetic force to the left when entering the field.

Explanation:

The statement a is true. When leaving the magnetic field, the loop experiences a magnetic force to the left. This is because the magnetic field lines are directed from right to left in the field and the loop opposes the change in magnetic flux by generating a current that creates its own magnetic field, according to Lenz's law.

The statement b is false. Upon entering the field, a counterclockwise current flows in the loop. This is because the increasing magnetic flux induces a current that opposes the increase, as stated by Lenz's law.

The statement c is true. Upon leaving the field, a clockwise current flows in the loop. This is because the decreasing magnetic flux induces a current that opposes the decrease, according to Lenz's law.

The statement d is false. When entering the field, the coil experiences a magnetic force to the left. This is because the magnetic field lines are directed from left to right in the field and the loop opposes the change in magnetic flux by generating a current that creates its own magnetic field, according to Lenz's law.

A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.42). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.85 rad>s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle.
a. Is angular momentum conserved?
b. Find the change in kinetic energy of the block, in J.
c. How much work was done in pulling the cord? in J.

Answers

Answer:

W= [tex]K_2-K_1==9.12\times10^{-3} J[/tex]

Explanation:

a) Yes, In the absence of external torques acting on the system, the angular momentum is conserved.

b) By the law of conservation of energy angular momentum

[tex]L_1=L_2[/tex]

[tex]I_1\omega_1=I_2\omega_2[/tex]

[tex]mr_1^2\omega_1=mr_2^2\omega_2\\\omega_2=(\frac{r_1}{r_2} )^2\omega_1[/tex]

[tex]\omega_2=(\frac{0.3}{0.15})^2\times2.85[/tex]

[tex]\omega_2=5.7\text{ rad/sec}[/tex]

c) work done in pulling the chord W= Final kinetic energy(K_2)-Initial Kinetic energy(K_1)

[tex]K_1=\frac{1}{2} mr_1^2\omega_1^2[/tex]

[tex]K_1=\frac{1}{2} \times0.025\times0.3^2\times2.85^2[/tex]

[tex]=9.12\times10^{-3} J[/tex]

Now,

[tex]K_2=\frac{1}{2} mr_2^2\omega_2^2[/tex]

[tex]K_2=\frac{1}{2} \times0.025\times0.15^2\times5.7^2[/tex]

[tex]K_2=18.24\times10^{-3}[/tex] J

Therefore, Work done W= [tex]K_2-K_1==9.12\times10^{-3} J[/tex]

Final answer:

a. Angular momentum is conserved in this system. b. The change in kinetic energy of the block can be calculated. c. No work is done in pulling the cord.

Explanation:

a. Angular momentum is conserved when there are no external torques acting on the system. In this case, since the block is revolving on a frictionless surface, and there is no mention of any external torques, we can assume that angular momentum is conserved.

b. The change in kinetic energy of the block can be calculated using the equation ΔKE = KE_final - KE_initial. Since the block is modeled as a particle, its kinetic energy is given by KE = 1/2 * m * v^2, where m is the mass and v is the linear velocity. As the radius is changed, the linear velocity changes, and we can calculate the change in kinetic energy.

c. The work done in pulling the cord can be calculated using the equation W = ΔKE + ΔPE, where W is the work done, ΔKE is the change in kinetic energy, and ΔPE is the change in potential energy. In this case, since the block is on a frictionless surface, there is no change in potential energy, and we only need to calculate the change in kinetic energy.

Learn more about Conservation of angular momentum here:

https://brainly.com/question/1597483

#SPJ3

our friend is constructing a balancing display for an art project. She has one rock on the left (ms=2.25 kgms=2.25 kg) and three on the right (total mass mp=10.1 kgmp=10.1 kg). The distance from the fulcrum to the center of the pile of rocks is rp=0.360 m.rp=0.360 m. Answer the two questions below, using three significant digits. Part A: What is the value of the torque (????pτp) produced by the pile of rocks? (Enter a positive value.)

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The torque produced by the pile of rocks is [tex]\tau = 35.63\ N \cdot m[/tex]  

b

The distance of the single for equilibrium to occur is [tex]r_s =1.62 \ m[/tex]

Explanation:

From the question we are told that

     The mass of the left rock is  [tex]m_s = 2.25 \ kg[/tex]

     The mass of the rock on the right [tex]m_p = 10.1 kg[/tex]

    The distance from  fulcrum to the center of the pile of rocks is  [tex]r_p = 0.360 \ m[/tex]

   

Generally the torque produced by the pile of rock is mathematically represented as

           [tex]\tau = m_p * g * r_p[/tex]

Substituting values

         [tex]\tau = 10.1 * 9.8 * 0.360[/tex]                  

          [tex]\tau = 35.63\ N \cdot m[/tex]      

Generally we can mathematically evaluated the distance of the the single rock that would put the system in equilibrium as follows

   The torque due to the single rock is

           [tex]\tau = m_s * g * r_s[/tex]

At equilibrium the both torque are equal

            [tex]35.63 = m_s * r_s * g[/tex]

Making [tex]r_s[/tex] the subject of the formula

             [tex]r_s = \frac{35.63 }{m_s * g}[/tex]

Substituting values

            [tex]r_s = \frac{35.63 }{2.25 * 9.8}[/tex]

            [tex]r_s =1.62 \ m[/tex]

A researcher with the Ministry of Transportation is commissioned to study the drive times to work (one-way) for U.S. cities. The underlying hypothesis is that average commute times are different across cities. To test the hypothesis, the researcher randomly selects six people from each of the four cities and records their one-way commute times to work. Refer to the below data on one-way commute times (in minutes) to work. Note that the grand mean is 36.625. Houston Charlotte Tucson Akron 45 25 25 10 65 30 30 15 105 35 19 15 55 10 30 10 85 50 10 5 90 70 35 10 x¯i 74.167 36.667 24.833 10.833 s2i 524.167 436.667 82.167 14.167 The competing hypotheses about the mean commute times are ______________ a) H0: μ1 = μ2 = μ3, HA: Not all population means are equal H0: b) Not all population means are equal, HA: μ1 = μ2 = μ3 H0: μ1 = μ2 = μ3 = μ4, HA: c) Not all population means are equal H0: d) Not all population means are equal, HA: μ1 = μ2 = μ3 = μ4

Answers

Answer:

d) H0: Not all population means are equal,

HA: μ1 = μ2 = μ3 = μ4

Explanation:

The null hypothesis (H0) tries to show that no significant variation exists between variables or that a single variable is no different than its mean. While an alternative Hypothesis (Ha) attempt to prove that a new theory is true rather than the old one. That a variable is significantly different from the mean.

Therefore, for the case above;

Since the underlying hypothesis is that average commute times are different across cities.

Null hypothesis H0: is that Not all population means are equal.

Alternative hypothesis Ha: μ1 = μ2 = μ3 = μ4

Two speakers produce waves of the same wavelength that are in phase. 1) At a point midway between the speakers, you would expect to hear: Louder sound Softer sound Alternating louder and softer sounds Louder or softer sounds depending on the wavelength No interference You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 2) Briefly explain your answer to the previous questio

Answers

Answer:

louder

Explanation:

Since the two speakers producing same wavelength that are in phase,at the midpoint, the waves travel the same distance and hence path difference is zero

hence constructive interference takes place , due to this a louder sound is observed .

hence the answer is a) louder

Final answer:

When two speakers produce waves of the same wavelength that are in phase at a point midway between the speakers, constructive interference occurs. This results in the overlapping and combination of the waves to form a wave with higher amplitude, creating a louder sound.

Explanation:

The subject of this question involves the principle of wave interference in physics. This is a phenomenon that occurs when two waves come together while traveling through the same medium. At a point midway between the speakers, when two speakers produce waves of the same wavelength that are in phase, taking into account the path lengths traveled by the individual waves, you would expect to hear a louder sound.

This is a case of constructive interference, where the two sound waves, being in phase and of the same wavelength, will overlap and combine to form a wave with a greater amplitude, leading to a louder sound. This is explained in Figure 17.17 and 16.36, where the difference in the path lengths is one wavelength, resulting in total constructive interference and a resulting amplitude equal to twice the original amplitude.

However, it is worthy to note that in the real world recognition of this increased amplitude or louder sound will depend on the specific frequency of the sound, as sonic perception can vary with frequencies. This explanation is in reference to a single tone or frequency. When discussing music which is composed of many frequencies, the actual perception might be a bit more complex.

Learn more about Wave Interference here:

https://brainly.com/question/16622714

#SPJ3

Albert and Emmy purchase identical state-of-the-art atomic watches to take on their interplanetary entomology expedition. After a busy day collecting spacebug specimens, Albert waits in the main spaceship while Emmy flies a shuttle to the nearest food court to pick up dinner. As Emmy flies by at a very high but constant velocity, Albert measures the rate at which Emmy's watch is ticking and compares it with his watch.

Albert observe that Emmy's watch is ticking ________ his own watch.

A. more slowly than
B. more quickly than
C. at the same rate as

Answers

Answer:

Option is A, Albert observes that Emmy's watch is ticking more slowly than his watch.

Explanation:

According to Einstein's theory of relativity, the time between two observers, as one of them is moving respect to the other, is different, occurring the known time dilation. This theory indicates that, for the observer that is in an inertial frame of reference, he will measure a clock that is moving relative to him, to tick slower than his clock that is at rest. The faster the relative velocity, the greater the time dilation between the two of them.    

     

In our case, the person that is at rest (Albert) will measure the clock of the observer that is moving (Emmy) as ticking slower than his own watch, because Emmy is moving at high speed in relation to Albert (that is at rest), thus, time dilation is occurring for Emmy.                        

Therefore, the correct option is A, Albert observes that Emmy's watch is ticking more slowly than his watch.  

I hope it helps you!

A long uniform wooden board (a playground see-saw) has a pivot point at its center. An older child of mass M=32 kg is sitting a distance L from the pivot. On the other side of the pivot point are two smaller children each of mass M/2. One is sitting a distance L/6 from the pivot. How far from the pivot must the other small child be sitting in order for the system to be balanced?

Answers

Answer:[tex]\frac{5L}{6}[/tex]

Explanation:

Given

Wooden board is pivoted at center and

Older child of mass [tex]M=32\ kg[/tex] is sitting at a distance of L from  center

if two child of mass [tex]\frac{M}{2}[/tex] is sitting at a distance [tex]\frac{L}{6}[/tex] and [tex]x[/tex](say) from pivot then net torque about pivot is zero

i.e.

[tex]\Rightarrow \tau_{net}=MgL-\frac{M}{2}g\frac{L}{6}-\frac{M}{2}gx[/tex]

as [tex]\tau_{net}=0[/tex]

Therefore

[tex]MgL=\frac{M}{2}g\frac{L}{6}+\frac{M}{2}gx[/tex]

[tex]L-\frac{L}{6}=x[/tex]

[tex]x=\frac{5L}{6}[/tex]

Therefore another child is sitting at a distance of [tex]\frac{5L}{6}[/tex]

Identify three pollutants released into the air when fossil fuels are burned.

Answers

Answer:

Carbon Monoxide (CO), Carbon Dioxide (CO2), and Sulfur Dioxide (SO2).

Answer:Carbon dioxide (CO2), Carbon monoxide (CO), Methane (CH4)

Please rate 5 stars and vote as brainliest:)

(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)

A large, 36.0 kg bell is hung from a wooden beam so it can swing back and forth with negligible friction. The bell’s center of mass is 0.55 m below the pivot. The bell’s moment of inertia about an axis at the pivot is 36.0 kg ·m2 . The clapper is a small, 2.8 kg mass attached to one end of a slender rod of length L and negligible mass. The other end of the rod is attached to the inside of the bell; the rod can swing freely about the same axis as the bell. What should be the length L of the clapper rod for the bell to ring silently — that is, for the period of oscillation for the bell to equal that of the clapper?

Answers

Answer:

Length of the rod is 0.043m

Explanation:

Mass of the bell (M) = 36kg

Distance of the center of mass from pivot = 0.55m

Moment of inertia (I) = 36.0kgm²

Mass of clipper (m) = 2.8kg

Length of the bell to ring = L

The period of the pendulum with small amplitude of oscillation is

T = 2π √(I / mgd)

Where g = acceleration due to gravity = 9.8 m/s²

T = 2π √(36 / 36*9.8*0.55)

T = √(0.1855)

T = 0.43s

The period of the pendulum is 0.43s

To find the length of the Clapper rod for which the bell ring slightly,

T = 2π√(L / g)

T² = 4π²L / g

T² *g = 4π²L

L = (T² * g) / 4π²

L = (9.8* 0.43²) / 4π²

L = 1.7287 / 39.478

L = 0.043m

The length of the Clapper rod for the bell to ring slightly is 0.043m

Submarine (sub A) travels through water at a speed of 8.00 m/s, emitting a sonar wave at a frequency of 1 400 Hz. The speed of sound in the water is 1 533 m/s. A second submarine (sub B) is located such that both submarines are traveling directly toward each other. The second submarine is moving at 9.00 m/s. What frequency is detected by an observer riding on sub B as the subs approach each other?

Answers

Answer:

1385 hz

Explanation:

Yes if it’s right pls mark the brainliest

A physics major is cooking breakfast when he notices that the frictional force between the steel spatula and the dry steel frying pan is only 0.100 N. Knowing the coefficient of kinetic friction between the two materials (0.3), he quickly calculates the normal force in newtons. What is it

Answers

Answer:

Normal force = 3N

Explanation:

We are given;

Coefficient of kinetic friction friction; μ_k = 0.3

Frictional force;F_f = 0.1N

Now,the formula for frictional force is;

F_f = μ_k*N

Where μ_k is coefficient of friction and N is the normal force.

So, making N the subject, we have;

N = μ_k/F_f

Plugging in the relevant values to obtain;

N = 0.3/0.1

N = 3N

There are several types of drag on a car other than air resistance. Effects having to do with the squeezing of the tires (rolling resistance) and frictional forces in the drivetrain (the system that transfers energy from the engine to the rotation of the wheels) also must be taken into account. Engineers use the following equation to model the total force due to these different effects Fdrag=A+Bv+Cv2 For a Accord, these coefficients are estimated to be A=220.500 N, B=−5.930 N s/m, and C=0.611 N s2/m2. Suppose that the driver steadily accelerates the car from 0 km/hr to 100 km/hr over a 3.5 s. What is the magnitude of the work done by the drag forces?]

Answers

Answer:[tex]W=16.837\ kJ[/tex]

Explanation:

Given

Drag force is given by

[tex]F_{drag}=A+Bv+Cv^2[/tex]

for [tex]A=220.5\ N[/tex]

[tex]B=-5.93\ N-s/m[/tex]

[tex]C=0.611N-s/m^2[/tex]

car accelerate from 0 to [tex]100\ km/hr[/tex] in [tex]3.5\ s[/tex]

so acceleration is given by

[tex]v=u+at[/tex]

here u=initial velocity is zero

[tex]v=100\km/hr\approx 27.78\ m/s[/tex]

[tex]27.78=0+a(3.5)[/tex]

[tex]a=7.936\ m/s^2[/tex]

Now work done is given by

[tex]dW=F\cdot vdt[/tex]

[tex]\int_{0}^{W}dW=\int_{0}^{3.5}F\cdot vdt[/tex]

[tex]W=\int_{0}^{3.5}[Av+Bv^2+Cv^3]dt[/tex]

[tex]W=\int_{0}^{3.5}[220.5at-5.93a^2t^2+0.611a^3t^3]dt[/tex]

[tex]W=\int_{0}^{3.5}220.5\times 7.936tdt-\int_{0}^{3.5}5.93\times (7.936)^2t^2dt+\int_{0}^{3.5}0.611\times (7.936)^3t^3dt[/tex]

[tex]W=1749.88[\frac{t^2}{2}]_0^{3.5}-373.47[\frac{t^3}{3}]_0^{3.5}+305.389[\frac{t^4}{4}]_0^{3.5}[/tex]

[tex]W=10,718.015-5337.508+11,456.85[/tex]

[tex]W=16.837\ kJ[/tex]

Final answer:

The work done by drag forces on a car accelerating from 0 to 100 km/hr can be calculated using the equation for total force and its given coefficients, by first converting the velocity to m/s, then finding the average velocity to use it to find the drag force, and finally using the net force and distance covered to calculate the work done.

Explanation:

The work done by the drag forces on a car accelerating steadily from 0 km/hr to 100 km/hr over 3.5 s can be calculated using the given equation for total force due to different effects, Fdrag=A+Bv+Cv2, and the coefficients for an Accord car. Please note that before calculating, the velocity needs to be converted from km/hr to m/s as SI units should be consistent.

First, find the average velocity of the car during its acceleration period, which is (0 + final velocity)/2. Then, substitute the values in the given equation Fdrag=A+Bv+Cv2 to find out the Net Force acting on the car.

Next, use this Net Force to find the Work done against the drag forces during the acceleration. The Work done (W) against a force is calculated by the equation W = F * d, where F is the net force (drag force) acting on the body and d is the total distance covered during the acceleration. To find the distance covered by the car, replace 's' in the equation s = ut + 1/2*a*t^2 with the average velocity of the car times the total time (t) it took to accelerate.

This will give you the total work done against drag forces on accelerating the car from 0 km/hr to 100 km/hr over 3.5 s.

Learn more about Work done against Drag Forces here:

https://brainly.com/question/31887591

#SPJ12

Which resistors in the circuit must always have the same current?

Answers

Answer:

Resistors in series in the circuit must always have the same current

Explanation:

Resistors are said to be connected in series if they are connected one after another.

The total resistance in the circuit with resistors connected in series is equal to the sum of individual resistances.

Individual resistors in series do not get the total source voltage. Total source voltage divide among them.

Answer:

it's a and d

Explanation:

because it all goes around if that makes sense.. and if u guys are here from apex



In order for a current to be maintained through a conductor a difference in ________________________ must be maintained from one end of the conductor to the other end.

Answers

Answer:

Potential

Explanation:

In order for a current to be maintained through a conductor a difference in potential must be maintained from one end of the conductor to the other end. Due to potential difference and emf is induced in it. As a result current starts to flow.

Scientific work is currently underway to determine whether weak oscillating magnetic fields can affect human health. For example, one study found that drivers of trains had a higher incidence of blood cancer than other railway workers, possibly due to long exposure to mechanical devices in the train engine cab. Consider a magnetic field of magnitude 1.00 10-3 T, oscillating sinusoidally at 72.5 Hz. If the diameter of a red blood cell is 7.60 µm, determine the maximum emf that can be generated around the perimeter of a cell in this field.

Answers

Given Information:

Magnetic field = B = 1×10⁻³ T

Frequency = f = 72.5 Hz

Diameter of cell = d = 7.60 µm = 7.60×10⁻⁶ m

Required Information:

Maximum Emf = ?

Answer:

Maximum Emf = 20.66×10⁻¹² volts

Explanation:

The maximum emf generated around the perimeter of a cell in a field is given by

Emf = BAωcos(ωt)

Where A is the area, B is the magnetic field and ω is frequency in rad/sec

For maximum emf cos(ωt) = 1

Emf = BAω

Area is given by

A = πr²

A = π(d/2)²

A = π(7.60×10⁻⁶/2)²

A = 45.36×10⁻¹² m²

We know that,

ω = 2πf

ω = 2π(72.5)

ω = 455.53 rad/sec

Finally, the emf is,

Emf = BAω

Emf = 1×10⁻³*45.36×10⁻¹²*455.53

Emf = 20.66×10⁻¹² volts

Therefore, the maximum emf generated around the perimeter of the cell is 20.66×10⁻¹² volts

A coil is wrapped with 140 turns of wire on the perimeter of a square frame of sides 35 cm. Each turn has the same area, equal to that of the frame, and the total resistance of the coil is 1.46 . A uniform magnetic field is turned on perpendicular to the plane of the coil. If the field changes linearly from 0 to −0.426 Wb/m2 in a time of 1.19 s, find the magnitude of the induced emf in the coil while the field is changing. Answer in units of V.

Answers

The magnitude of the induced emf in the coil, calculated using Faraday's Law of Electromagnetic Induction, is 6.18 V when a uniform magnetic field changes linearly over a time of 1.19 seconds.

To find the magnitude of the induced emf in the coil while the magnetic field is changing, we will apply Faraday's Law of Electromagnetic Induction which states that the emf induced in a circuit is proportional to the rate of change of the magnetic flux through the circuit. Given that the coil has 140 turns (N) and each side of the square frame is 35 cm (which we need to convert to meters to maintain SI units, 0.35 m), we can calculate the area (A) of the square frame as:

A = side x side = 0.35 m x 0.35 m = 0.1225 m2

The magnetic field (B) changes from 0 to -0.426 Wb/m2 over a time (t) of 1.19 s. The rate of change of magnetic field (dB/dt) is:

dB/dt = - ( 0 - (-0.426) ) / 1.19 s = 0.358 Wb/m2/s

Now using Faraday’s Law, the induced emf (ε) is given by:

ε = -N x (dΦ/dt) = -N x A x (dB/dt)

Plugging in the values we get:

ε = -140 x 0.1225 m2 x 0.358 Wb/m2/s = -6.18 V

The magnitude of the induced emf is therefore 6.18 V (taking the absolute value as the question asks for magnitude).

What is the most common and powerful agent of erosion? wind ice water animal behavior

Answers

Answer:

water

Explanation:

Answer:water

Explanation:because it shaped the grand canyon

The noise level coming from a pig pen with
199 pigs is 74.3 dB. The intensity of the sound
coming from the pig pen is proportional to the
number of pigs.
Assuming each of the remaining pigs squeal
at their original level after 61 of their compan-
ions have been removed, what is the decibel
level of the remaining pigs?
Answer in units of dB.

Answers

The decibel level of the remaining pigs is 34.02dB.

To solve this problem, we need to understand the relationship between the number of pigs and the intensity of sound. Since the intensity is proportional to the number of pigs, we can use the formula:

[tex]\[ \text{Intensity} = k \times \text{Number of pigs} \][/tex]

where ( k ) is a constant of proportionality.

Given that the noise level from 199 pigs is 74.3 dB, we can set up the equation:

[tex]\[ 74.3 = k \times 199 \][/tex]

First, let's solve for ( k ):

[tex]\[ k = \frac{74.3}{199} \][/tex]

Now, we can use this value of ( k ) to find the intensity when only 138 pigs remain:

[tex]\[ \text{Intensity}_{\text{new}} = k \times 138 \][/tex]

Finally, we can convert this intensity back into decibels using the formula:

[tex]\[ \text{Noise level (dB)} = 10 \log_{10}(\text{Intensity}) \][/tex]

Now, let's calculate:

[tex]\[ k = \frac{74.3}{199} \][/tex]

[tex]\[ k \approx 0.3726 \][/tex]

[tex]\[ \text{Intensity}_{\text{new}} = 0.3726 \times 138 \][/tex]

[tex]\[ \text{Intensity}_{\text{new}} = 51.36 \][/tex]

[tex]\[ \text{Noise level (dB)} = 10 \log_{10}(51.36) \][/tex]

[tex]\[ \text{Noise level (dB)} = 34.02 \][/tex]

So, the decibel level of the remaining pigs is 34.02dB.

what is the the wavelength if a wave cycles up and down three times per second and the distance between each wave is 1.7m?

Answers

Answer:5.1 meters

Explanation:

wavelength=3 x1.7

Wavelength=5.1 meters

Two football players collide head-on in midair, moving along the same horizontal direction, while trying to catch a thrown football. The first player is 89.5 kg and has an initial velocity of 6.05 m/s (in the positive direction), while the second player is 111 kg and has an initial velocity of –3.55 m/s. What is their velocity just after impact if they cling together?

Answers

Final answer:

The final velocity of the two football players after the collision is 0.738 m/s in the positive direction, calculated using the conservation of momentum.

Explanation:

The scenario described involves a conservation of momentum problem, where two football players collide and cling together. We can solve for the final velocity by using the principle of conservation of momentum, which states that the total momentum of a closed system remains constant if no external forces are acting on it.

To find the final combined velocity of the players after the collision, we use the formula:

Momentum before collision = Momentum after collision

(m1 × v1) + (m2 × v2) = (m1 + m2) × v_final

Plugging in the given values:

(89.5 kg × 6.05 m/s) + (111 kg × (-3.55 m/s)) = (89.5 kg + 111 kg) × v_final

After calculating both sides,

541.475 kg·m/s - 393.55 kg·m/s = 200.5 kg · v_final

We get the final combined velocity,

v_final = 147.925 kg·m/s / 200.5 kg

v_final = 0.7377 m/s (to four significant figures)

The players will be moving with a velocity of 0.738 m/s in the positive direction.

The portion of a cello string between the bridge and upper end of the fingerboard (that part of the string that is free to vibrate) is of length 60.0 cm, and this length of the string has mass 2.00 g. The string sounds an A4 note (440 Hz) when played.
Where must the cellist put a finger (what distance x from bridge) to play a D5 note (587 Hz)? For both notes, the string vibrates in its fundamental mode.

Answers

Answer:

Explanation:

length of vibration l = .6 m

mass per unit length m = 2 x 10⁻³ / .6

= 3.33 x 10⁻³ kg/ m

n = [tex]\frac{1}{2l} \sqrt{\frac{T}{m} }[/tex]

n is frequency of vibration , l is length , T is tension in the string .

Apply this formula in the first case

440 = [tex]\frac{1}{2\times.6} \sqrt{\frac{T}{3.33\times10^{-3}} }[/tex]

Apply this formula for second case

n = [tex]\frac{1}{2\times.6} \sqrt{\frac{T}{3.33\times10^{-3}} }[/tex]

587 = [tex]\frac{1}{2\times l} \sqrt{\frac{T}{3.33\times10^{-3}} }[/tex]

Dividing

[tex]\frac{440}{587}[/tex] = [tex]\frac{l}{.6}[/tex]

l = .45 m .

The distance from the bridge where the cellist must put his finger to play the D5 note is 45 cm.

The given parameters;

length o the string at A4, l = 60 cmmass, m = 2.0 gfrequency of A4 note, f = 440 Hzfrequency of D5 note, f = 5587 Hz

The frequency of a sound wave in a stretched string is calculated as;

[tex]f = \frac{1}{2l} \sqrt{\frac{T}{\mu} }[/tex]

where;

T is the tension in the stringμ is the mass per unit length

[tex]f_1(2l_1) = f_2(2l_2)\\\\f_1l_1 = f_2l_2\\\\l_2 = \frac{f_1l_1}{f_2} \\\\l_2 = \frac{440 \times 0.6}{587} \\\\l_2 = 0.45 \ m\\\\l_2 = 45 \ cm[/tex]

Thus, the distance from the bridge where the cellist must put his finger to play the D5 note is 45 cm.

Learn more about tension in a musical string here: https://brainly.com/question/14086522

A small car of mass m and a large car of mass 4m drive along a highway at constant speeds VS and VL. They approach a curve of radius R. The small and large cars have accelerations as and aL respectively, as they travel around the curve. The magnitude of as is twice of that of aL. How does the speed of the small car VS compare to the speed of the large car VL as they move around the curve

Answers

Answer:

[tex]v_S=\sqrt{2}v_L[/tex]

Explanation:

The acceleration experimented while taking a curve is the centripetal acceleration [tex]a=\frac{v^2}{r}[/tex]. Since [tex]a_S=2a_L[/tex], we have that: [tex]\frac{v_S^2}{r_S}=\frac{2v_L^2}{r_L}[/tex]

They take the same curve, so we have: [tex]r_S=r_L=R[/tex]

Which means: [tex]v_S^2=2v_L^2[/tex]

And finally we obtain: [tex]v_S=\sqrt{2}v_L[/tex]

g I can test a new wheel design by rolling it down a test ramp. I release a wheel of mass m=1.6 kg and radius r=0.37 m from rest at an initial height of h=6.7 m at the top of a test ramp. It rolls smoothly to the bottom without sliding. I measure the linear speed of the wheel at the bottom of the test ramp to be v=4.7 m/s. What is the rotational inertia of my wheel?

Answers

Answer:

The rotational inertia of my wheel is  [tex]I =1.083 \ kg \cdot m^2[/tex]

Explanation:

From the question we are told that

      The mass of the wheel is [tex]m = 1.6 \ kg[/tex]

        The radius of the wheel is  [tex]r = 0.37 \ m[/tex]

        The height is  [tex]h = 6.7 m[/tex]

          The linear speed is  [tex]v = 4.7 m/s[/tex]

According to the law of energy conservation

             [tex]PE = KE + KE_R[/tex]

Where PE is the potential energy at the height h  which is mathematically represented as

             [tex]PE = mgh[/tex]

While KE is  the kinetic energy at the bottom of height h

                 [tex]KE = \frac{1}{2} mv^2[/tex]

Where  [tex]KE_R[/tex] is the rotational kinetic energy which is mathematically represented as

           [tex]KE_R = \frac{1}{2} * I * \frac{v^2}{r^2}[/tex]

Where  [tex]I[/tex] is the rotational inertia

       So  substituting this formula into the equation of energy conservation

         [tex]mgh = \frac{1}{2} mv^2 + \frac{1}{2} * I * \frac{v^2}{r^2}[/tex]

=>       [tex]I =[ \ mgh - \frac{1}{2} mv^2 \ ]* \frac{2 r^2}{v^2}[/tex]

substituting values

           [tex]I =[ \ 1.6 * 9.8 * 6.7 - \frac{1}{2} * 1.6 *4.7^2 \ ]* \frac{2 * 0.37^2}{4.7^2}[/tex]

             [tex]I =1.083 \ kg \cdot m^2[/tex]

         

       

Two students are holding opposite ends of a spring in a classroom. One student stands on the left end of the classroom and the other stands at the right end. They shake the spring so that a longitudinal wave travels along the spring. In which directions will the longitudinal wave oscillate?

Answers

Answer:

Up And Down

Explanation:

In this case, the particles of the medium move parallel to the direction that the pulse moves. This type of wave is a longitudinal wave. Longitudinal waves are always characterized by particle motion being parallel to wave motion.

Hope this helps..Pls mark as Brainliest!!

Final answer:

In a longitudinal wave on a horizontal spring, the medium oscillates back and forth horizontally, parallel to the direction of the wave's travel.

Explanation:

The question pertains to the behavior of longitudinal waves in a spring. When one student shakes the spring to create a longitudinal wave, the oscillation of the spring occurs in the same direction as the wave's propagation. This means that in a longitudinal wave, the medium—the spring in this case—oscillates parallel to the wave's direction of motion. Therefore, if the spring is held horizontally and the wave travels from left to right, the individual coils of the spring will move left and right along the same horizontal line, compressing and expanding as the wave passes through.

In contrast, with transverse waves, the medium moves perpendicularly to the direction of the wave's travel, such as in the motion of a rope being moved up and down while the wave travels horizontally.

Nitrogen is stored in a large chamber under conditions of 450 K and 1.5 × 105 N/ m2 . The gas leaves the chamber through a convergent-only nozzle whose outlet area is 30 cm2 . The ambient room pressure is 1 × 105 N/m2 and there are no losses. (a) What is the velocity of the nitrogen at the nozzle exit? (b) What is the mass flow rate? (c) What is the maximum flow rate that could be obtained by lowering the ambi- ent pressure?

Answers

Answer:

a) 319.56 m/s

b) 0.8057 kg /s

c) 0.840 kg /s

Explanation:

Check the pictures attached for the whole explanation

Final answer:

The velocity of nitrogen at the nozzle exit and the mass flow rate depend on the conditions and properties of the gas, using principles such as the Bernoulli equation and the ideal gas law. Without specific constants, these values cannot be determined precisely. The maximum flow rate would be obtained by reducing the ambient pressure below the critical pressure ratio, causing choked flow.

Explanation:

To answer the student's question about the velocity of the nitrogen gas at the nozzle exit, we need to apply the principles of fluid dynamics. Under the provided conditions, without any losses and assuming adiabatic expansion, the velocity can be calculated using the Bernoulli equation and the equation of continuity. However, given that we only have the inlet pressure, outlet pressure, and temperature, we need additional equations like the ideal gas law to find the density at the exit. Unfortunately, without the specific heat ratio or gas constant for nitrogen, a precise calculation cannot be provided.

The mass flow rate can then be calculated by multiplying the outlet velocity by the outlet area and the density of nitrogen under the given conditions. An approximation can be made, but with the given data, it is not possible to provide an exact value since the outlet velocity is not known.

Regarding the maximum flow rate, it is related to the critical pressure ratio of the gas. If the ambient pressure is decreased below a certain critical point, the flow becomes choked, and the mass flow rate reaches a maximum. This maximum is a function of the chamber conditions and the specific properties of nitrogen.

QUESTIONS

A 800 kg person sprints up a 700 meter high stairway in 4.00 seconds flat. What is their power output in watts?

Answers

Answer:

Power;P = 1372000 W

Explanation:

We are given;

Mass of person;m = 800 kg

Distance sprinted;h = 700m

Time taken;t = 4 seconds

Now, the formula for Power is;

Power = Work done/Time taken

Where work done = Force x Distance

Now, Force is expressed as;

F = mg

Where m is mass and g is acceleration due to gravity = 9.8 m/s²

Thus, plugging in the relevant values into power equation gives;

Power;P = 800 x 9.8 x 700/4

Power;P = 1372000 W

A 0.415-kg mass suspended from a spring undergoes simpleharmonic oscillations with a period of 1.4 s. How much mass, inkilograms, must be added to the object to change the period to2.2 s?

Answers

Answer:

m=0.893kg

Explanation:

time period of oscillations is given by= 2π√(m/k)

m: mass of the object

k: spring constant

when T=1.5 and m=0.415

1.5= 2π√(0.415/k)

k= 7.27 N/m

when T= 2.2s

2.2= 2π√(m/7.27)

m=0.893kg

The mass in kilograms that must be added to the object to change the period to 2.2 s is 1.025kg

The formula for calculating the period of a simple pendulum is expressed as:

[tex]T= 2\pi \sqrt{\frac{m}{k} }[/tex]

m is the mass of the spring

k is the spring constant

Given the following parameters

m = 0.415kg

T = 1.4 secs

Get the spring constant

[tex]1.4=2(3.14)\sqrt{\frac{0.415}{k} } \\1.4=6.28\sqrt{\frac{0.415}{k} }\\ 0.2229=\sqrt{\frac{0.415}{k} }\\ \frac{0.415}{k} =0.0497\\0.0497k=0.415\\k=\frac{0.415}{0.0497}\\k= 8.35N/m[/tex]

Given the period is 2.2secs, the mass of the spring will be expressed as:

[tex]2.2=2 (3.14)\sqrt{\frac{m}{8.35} } \\2.2=6.28\sqrt{\frac{m}{8.35} }\\\sqrt{\frac{m}{8.35} }=0.3503\\\frac{m}{8.35} =0.1227\\m=1.025kg[/tex]

Hence the mass in kilograms that must be added to the object to change the period to 2.2 s is 1.025kg

Learn more here: https://brainly.com/question/2936338

Which side of the electromagnetic spectrum has shorter wavelengths?
Which side of the electromagnetic spectrum has higher energy?)
Which side of the electromagnetic spectrum has higher frequencies?

Answers

Gamma rays have the smallest wavelengths and the most energy of any wave in the electromagnetic spectrum. They are produced by the hottest and most energetic objects in the universe, such as neutron stars and pulsars, supernova explosions, and regions around black holes.

What is wavelength ?

"Distance between corresponding points of two consecutive waves." “Corresponding points” refers to two points or particles in the same phase—i.e. points that have completed identical fractions of their periodic motion.

What is frequency?

"Tthe number of waves that pass a fixed point in unit time. "It also describes the number of cycles or vibrations undergone during one unit of time by a body in periodic motion.

Know more about gamma rays here

https://brainly.com/question/23281551

#SPJ2

Answer:

1.blue

2.blue

3.blue

Explanation:

I took the quiz

Other Questions
Simplify the expression 3(x + 4) (06.02 LC) Which of the following does the endocrine system regulate?Group of answer choicesBlood sugarReflexesRespirationSenses Drops of water fell on the red blanket and soaked into dark icy spots. [Father Paul] sprinkled the grave and the water disappeared almost before it touched the dim, cold sand; it reminded him of something he tried to remember what it was, because he thought if he could remember he might understand this. He sprinkled more water; he shook the container until it was empty, and the water fell through the light from sundown like August rain that fell while the sun was still shining, almost evaporating before it touched the wilted squash flowers.The Man to Send Rain Clouds,Leslie Marmon SilkoBased on this passage, which object is most likely a symbol in the story?A.sundownB.sandC.rainD.water Where did the Civil War start on April 12, 1861? A. Fort DavisB. Fort SumterC. Fort WorthD. Fort St. Louis why is it not possible to make a right triangle using lengths of 10 feet, 60 feet, and 65 feet ? -9 - 12 square root of 3 Nigel and Michael's hosts were small farmers at Golden Grove near Llandeilo, in Carmarthenshire. . . . For Nigel, there was no down side. "As I enjoyed my experience on the Williamses' farm so my brother did not. It is not perhaps surprising. We were very different personalities he an introvert, I an extrovert. He tended to opt out of activities around the farm; I volunteered for everything. I loved every minute of it. I don't think I was particularly aware of Michael's unhappiness at the time, because I was enjoying myself.Which theme do the details in this passage most support? Social children adapt to new situations more quickly. Working on a farm is difficult if you have never done it before. People can have different viewpoints on the same situations. Those who have many blessings should give to those with nothing. Calnexin and calreticulin catalyze the removal of the final glucose residue from glycoproteins during the folding process. True or False Transketolase transfers two carbon units in the pentose phosphate pathway using a thiamine pyrophosphate cofactor. True or False In theory, chloroplasts should only absorb 8 photons per oxygen molecule evolved during photosynthesis, but they actually absorb more than 8 photons per evolved oxygen molecule. True or False Fructose-2,6-bisphosphate activates both phosphofructokinase and fructose bisphosphatase to increase flux through gluconeogenesis. True or False The Calvin cycle shares enzymes that are homologous to enzymes involved in glycolysis, gluconeogenesis, and the pentose phosphate pathway with only three enzymes unique to the Calvin cycle. True or False Two students are playing a game with a quarter and a spinner that isdivided into equal sixths, with the sections numbered 1 to 6. Each playertosses the coin and spins the spinner. How many outcomes are possiblefor the toss and spin? * Water at 15C is to be heated to 65C by passing it over a bundle of 7-m-long, 1-cm-diameter resistance heater rods maintained at 90C. Water approaches the heater rod bundle in normal direction at a mean velocity of 0.8 m/s. The rods are arranged in-line with longitudinal and transverse pitches of SL = 4 cm and ST = 3 cm. Determine the number of tube rows NL in the flow direction needed to achieve the indicated temperature rise. Why did fathers take their boys out of Christian school early? ACCIDENTS ARE MORE LIKELY TO HAPPEN:A. On city streets during rush-hour trafficB. On multi-lane freewaysC. On bridges and overpassesD. When one driver is traveling faster or slower than other drivers on the road What is the value of (5.3x10 to the power of 4)(4.2x10 to the power of 3) in scientific notation 1.Listening to Imagine by John Lennon and reading through the lyrics, write a paragraph about what you think the intention of this piece of music is. (What is the point of is? Why was it written?)2.What is one thing you like about this song that you think you could bring into your own playing / performances? Which of the following is a true statement about recycling?Recycling allows resources to be reused, instead of dumped in landfills. Recycled products emit oxygen into the atmosphere. Recycling causes the earth to cool down, instead of warm up. Recycling turns non-renewable resources into renewable ones. For credit card processing, stock exchanges, and airline reservations, data availability must be continuous. There are many other examples of mission-critical applications. Research the Internet to find four additional mission-critical applications and explain why data availability must be continuous for these applications. If you use information from the Web, use reputable sites. Do not plagiarize or copy from the Web. Be sure to cite your references. List the three purposes of the Native Title Act 1993 (Cth) ABCD is a trapezium calculate the area of ABCD _____ has many knowledge management applications, ranging from mapping knowledge flows and identifying knowledge gaps within organizations to helping establish collaborative networks. Select one: a. Social network analysis (SNA) b. Branching router-based multicast routing (BRM) c. Online analytical processing (OLAP) d. Drill-down analysis (DDA) What are chemical contaminants?Homemade soapsRestaurant grade cleanersAlcoholRecreational drugs