A. Find 18% more than 200
B. Find 18% less than 200

Answers

Answer 1

Answer:

A. 236

B. 164

Step-by-step explanation:

18% of 200= 36

200+36=236

200-36=164

Answer 2

Answer:

A. 236

B. 164

Step-by-step explanation:

To solve it first you need to find what 18% of 200 is. To do that take the 18% and make it a decimal % is out of 100, so 18/100 = .18. Then to find how much 18% out of 200 is, multiply .18 * 200. You should get 36. Then you can add and subtract that from 200 to get 18% more and 18% less.


Related Questions

PLEASE IM GONNA FAIL 7TH GRADE

Selective breeding _____.

1. creates offspring which are genetically identical to the parent

2. is the process of breeding only organisms with desirable traits

3. involves the removal of the nucleus of a cell

4. combines traits from organisms of different species

Answers

Answer:

2. the process of breeding only organisms with desirable traits

Step-by-step explanation:

Answer:

the answer is the second one

Step-by-step explanation:

This week, the art museum gave away 1,200 tickets to the Greco exhibit, which was 150 percent as many tickets as it gave away last week. Martin is trying to figure out how many tickets the museum gave away last week. His work is shown below.

Answers

Answer:

Step 1  1200/ ?

Step-by-step explanation:

There is a mistake in the very first step

He is writing par over whole

100% is the original amount of tickets x

150% is the 1200 tickets

150       1200

-----  =  ------------

100          ?

Answer:

a

Step-by-step explanation:

please help Ill mark brainliest -5/7 times 1/5

Answers

[tex]-\dfrac{5}{7}\cdot\dfrac{1}{5}=-\dfrac{1}{7}[/tex]

Find the Area
i need help?​

Answers

B x h = 12 x 9.6 = 115.2

Check the picture below.


Using the digits 3, 4, 5, 6 and 7, without repetitions, calculate the
number of 4-digit numbers that are greater than 5 000 that can be
formed.
Jawapan:
Answer:​

Answers

[tex]1\cdot4\cdot3\cdot2+2\cdot4\cdot3\cdot2=24+48=72[/tex]

Answer:

72

Step-by-step explanation:

There are five possible digits to choose from: 3, 4, 5, 6, and 7.

The number must be greater than 5000, so there are 3 possibilities for the first digit: 5, 6, or 7.

There's no repetition, so the second digit is one of 4 remaining possible digits.

That leaves 3 possible digits for the third digit.  And 2 possible digits for the fourth digit.

So the number of possible four-digit numbers that can be formed is:

3 × 4 × 3 × 2 = 72

If function f is vertically stretched by a factor of 2 to give function g, which of the following functions represents function g?

f(x) = 3|x| + 5

A. g(x) = 6|x| + 10

B. g(x) = 3|x + 2| + 5

C. g(x) = 3|x| + 7

D. g(x) = 3|2x| + 5

Answers

Answer:

A. g(x) = 6|x| +10

Step-by-step explanation:

The parent function is given as:

f(x) = 3|x| + 5

Applying transformation:

function f is vertically stretched by a factor of 2 to give function g.

To stretch a function vertically we multiply the function by the factor:

2*f(x) = 2[3|x| + 5]

g(x) = 2*3|x| + 2*5

g(x) = 5|x| + 10

Answer: Option A.

Step-by-step explanation:

There are some transformations for a function f(x).

One of the transformations is:

If [tex]kf(x)[/tex] and [tex]k>1[/tex], then the function is stretched vertically by a factor of "k".

Therefore, if the function provided [tex]f(x) = 3|x| + 5[/tex] is vertically stretched by a factor or 2, then the transformation is the following:

[tex]2f(x)=g(x)=2(3|x| + 5)[/tex]

Applying Disitributive property to simplify, we get that the function g(x) is:

[tex]g(x)=6|x| +10[/tex]

2. Find the value of x to the nearest tenth.
a. 4.5
b. 5.4
c. 6.3
d. 7.2

3. Find the value of x.
a. 7
b. 7.5
c. 8
d. 8.5


4. FG ⊥ OP, RS ⊥ OQ. FG=40, RS=40, OP=15. Find x.
a. 15
b. 17
c. 20
d. 21


5. Find the value of x to the nearest tenth.
a. 7.5
b. 7.9
c. 8.1
d. 8.9

Answers

Answer:

Part 2) Option b. 5.4

Part 3) Option c. 8

Part 4) Option a. 15

Part 5) Option d. 8.9

Step-by-step explanation:

Part 2) Find the value of x to the nearest tenth

we know that

x is the radius of the circle

Applying the Pythagoras Theorem

[tex]x^{2}=3.6^{2}+(8/2)^{2}[/tex]

[tex]x^{2}=28.96[/tex]

[tex]x=5.4\ units[/tex]

Part 3) Find the value of x

In this problem

x=8

Verify

step 1

Find the radius of the circle

Let

r -----> the radius of the circle

Applying the Pythagoras Theorem

[tex]r^{2}=8^{2}+(15/2)^{2}[/tex]

[tex]r^{2}=120.25[/tex]

[tex]r=\sqrt{120.25}[/tex]

step 2

Find the value of x

Applying the Pythagoras Theorem

[tex]r^{2}=x^{2}+(15/2)^{2}[/tex]

substitute

[tex]120.25=x^{2}+56.25[/tex]

[tex]x^{2}=120.25-56.25[/tex]

[tex]x^{2}=64[/tex]

[tex]x=8\ units[/tex]

Part 4) Find the value of x

In this problem

x=OP=15

Verify

step 1

Find the radius of the circle

Let

r -----> the radius of the circle

In the right triangle FPO

Applying the Pythagoras Theorem

[tex]r^{2}=15^{2}+(40/2)^{2}[/tex]

[tex]r^{2}=625[/tex]

[tex]r=25[/tex]

step 2

Find the value of x

In the right triangle RQO

Applying the Pythagoras Theorem

[tex]25^{2}=x^{2}+(40/2)^{2}[/tex]

[tex]625=x^{2}+400[/tex]      

[tex]x^{2}=625-400[/tex]

[tex]x^{2}=225[/tex]

[tex]x=15\ units[/tex]

Part 5) Find the value of x

Applying the Pythagoras Theorem

[tex]6^{2}=4^{2}+(x/2)^{2}[/tex]

[tex]36=16+(x/2)^{2}[/tex]

[tex](x/2)^{2}=36-16[/tex]

[tex](x/2)^{2}=20[/tex]

[tex](x/2)=4.47[/tex]

[tex]x=8.9[/tex]

the volume of the a sphere whoes diameter is 18 cm is cubic cm . if it's diameter were reduced by half, it's volume would be of its original volume

Answers

Answer:

The new volume is 8 times smaller than the original volume

Step-by-step explanation:

we know that

If two figures are similar, then the ratio of its volumes is equal to the scale factor elevated to the cube

Let

z-----> the scale factor

x ----> the volume of the reduced sphere

y ----> the volume of the original sphere

so

[tex]z^{3}=\frac{x}{y}[/tex]

we have

[tex]z=1/2[/tex] ----> scale factor

substitute

[tex](1/2)^{3}=\frac{x}{y}[/tex]

[tex](1/8)=\frac{x}{y}[/tex]

[tex]x=\frac{y}{8}[/tex]

therefore

The new volume is 8 times smaller than the original volume

Verify

The volume of the original sphere is

[tex]r=18/2=9\ cm[/tex] ---> the radius is half the diameter

[tex]V=\frac{4}{3}\pi (9)^{3}=972\pi \ cm^{3}[/tex]

the volume of the reduced sphere is

[tex]r=9/2=4.5\ cm[/tex] ---> the radius is half the diameter

[tex]V=\frac{4}{3}\pi (4.5)^{3}=121.5\pi \ cm^{3}[/tex]

Divide the volumes

[tex]972\pi \ cm^{3}/121.5\pi \ cm^{3}=8[/tex]

Which is another way to name ZUST?

ZTSR
ZTSU
ZUSR
LUTS

Answers

Answer:ZTSU

Step-by-step explanation:

Another way to name ∠UST is ∠TSU.

Option B is correct.

We have,

Angles are the figure formed by the intersection of two lines or rays by sharing a common point. This point is called the vertex of the angle.

Angles are usually measured in degrees or radians.

The angle mentioned in the figure is at the point S.

This angle is the smaller angle formed at the point S.

An angle can be represented in two ways, from left to right or from right to left.

Suppose, an angle is ∠ABC.

We can represent this as ∠CBA.

So, the angle represented is ∠TSU.

Hence the angle is ∠TSU.

Learn more about Angles here :

brainly.com/question/28598272

#SPJ5

Given parallelogram ABCD, diagonals AC and BD intersect at point E. AE = 11x -3 and CE = 12 - 4x. find x.

Answers

This is my answer.
Please check it.

Answer: The value of x = 1

Step-by-step explanation:

Given : Parallelogram ABCD, diagonals AC and BD intersect at point E.

such that

[tex]AE = 11x -3 \text{ and} CE = 12- 4x.[/tex]

We know that the diagonal of a parallelogram bisects each other.

Therefore , we have the following equation :-

[tex]11x -3= 12- 4x\\\\\Righatrrow11x+4x=12+3\\\\\rightarrow\ 15x=15\\\\\Rightarrow\x=\dfrac{15}{15}=1[/tex]

Hence, the value of x = 1

what is the difference between -5 and 2?

Answers

Answer:

2 is the bigger number

Step-by-step explanation:

Answer:7

Step-by-step explanation:

Think about it this way your looking at a number line and at this point your looking at number -5 and then do bunny hops from -5 to 2 and however many hops you took is the difference between

At this same time in 2010, 78% of people said they went out dancing at least one night a month. Recently, this number has increased by only 2%. What is the recent percentage of people that go out dancing once a month?

Answers

Final answer:

The recent percentage of people that go out dancing at least one night a month, considering an initial percentage of 78% in 2010 and a recent increase of 2%, is 80%.

Explanation:

The percentage of people who went out dancing at least once a month in 2010 was 78%. If the number has recently increased by 2%, we need to add these two percentages together to find the recent percentage. In mathematics, when an increase is given in percentage, it's added to the original.

So, let's do the calculation:

78% (percentage in 2010) + 2% (recent increase) = 80% (recent percentage).

So, the recent percentage of people who go out dancing at least once a month is 80%.

Learn more about Percentage Increase here:

https://brainly.com/question/20818421

#SPJ3

Find the coordinates of P so that P partitions the segment AB in the ratio 1:7 if A(7,14) and B(−1,−2).

Answers

Answer:

P(6, 12 )

Step-by-step explanation:

Using the Section formula, then

[tex]x_{P}[/tex] = [tex]\frac{7(7)+1(-1)}{1+7}[/tex] = [tex]\frac{49-1}{8}[/tex] = [tex]\frac{48}{8}[/tex] = 6

[tex]y_{P}[/tex] = [tex]\frac{7(14)+1(-2)}{1+7}[/tex] = [tex]\frac{98-2}{8}[/tex] = [tex]\frac{96}{8}[/tex] = 12

Hence P(6, 12 )

Manuela solved the equation below.



What is the solution to Manuela’s equation?

Answers

For this case we have the following equation:

[tex]2 (x + 2) = x-4[/tex]

Applying distributive property to the terms within the parentheses on the left side of the equation we have:

[tex]2x + 4 = x-4[/tex]

Subtracting "x" on both sides of the equation we have:

[tex]2x-x + 4 = -4\\x + 4 = -4[/tex]

Subtracting 4 on both sides of the equation we have:

[tex]x = -4-4\\x = -8[/tex]

Answer:

[tex]x = -8[/tex]

Answer:

x = -8

Step-by-step explanation:

We are given that Manuela solved following equation and we are to find its solution:

[tex] 2 ( x + 2 ) = x - 4 [/tex]

Expanding the left side of the equation by multiplying the terms inside the bracket by 2:

[tex]2x+4=x-4[/tex]

Arranging the equation in a way such that like terms are on each side (variables on the left and constants on the right):

[tex]2x-x=-4-4[/tex]

x = -8

if f(x)=-x^2+6x-1 and g(x)=3x^2-4x-1,find(f+g)(x)​

Answers

Answer:

2x^2 +2x-2

Step-by-step explanation:

f(x)=-x^2+6x-1

g(x)=3x^2-4x-1

(f+g)(x)= -x^2+6x-1 +3x^2-4x-1

          =  2x^2 +2x-2

which choice is equivalent to the expression below?
4 to the power of negative 2.
A. 1/6
B. 1/8
C. -1/16
D. -8

Answers

Answer:

1/16

Step-by-step explanation:

You need to know the following property

[tex]a^{(-b)} = \frac{1}{a^b}[/tex]

That means

[tex]4^{-2} = \frac{1}{4^2} = \frac{1}{4*4} = \boxed{\frac{1}{16}}[/tex]

Which graph shows the solution to the system of linear inequalities below?

Answers

Answer:

Option B

The solution in the attached figure

Step-by-step explanation:

we have

Inequality A

[tex]y > -\frac{1}{3}x+1[/tex]

we know that

The solution of the inequality A is the shaded area above the dashed line

The equation of the dashed line is [tex]y=-\frac{1}{3}x+1[/tex]

The slope of the dashed line is negative [tex]m=-\frac{1}{3}[/tex]

Inequality B

[tex]y > 2x-1[/tex]

we know that

The solution of the inequality B is the shaded area above the dashed line

The equation of the dashed line is [tex]y=2x-1[/tex]

The slope of the dashed line is positive [tex]m=2[/tex]

therefore

The solution in the attached figure

Answer:

The correct graph is:

                Graph B

Step-by-step explanation:

First inequality is given by:

             [tex]y>\dfrac{-1}{3}x+1[/tex]

The inequality is a straight line that passes through (0,1) and (3,0) and also the line is dotted since the inequality is strict.

The shaded region is away from the origin since the inequality does not pass the zero point test.

Second inequality is given by:

            [tex]y>2x-1[/tex]

The graph of this inequality is a dotted line (since the inequality is strict) and passes through (0,-1) and (1/2,0) and the shaded region is towards the origin

( since the line passes the zero point test )

Graph B represents the system of inequality.

... the product of the width and the height...
O A. won
B. h =
w
O c. wch
D. W:h
0
E. h-w
0
O
F. w+h

Answers

Step-by-step explanation:

The product of a and b is equal to a · b.

Let w - width and l - length, then the product of the width and the lenght is

w · h = wh

The product of width(w) and height(h) is equal to w.h.

What is the area?

The area is the sum of the areas of all its faces.The areas of the base, top, and lateral surfaces i.e all sides of the object. It is measured using different area formulas and measured in square units and then adding all the areas. The area of an object is a measure of the area that the surface of the object covers.

Let ;

w - width

l - length

∴ the product of the width and the length is w · h = wh

Learn more about the area here:-https://brainly.com/question/25292087

#SPJ2

Which of the following is graphed below?

Answers

Answer:

Step-by-step explanation:

Begin with process of elimination: As seen on the graph, there is a discontinuity at x=3. this means that x>=3. so  we can eliminate B and C

Now you can see that at x = 3, two things happen. When moving to the left, x<3. when moving tot he right x>=3 so because of this you can eliminate D. The answer is A

Which best describes the transformation?

A. The transformation was a 90° rotation about the origin.
B. The transformation was a 180° rotation about the origin.
C. The transformation was a 270° rotation about the origin.
D. The transformation was a 360° rotation about the origin.

Answers

Answer:

Correct answer is "A"

Step-by-step explanation:

It is a tranformation about 90° in anti-clock wise direction

In geometry, transformations are used to move a point or points from one position to another. The transformation of [tex](x,y) \to (-y,x)[/tex] is a 90 degrees rotation about the origin.

Given that:

[tex]A(-1,1) \to A'(-1,-1)[/tex]

[tex]B(1,1) \to B'(-1,1)[/tex]

[tex]C(1,4) \to C'(-4,1)[/tex]

The transformation rule is:

[tex](x,y) \to (-y,x)[/tex]

When a point is rotated through [tex](x,y) \to (-y,x)[/tex]

Such point has undergone a 90 degrees counterclockwise rotation.

Hence, option (a) is correct.

Read more about transformation at:

https://brainly.com/question/19865582

The graph of f(x) = 2x is shown on the grid. The graph of g(x) = ()x is the graph of f(x) = 2x reflected over the y-axis. Which graph represents g(x)?

Answers

Answer:

[tex]g(x)=-2x[/tex]

Step-by-step explanation:

A point reflected across the y-axis maintains its y-coordinate, but its x-coordinate switches signs. So, a positive x-coordinate becomes negative, and a negative x-coordinate becomes positive.

Let's take a few points from the original function, f(x). Remember, if we know the function, we can find the y-coordinate for any x-coordiante by simply plugging it into the function's equation.

Generally, [tex]f(x)=2x[/tex]

So:

[tex]f(0)=2(0)=0\\f(1)=2(1)=2\\f(2)=2(2)=4[/tex]

Leading us to have the plot points (0,0), (1,2) and (2,4).

To reflect this across the y-axis for the g(x) equation, we just need to turn the x-coordinates negative, resulting in a set of (0,0), (-1,2), and (-2,4).

Since we know this is a linear function (because there are no exponents in the equation), we can calculate the slope of this new set of points by using just 2 of them. The slope will give us our equation, because since (0,0) is a point on our line, we know that the y-intercept is zero.

[tex]slope=\frac{(y_{2}-y_{1})}{(x_{2}-x_{1})} \\slope=\frac{(4-2)}{((-2)-(-1))} \\slope=\frac{2}{-1}\\slope=-2\\\\g(x)=-2(x)[/tex]

where would you put 5/2 on a number line

Answers

Answer:

Step-by-step explanation:

You would simplify 5/2, making it 2 and 1/2.  this would go in between 2 and 3 on a graph.

Step-by-step explanation:

5/2 = 2.5

see attached to find where 2.5 is located on the number line.

A system of linear equations contains two equations with the same slope.
Select all of the correct statements.
I A. The system may have two solutions.
-
B. The system may have infinitely many solutions.
C. The system may have one solution.
O
D. The system may have no solution.
SUBMIT

Answers

Answer:

B. The system may have infinitely many solutions

D. The system may have no solution

Step-by-step explanation:

we know that

If a system of linear equations contains two equations with the same slope

then

we may have two cases

case 1) The two equations are identical, in this case we are going to have infinite solutions

case 2) The two equations have the same slope but different y-intercept, (parallel lines) in that case the system has no solution.

Finding Intercepts of Quadratic FunctionsConsider the function f(x) = x2 + 12x + 11.

x-intercepts:

0 = x2 + 12x + 11

0 = (x + 1)(x+ 11)



y-intercept:

f(0) = (0)2 + 12(0) + 11
What are the intercepts of the function?

The x-intercepts are .



The y-intercept is .

Answers

Answer:

x1=-11 x2=-1 y=11

Step-by-step explanation:

you can see the explanation in the pics

If the variance of the ages of the people who attended a rock concert is 38, what is the standard deviation of the ages? Round your answer to two decimal places

Answers

Answer:

[tex]\sigma=6.16[/tex]

Step-by-step explanation:

By definition, the variance V of a population is defined as:

[tex]V = \sigma^2[/tex]

Where [tex]\sigma[/tex] is the standard deviation

We know that [tex]V = 38[/tex], then we can solve the equation for the standard deviation [tex]\sigma[/tex]

[tex]38 = \sigma^2[/tex]

[tex]\sigma^2=38[/tex]

[tex]\sigma=\sqrt{38}[/tex]

[tex]\sigma=6.16[/tex]

Finally  the standard deviation is: [tex]\sigma=6.16[/tex]

Prism A is similar to Prism B with a scale factor of 6:5. If the volume of Prism B is 875 m2, find the volume of Prism A.

Answers

Answer:

[tex]\large\boxed{V_A=1512\ m^3}[/tex]

Step-by-step explanation:

[tex]\text{If a prism A is similar to a prism B with a scale k, then:}\\\\\text{1.\ The ratio of the lengths of the corresponding edges is equal to the scale k}\\\\\dfrac{a}{b}=k\\\\\text{2. The ratio of the surface area of the prisms is equal}\\\text{to the square of the scale k}\\\\\dfrac{S.A._A}{S.A._B}=k^2\\\\\text{3. The ratio of the prism volume is equal to the cube of the scale k}\\\\\dfrac{V_A}{V_B}=k^3[/tex]

[tex]\text{We have}\\\\k=6:5=\dfrac{6}{5}\\\\V_B=875\ m^3\\\\V_A=x\\\\\text{Substitute to 3.}\\\\\dfrac{x}{875}=\left(\dfrac{6}{5}\right)^3\\\\\dfrac{x}{875}=\dfrac{216}{125}\qquad\text{cross multiply}\\\\125x=(875)(216)\qquad\text{divide both sides by 125}\\\\x=\dfrac{(875)(216)}{125}\\\\x=\dfrac{(7)(216)}{1}\\\\x=1512\ m^3[/tex]

Prism A is similar to Prism B with a scale factor of 6:5. If the volume of Prism B is 875 m2. The volume of prism B is 1512 meter square.

How to calculate the scale factor?

Suppose the initial measurement of a figure was x units.

And let the figure is scaled and the new measurement is of y units.

Since the scaling is done by multiplication of some constant, that constant is called the scale factor.

Let that constant be 's'.

Then we have:

[tex]s \times x = y\\s = \dfrac{y}{x}[/tex]

Thus, the scale factor is the ratio of the new measurement to the old measurement.

Prism A is similar to Prism B with a scale factor of 6:5.

If the volume of Prism B is 875 m2, find the volume of Prism A.

scale factor = 6/5

The ratio of the surface area of the prism A to the prism B

A1 / A2 = k^2

The ratio of the prism is equal to the cube of the scale k.

V1 / V2 = k^3

Let x be the volume of Prism A.

x / 875 = (6/5)^2

x / 875 = 216 / 125

x = 875 * 216 / 125

x = 1512

Therefore, the volume of prism B is 1512 meter square.

learn more on scale factors here:

brainly.com/question/14967117

#SPJ2

Two bonds funds pay interest at rates of 3% Money invested for one year in the first fund earns $360 interest. The same amount invested in the other fund earns $480. find the lower rate of interest.

Answers

a = interest rate for first bond.

b = interest rate for second bond.

we know the rates add up to 3%, so a + b = 3.

we also know that investing the same amount hmm say $X gives us the amounts of 360 and 480 respectively.

let's recall that to get a percentage of something we simply [tex]\bf \begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}[/tex]

so then, "a percent" of X is just (a/100)X = 360.

and "b percent" of X is just (b/100)X = 480.

[tex]\bf a+b=3\qquad \implies \qquad \boxed{b}=3-a~\hfill \begin{cases} \left( \frac{a}{100} \right)X=360\\\\ \left( \frac{b}{100} \right)X=480 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \left( \cfrac{a}{100} \right)X=360\implies X=\cfrac{360}{~~\frac{a}{100}~~}\implies X=\cfrac{36000}{a} \\\\\\ \left( \cfrac{b}{100} \right)X=480\implies X=\cfrac{480}{~~\frac{b}{100}~~}\implies X=\cfrac{48000}{b} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf X=X\qquad thus\qquad \implies \cfrac{36000}{a}=\cfrac{48000}{b}\implies \cfrac{36000}{a}=\cfrac{48000}{\boxed{3-a}} \\\\\\ (3-a)36000=48000a\implies \cfrac{3-a}{a}=\cfrac{48000}{36000}\implies \cfrac{3-a}{a}=\cfrac{4}{3} \\\\\\ 9-3a=4a\implies 9=7a\implies \cfrac{9}{7}=a\implies 1\frac{2}{7}=a\implies \stackrel{\mathbb{LOWER~RATE}}{\blacktriangleright 1.29\approx a \blacktriangleleft}[/tex]

[tex]\bf \stackrel{\textit{since we know that}}{b=3-a}\implies b=3-\cfrac{9}{7}\implies b=\cfrac{12}{7}\implies b=1\frac{5}{7}\implies \blacktriangleright b \approx 1.71 \blacktriangleleft[/tex]

What is the change that occurs to the parent function f(x) = x2 given the function f(x) = x2 + 7.

Answers

ANSWER

shifts up 7 units.

EXPLANATION

The given function is

[tex]f(x) = {x}^{2} [/tex]

This is the base of the quadratic function without any transformation.

It is also refer to as the parent function.

The transformed function has equation:

[tex]f(x) = {x}^{2} + 7[/tex]

This transformation is of the form

[tex]y = f(x) + k[/tex]

This transformation shifts the graph of the base function up by k units.

Since k=7, the base function is shifted up by 7 units.

What is the product?

(x − 3)(2x2 − 5x + 1)

2x3 − x2 + 16x + 3
2x3 − 11x2 + 16x + 3
2x3 − 11x2 + 16x − 3
2x3 − x2 + 16x − 3

Answers

Answer:

Third option: 2x^3-11x^2+16x-3

Step-by-step explanation:

The product to be found is:

[tex](x-3)(2x^2-5x+1)[/tex]

Distributive property will be used for the product:

[tex]x(2x^2-5x+1)-3(2x^2-5x+1)\\[/tex]

Multiplication will give us:

[tex]=2x^3-5x^2+x-6x^2+15x-3\\Combining\ alike\ terms\\=2x^3-5x^2-6x^2+x+15x-3\\=2x^3-11x^2+16x-3[/tex]

The product is: 2x^3-11x^2+16x-3

Hence, third option is the correct answer ..

Answer:

The product is 2x³ - 11x² + 16x - 3 ⇒ 3rd answer

Step-by-step explanation:

* Lets explain how to find the product of binomial by trinomial

- If (ax² ± bx ± c) and (dx ± e) are trinomial and binomial, where

 a , b , c , d , e  are constant, their product is:

# Multiply (ax²) by (dx) ⇒ 1st term in the trinomial and 1st term in the  

 binomial

# Multiply (ax²) by (e) ⇒ 1st term in the trinomial and 2nd term in

the binomial

# Multiply (bx) by (dx) ⇒ 2nd term the trinomial and 1st term in  

the binomial

# Multiply (bx) by (e) ⇒ 2nd term in the trinomial and 2nd term in    the binomial

# Multiply (c) by (dx) ⇒ 3rd term in the trinomial and 1st term in  

 the binomial

# Multiply (c) by (e) ⇒ 3rd term the trinomial and 2nd term in  

the binomial

# (ax² ± bx ± c)(dx ± e) = adx³ ± aex² ± bdx² ± bex ± cdx ± ce

- Add the terms aex² and bdx² because they are like terms

- Add the terms bex and cdx because they are like terms

* Now lets solve the problem

∵ The binomial is (x - 3) and the trinomial is (2x² - 5x + 1)

∴ (x)(2x²) = 2x³

∵ (x)(-5x) = -5x²

∵ (x)(1) = x

∵ (-3)(2x²) = -6x²

∵ (-3)(-5x) = 15x

∵ (-3)(1) = -3

∴ (x - 3)(2x² - 5x + 1) = 2x³ + -5x² + x + -6x² + 15x + -3

- Add the like terms

∵ -5x² and -6x² are like term

∴ Their sum is -11x²

∵ x and 15 x are like terms

∴ Their sum = 16x

∴ (x - 3)(2x² - 5x + 1) = 2x³ - 11x² + 16x - 3

* The product is 2x³ - 11x² + 16x - 3

What is the square root of ab2?

Answers

Answer:

sqrt.(a) * absolutevalue(b)

Step-by-step explanation:

You do abs value when you have an even exponent with an odd exponent result from b^2 to b^1.

Please mark for Brainliest!! :D Thanks!!

For more questions or more information, please comment below!

Answer: Hello there!

Well, the square root is the inverse function of the square potential.

This is if you have [tex](\sqrt{x} )^{2}  = x[/tex] and [tex]\sqrt{x^{2} }  = +-x[/tex]

A interesting part of the square root is that (-4)*(-4) = 16, and 4*4 = 16, so the solutions for [tex]\sqrt{16}[/tex] are -4 and 4. For this is that you see a +- symbol in the second equation.

Now, if you have the number [tex](a*b)^{2}[/tex]

Now, we put this inside a square root: [tex]\sqrt{(a*b)^{2} } = +-a*b[/tex]

So the solutions for the square root of (a*b)^2 are a*b and - a*b.

Other Questions
A spherical surface completely surrounds a collection of charges. Find the electric flux (with its sign) through the surface if the collection consists of (a) a single +6.60 10-6 C charge, (b) a single -1.30 10-6 C charge, and (c) both of the charges in (a) and (b). do you enjoy english class? 2w -5. when w = 16 HELP ME Which title would best suit the period in Iragi history from 1918 through19322OA. The era of Iragi aggressionOB. The era of early Iraqi independenceOC. The era of political instabilityOD. The era of British control any type of pollutions Seeds can grow into which of the following types of plants? A. Angiosperms and gymnosperms B. Angiosperms and ferns C. Gymnosperms and mosses D. Gymnosperms and liverwort there are 6.022 x 10^23 atoms of Hg in 1 mole of Hg. The number of atoms in 4.5 moles of Hg can be found by multiplying 4.5 by 6.022 x 10^23A. 2.7 x 10^24B. 27 x 10^23C. 2.71 x10^24D. 27.099 x 10^23 what is the sum of the arithmetic sequence 3,9,15..., if there are 22 terms A game store sells2large puzzles for$16and3 small puzzles for$15.The store made$128in puzzle sales this week.The equation8l+5s=128represents this week's earnings from puzzle sales, wherellrepresents the number of large puzzles sold andsrepresents the number of small puzzles sold.Which statements are correct regarding the equation8l+5s=128?select all the apply.1.The coefficient 5 in the equation gives the cost of one large puzzle.2.The coefficient 5 in the equation gives the cost of one small puzzle.3.The constant 128 in the equation gives the total number of puzzles sold.4.The coefficient 8 in the equation gives the cost of one large puzzle.5.The coefficient 8 in the equation gives the cost of one small puzzle. What is the slope of a line that is parallel to the line shownon the graph?A -4B -1/4C 1/4D 4 Which of the following is not an example of the law of supply? A.) more consumers are buying sofas than ever before.B.) A furniture raises the price and increases the number of sofas it produces.C.) A competitor produces more sofas after the price is raised. D.) A furniture store raises the price of its sofas since they can sell more. UUUUUAs you read an informational text, it is important to ask yourself questions to make sure you Solve using elimination PLEASE I NEED HELP!!! IT WOULD REALLY MEAN A LOT IF ANYONE CAN ANSWER THIS! 16 POINTS!!!2x+4y=1x-4y=5 Which list shows the order of events in the production of a rip current whats the answer anyone Read this sentence from the text: Their broken faces spun stories in our minds. What is the main effect of the word faces in this sentence? It creates a feeling of despair. It creates the idea of something watching. It suggests the narrator has great fears. It implies a sense of history. Suppose there are 10 five and six-year-old attending a birthday party. When a 30 year old mother walks into the room with an infant in her arms, what happens to the mean age in the room? what happens to the standard deviation of ages in the room?A. The mean and standard deviation of both change.B. The meaning will change, but the standard deviation will stay approximately the same.C. I mean will stay approximately the same, but the standard deviation will change.D. The mean and standard deviation will both stay approximately the same. Some photosynthetic organisms contain chloroplasts that lack photosystem II, yet are able to survive. The best way to detect the lack of photosystem II in these organisms would be to test for liberation of O2 in the light. to determine if they have thylakoids in the chloroplasts. to test for CO2 fixation in the dark. to the action spectrum for photosynthesis. Help! the file is attached Two balls are drawn at random from an urn containing six white and nine red balls. Recall the equatio n for an. r) given below. C(n,r) (a) Use combinations to compute the probability that both balls are white. (b) Compute the probability that both balls are red. (a) The probability that both balls are white is (Type an integer or a decimal. Round to two decimal places as needed.)