Answer:
V=64
Step-by-step explanation:
What you do is go based off the volume formula of a cube which is V=a^3.
You have a side length of 4.
V=4^3.
V=64.
A satellite is in a approximately circular orbit 36,000 kilometers from Earth's surface. The radius of earth is about 6400 kilometers. What is the circumference of the satellite's orbit?
Answer: [tex]266,407.057\ km[/tex]
Step-by-step explanation:
The formula used to calculate the circumference of a circle is:
[tex]C=2\pi r[/tex]
The radius of the circle is r.
In the diagram you can observe that the radius of the satellite's orbit (r2) is the sum of the radius of the Earth (r1) and the distance from the Earth's surface to the satellite's orbit:
[tex]r2=r1+36,000\ km\\r2=6,400\ km+36,000\ km\\r2=42,400\ km[/tex]
Then, the circumference of the satellite's orbit is:
[tex]C=2\pi (42,400\ km)\\C=266,407.057\ km[/tex]
The circumference of the satellite's orbit is calculated by adding Earth's radius to the satellite's distance from Earth's surface to determine the orbit radius. The circumference is then found by using the formula for the circumference of a circle, 2πr, giving approximately 266,433 kilometers.
Explanation:To find the circumference of the satellite's orbit, we need to first calculate the total distance from the center of Earth to the satellite. This is the sum of the Earth's radius (6400 kilometers) and the satellite's distance from the Earth's surface (36000 kilometers), which totals 42400 kilometers.
Once we have the radius of the orbit, we can calculate the circumference using the formula for the circumference of a circle, which is 2πr (two times Pi times the radius). Using this formula, the circumference of the satellite's orbit is approximately 266,433 kilometers.
Learn more about Satellite Orbit Circumference here:https://brainly.com/question/34138920
#SPJ6
A table is 4 ft high. A model of the table is 6 in. high. What is the ratio of the height of the actual table to the height of the model table?
1/8
8/1
2/3
3/2
2/3 is the answer because 6 in is the model and 4 ft is the actual
Answer:
The ratio of the height of the actual table to the height of the model table is [tex]\frac{8}{1}[/tex] .
Step-by-step explanation:
As given
A table is 4 ft high. A model of the table is 6 in. high.
As
1 foot = 12 inch
Now convert 4 ft into inches .
4 ft = 4 × 12
= 48 inches
Height of the actual table = 48 inches
Now the ratio of the height of the actual table to the height of the model
table .
[tex]Ratio\ of\ the\ height\ of\ the\ actual\ table\ to\ the\ height\ of\ the\ model\ table =\frac{48}{6}[/tex]
[tex]Ratio\ of\ the\ height\ of\ the\ actual\ table\ to\ the\ height\ of\ the\ model\ table =\frac{8}{1}[/tex]
Therefore the ratio of the height of the actual table to the height of the model table is [tex]\frac{8}{1}[/tex] .
PLEASE HELP Complete the table with
integer values of x from 0 to 4. Then graph the function.
Answer:
y = 1 for the line.
Step-by-step explanation:
All values under y = 1. Surprisingly 1^0 is still 1. So just fill the table in with 1s under y.
I've drawn the line in desmos for you. I'm not sure whether you can extend the question enough to graph a line segment containing these 5 points (which is what I have done) or if you should just submit a graph with 4 points on. If it does not cost you anything to submit it twice, I would try the line first and the points alone the second time.
Simplify √ 25 please
Answer:
the answer is 5
Step-by-step explanation:
25/5=5 & 5*5=25
Answer:
The Answer Is 5 because every square number has to equal the number by multiplying by 2 to get your Answer 5 x 5 = 25 which 5 is multiplied 2 times 5 and 5 which gives you your answer 25.
Step-by-step explanation:
Plz Mark Brainliest
A driver accelerates when the car is traveling at a speed of 30 miles per hour (i.e., 44 feet per second). the velocity (in feet per second) function is v(t)=44+2.2t . the car reaches the speed of 60 miles per hour (i.e., 88 feet per second) in 20 seconds. then during the 20 seconds the car has traveled
Assume the car starts at the origin, so that its initial position is [tex]x(0)=0[/tex]. The car's displacement at any time [tex]t[/tex] over the 20 second interval is
[tex]\displaystyle x(0)+\int_0^t(44+2.2u)\,\mathrm du=0+\left(44u+1.1u^2\right)\bigg|_{u=0}^{u=t}=44t+1.1t^2[/tex]
so that after 20 seconds the car has moved 1320 ft.
###
Without using calculus, recall that under constant acceleration, the average velocity of the car over the 20 second interval satisfies
[tex]v_{\rm avg}=\dfrac{v_f+v_i}2[/tex]
and that, by definition, we have
[tex]v_{\rm avg}=\dfrac{\Delta x}{\Delta t}[/tex]
where [tex]v_f[/tex] and [tex]v_i[/tex] are the final/initial speeds of the car and [tex]\Delta x[/tex] is the displacement it undergoes. It starts with a speed of 44 ft/s and ends with a speed of 88 ft/s, so we have
[tex]\dfrac{88\frac{\rm ft}{\rm s}+44\frac{\rm ft}{\rm s}}2=\dfrac{\Delta x}{20\,\rm s}\implies\Delta x=1320\,\mathrm{ft}[/tex]
same as before.
To find the distance traveled by the car during the 20 seconds, we integrate the velocity function and solve for the distance using the given values. The car travels a distance of 1320 feet.
Explanation:To find the distance traveled by the car during the 20 seconds, we need to calculate the area under the velocity-time graph. The velocity function given is v(t)=44+2.2t. To find the distance, we integrate the velocity function from 0 to 20 seconds:
d = ∫(44+2.2t) dt
Applying integration, we get: d = 44t + 1.1t^2
Substituting the values t=0 and t=20 into the equation, we can find the distance traveled by the car:
d = 44(20) + 1.1(20)^2
Solving this equation, we get d = 880 + 440
So, the car has traveled a distance of 1320 feet during the 20 seconds.
Learn more about Calculating Distance Traveled here:https://brainly.com/question/31568688
#SPJ11
The original cost of a lamp is $18.95. The lamp is on sale for 25% off. How much will you pay?
$9.48
$14.21
$4.74
$1.90
Answer:
$14.21
Step-by-step explanation:
Hello, I think I can help yo with this
if the lamp is on sale for 25% it means you have to pay the 75% of the original cost, you can find that 75% or to find the 25 % and the subtract that value from the original cost, it is the same anyway
Step 1
if
$18.95 ⇔100%
x$? ⇔75%
[tex]\frac{18.95}{100}=\frac{x}{75}[/tex]
Step 2
solve for x
[tex]\frac{75*18.95}{100}=x\\x=\frac{1421.51}{100}\\ x=14.21\\\\[/tex]
the new price is $14.21
have a great day.
Whats 10x10 squared?
Answer:
Step-by-step explanation:
10x10 squared
=10x100
=1000
Answer 10000
Step-by-step explanation:
10x10=100
100x100=10000
The height of a cylinder with a fixed radius of 6 cm is increasing at the rate of 3 cm/min. What is the rate of change of the volume of the cylinder when the height is 20cm.
Answer:
108π cm^3/min
Step-by-step explanation:
At a time of t min, let the height be h cm
The volume of a cylinder;
V = π r^2 h
= 36π h
differentiating both sides with respect to t;
dV/dt = 36π dh/dt
but dh/dt = 3 cm/min
dV/dt = 36π(3) = 108π cm^3/min
Answer:
The rate of change of the volume of the cylinder when the height is 20 cm is [tex]\frac{dV}{dt}=108\pi \:{\frac{cm^3}{min} }[/tex]
Step-by-step explanation:
This is a related rates problem. In this problem, you need to find a relationship between the quantity whose rate of change you want to find, the volume in this case, and the quantity whose rates of change you know, the height of the cylinder.
We know that the volume of the cylinder is
[tex]V=\pi r^2h[/tex]
We also know that the radius is a constant, 6 cm and thus
[tex]V=\pi (6)^2h=36\pi h[/tex]
V and h both vary with time so you can differentiate both sides with respect to time, t, to get
[tex]\frac{dV}{dt}=36\pi \frac{dh}{dt}[/tex]
Now use the fact that [tex]\frac{dh}{dt}=3 \:{\frac{cm}{min}[/tex] to find [tex]\frac{dV}{dt}[/tex].
[tex]\frac{dV}{dt}=36\pi (3)=108\pi[/tex]
Liam has 2 quarts of apple juice. He wants to pour the juice into 1/5-quarts servings. How many servings can he pour?
Answer:
10 servings
Step-by-step explanation:
Divide the total juice available, 2 quarts, by the serving size, (1/5) quart per serving:
2 quarts 2 5
--------------------------- = ---- · ------ servings = 10 servings
(1/5) quart/serving 1 1
A bag contains a white, a red, and a blue marble. If one marble is drawn randomly from a bag, not replaced, and a second marble is drawn, display all possible outcomes as an organized list.
To answer the student's question, we list each possible pair of marble colors drawn without replacement from a bag with a white, red, and blue marble: White-Red, White-Blue, Red-White, Red-Blue, Blue-White, and Blue-Red.
Explanation:The question asks for the display of all possible outcomes when two marbles are drawn from a bag containing a white, a red, and a blue marble, without replacement. To show all possible outcomes, we can list them in an organized manner, considering each color once it is drawn, is not put back into the bag. The first marble drawn can be any one of the three colors. Once a marble is drawn, there are only two colors left for the second draw.
White, RedWhite, BlueRed, WhiteRed, BlueBlue, WhiteBlue, RedHOW DOES SIMILARITY DIFFER FROM CONGRUENCE? WHY DOES THE PROPERTY OF RIGID MOTION NOT APPLY FOR ALL TRANSFORMATIONS?
Answer:
Similarity means that two figures are the same shape, but not necessarily the same size, color or orientation, congruent means two figures are the same in every form.
Step-by-step explanation:
In my understanding, The Property of Rigid motion holds two points:
- The relative distance between two points stays the same,
- The relative position of the points stays the same
This includes, translations, reflections, and rotation but not to dilutions since it breaks these rules. The relative distance between points gets smaller after dilution.
Mason has to mow 6 lawns today. So far, he has mowed 1 1/2 of them. How many does he have left to do?
2 1/2
3 1/2
4 1/2
7 1/2
A bag contains 5 black, 3 green, 3 blue, and 4 yellow marbles. A marble is randomly drawn. Find P(not black). 4/15 1/5 1/3 2/3
Answer:
2/3
Step-by-step explanation:
5 black
3 green (not black)
3 blue (not black)
4 yellow (not black)
there are 5 black and 10 not black out of a total of 15 marbles.
there are 10/15 that are not black. Reduced 2/3.
The probability of not drawing a black marble is 2/3, calculated by subtracting the number of black marbles from the total number of marbles in the bag and dividing the result by the total number of marbles.
The question asks to find the probability of not drawing a black marble. To solve this, we first determine the total number of marbles and then subtract the number of black marbles to find the number of marbles that are not black. In this case:
Total number of marbles (black, green, blue, yellow) = 5 + 3 + 3 + 4 = 15Number of black marbles = 5Number of marbles that are not black = Total - Black = 15 - 5 = 10Next, we calculate the probability using the formula:
Probability (not black) = Number of marbles that are not black / Total number of marbles
Plugging in the numbers:
Probability (not black) = 10 / 15 = 2/3
Therefore, the probability of not drawing a black marble is 2/3.
T=−2a^2+a+6
N=−3a^2+2a−5
N − T =
Answer is: −a^2+a−11
Answer:
[tex]\large\boxed{N-T=-a^2+a-11}[/tex]
Step-by-step explanation:
[tex]T=-2a^2+a+6\\N=-3a^2+2a-5\\\\N-T=?\\\\\text{Substitute:}\\\\N-T=(-3a^2+2a-5)-(-2a^2+a+6)\\\\N-T=-3a^2+2a-5-(-2a^2)-a-6\\\\N-T=-3a^2+2a-5+2a^2-a-6\qquad\text{combine like terms}\\\\N-T=(-3a^2+2a^2)+(2a-a)+(-5-6)\\\\N-T=-a^2+a-11[/tex]
The difference between the functions is [tex]-a^2+a-11[/tex]
Given the following expression:
[tex]T=-2a^2+a+6\\N=-3a^2+2a-5[/tex]
We are to take the difference between N and T and this is as shown:
[tex]N - T= -3a^2+2a-5-(-2a^2+a+6)\\Expand\\N - T= -3a^2+2a-5+2a^2-a-6\\\\Collect \ the \ like \ terms\\N-T=-3a^2+2a^2+2a-a-5-6\\N-T=-a^2+a-11[/tex]
Hence the difference between the functions is [tex]-a^2+a-11[/tex]
Learn more here: https://brainly.com/question/10879215
the value pi/4 is a solution for the equation 3 sqrt 2 cos theta+2=-1
Answer:
FALSEStep-by-step explanation:
[tex]3\sqrt2\cos\theta+2=-1\\\\\text{Method 1}\\\\\text{Put}\ \theta=\dfrac{\pi}{4}\ \text{to the equation and check the equality:}\\\\\cos\dfrac{\pi}{4}=\dfrac{\sqrt2}{2}\\\\L_s=3\sqrt2\cos\dfrac{\pi}{4}+2=3\sqrt2\left(\dfrac{\sqrt2}{2}\right)+2=\dfrac{(3\sqrt2)(\sqrt2)}{2}+2\\\\=\dfrac{(3)(2)}{2}+2=3+2=5\\\\R_s=-1\\\\L_s\neq R_s\\\\\boxed{FALSE}[/tex]
[tex]\text{Method 2}\\\\\text{Solve the equation:}\\\\3\sqrt2\cos\theta+2=-1\qquad\text{subtract 2 from both sides}\\\\3\sqrt2\cos\theta=-3\qquad\text{divide both sides by}\ 3\sqrt2\\\\\cos\theta=-\dfrac{3}{3\sqrt2}\\\\\cos\theta=-\dfrac{1}{\sqrt2}\cdot\dfrac{\sqrt2}{\sqrt2}\\\\\cos\theta=-\dfrac{\sqrt2}{2}\to\theta=\dfrac{3\pi}{4}+2k\pi\ \vee\ \theta=-\dfrac{3\pi}{4}+2k\pi\ \text{for}\ k\in\mathbb{Z}\\\\\text{It's not equal to}\ \dfrac{\pi}{4}\ \text{for any value of }\ k.[/tex]
which of the following is equivalent to, (3x–4y)(3x+4y)?
A. 9x^2 + 16y^2
B. 9x^2 – 16y^2
C. 9x^2 – 24xy – 16y^2
D. 6x^2 – 14xy + 16y^2
E. 6x^2 – 8y^2
Hello!
The answer is:
B. [tex]9x^{2}-16y^{2}[/tex]
Why?To find the equivalent expression we need to apply the distributive property, so:
[tex](3x-4y)(3x+4y)=9x^{2}+12xy-12yx-16y^{2}\\\\9x^{2}+12xy-12yx-16y^{2}=9x^{2}+12xy-12xy-16y^{2}=9x^{2}-16y^{2}[/tex]
So, the correct option will be B. [tex]9x^{2}-16y^{2}[/tex]
Have a nice day!
What angle pair is matched with ∠MLA to make alternate interior angles ?
angle GAL would be the same as MLA
Find the range and mean of each data set. Use your results to compare the two data sets. Set? A: 13 15 16 18 14 Set? B: 4 10 8 18 20
Final answer:
The range of Set A is 5 and Set B is 16. The mean of Set A is 15.2 and Set B is 12. Set B has a larger range but a smaller mean compared to Set A.
Explanation:
The range of a data set is calculated by subtracting the smallest value from the largest value. For Set A, the range is 18 - 13 = 5. For Set B, the range is 20 - 4 = 16.
The mean of a data set is calculated by summing all the values and dividing by the number of values. For Set A, the mean is (13 + 15 + 16 + 18 + 14) / 5 = 76 / 5 = 15.2. For Set B, the mean is (4 + 10 + 8 + 18 + 20) / 5 = 60 / 5 = 12.
Comparing the two data sets, we can see that Set B has a larger range than Set A, indicating greater variability in the data. However, Set B has a smaller mean than Set A, indicating that the values in Set B are generally lower than those in Set A.
Find the value of the variable that makes the statement true:
Answer:
m = 15.
Step-by-step explanation:
∛(3375) = 15.
You can use a calculator to do this. Some calculators have a direct key giving you a cube root or you can use the power key + 1/3 .
Note: ∛(3375) = 3375^(1/3).
Answer:
-5
Step-by-step explanation:
Edge 2020
A football team gained 10 yards on one play and then lost 22 yards on the next. What was the overall change in field position.
Answer:12 yards
Step-by-step explanation: 22-10=12
Please Help Me!!!
A cone's base has a circumference of 75.36 cm and a height of 18 cm.
What is the volume of the cone?
Use 3.14 for pi, and round your answer to the nearest hundredth if necessary.
First, lets start with the formula for the volume of a cone
[tex] \frac{1}{3} (\pi \times {r}^{2})h [/tex]
Then lets find the diameter so we can get the radius...
Since we have circumference, all we need to do is use this formula-
[tex] c \div \pi[/tex]
C being circumference, the PI being the 3.14, we plug it in to the formula as the number we have to get the diameter...
[tex]{75.36} \div 3.14[/tex]
And it comes out to...
24.
Now we need to divide it by two to get the radius, and we come up with 12.
Now that we have our radius, we can finally plug in all of the numbers into our original formula...
[tex] \frac{1}{3} (3.14 \times \: {12}^{2} ) \times 18[/tex]
The answer of the entire problem turns out to be... Drum roll please...
2712.96 cubic centimeters.
135, 131, 127, 123, 119...
1. What is f(1)
2. What is f(6)
3. What is f (26)
4. What is f(n)
Answer:
[tex]\large\boxed{1.\ f(1)=135}\\\boxed{2.\ f(6)=115}\\\boxed{3.\ f(26)=25}\\\boxed{4.\ f(n)=139-4n}[/tex]
Step-by-step explanation:
[tex]f(1)=135\\f(2)=135-4=131\\f(3)=131-4=127\\f(4)=127-4=123\\f(5)=123-4=119\\\vdots\\\\\text{It's an arithmetic sequence with firs term = 135 and the common}\\\text{difference d = -4.}\\\text{The formula of arithmetic sequence: }\\\\f(n)=f(1)+(n-1)d\\\\\text{We have}\ f(1)=135\ \text{and}\ =-4.\ \text{Substitute:}\\\\f(n)=135+(n-1)(-4)=135+(n)(-4)+(-1)(-4)\\=135-4n+4=139-4n\\\\\boxed{f(n)=139-4n}[/tex]
[tex]\text{Put n = 6, n=26 to the formula:}\\\\f(6)=139-4(6)=139-24=115\\\\f(26)=139-4(26)=139-104=25[/tex]
Find the missing side length. Round your answer to the nearest tenth.
5.5
21.5
30.8
43.2
It would be 30.8 hope this helps
Identify the horizontal asymptote of f(x) =x2+5x-3/4x-1
since the numerator is x² + 5x - 3, and therefore has a degree of 2, whilst the denominator, 4x¹ - 1, has a degree of 1, therefore, there's no horizontal asymptote.
recall, we only get a horizontal asymptote if the denominator's expression degree is equals or greater than that of the numerator's.
The function [tex]f(x) = (x^2+5x-3)/(4x-1)[/tex] does not have a horizontal asymptote because the degree of the numerator is higher than the degree of the denominator.
To identify the horizontal asymptote of the function
[tex]f(x) = \frac{{x^2+5x-3}}{{4x-1}}[/tex], you can examine the degrees of the polynomial in the numerator and the polynomial in the denominator. Since the degree of the numerator (which is 2) is higher than the degree of the denominator (which is 1), this function does not have a horizontal asymptote. However, for functions like
[tex]f(x) = \frac{{x^2+3}}{{x^2+4}}[/tex], where the degrees of the numerator and denominator are the same, the horizontal asymptote is determined by the leading coefficients of the numerator and denominator. Specifically, the horizontal asymptote is
[tex]y = \frac{{1}}{{1}}[/tex] = 1,
since the coefficients of the x^2 terms are both 1.
True or false (picture provided)
False. That does not satify the equation
Answer:
False
Step-by-step explanation:
The given inequality is [tex]-3 \:<\:x\:<\:14[/tex].
Since both boundaries of the inequalities are not inclusive , we use the parenthesis for open interval."()".
We write the given inequality in interval notation as;
[tex](-3,14)[/tex].
The correct choice is false
If r = 11 units and h = 8 units, then what is the volume of the cylinder shown above?
Answer:
968π ≈ 3041 . . . cubic units
Step-by-step explanation:
The usual formula for the volume of a cylinder is ...
V = πr²h
For your given dimensions, the volume is found by putting the values into the formula and doing the arithmetic.
V = π(11²)(8) = 968π . . . . cubic units
V ≈ 3041 cubic units
Karli produces organic cheese from milk supplied by an organic dairy. Karli pays an average of $8.00 for 10 gallons of the organic milk. The direct labor charge of her helper who converts the milk to cheese is $13.00 an hour. Her helper prepares a 5-pound wheel of cheese from 5 gallons of milk, working about 3 hours over several days. To the nearest cent, what is Karli's prime cost of manufacturing a wheel of cheese?
A.34.00
B.17.00
C.48.00
d.43.00
Answer:
d. $43.00
Step-by-step explanation:
Karli's total cost is ...
total cost = material cost + labor cost
= ($8.00/10 gal)·(5 gal) + ($13.00/h)·(3 h)
= $4.00 + $39.00
= $43.00
PLEASE HELP!! TIMED QUESTION!!!!! WILL AWARD BRAINLIEST!!!!!
If f(x) = x^2 + 3x + 5 , what is f (a + h) ?
A. (a+h)^2 + 3(a+h) + 5(a+h)
B. a^2 + 2ah + h^2 + 3a + 3h + 5
C. h^2 + 3a + 3h + 5
D. (x^2 + 3ax + 5) (a + h)
the answer is A, what they changed is the (x) with (a+h), so the right side equation should be changed the same way just like A.
Michelle has a bag with marbles in it. Some of the marbles are blue, some are green, and some are yellow. She draws one marble at random, records the color, and returns it to the bag.
Here is her data after 500 trials:
Blue Green Yellow
120 119 261
0.5
0.333
0.125
0.25
Answer:
im pretty sure its d) 0.25
Step-by-step explanation:
To find the experimental probability of each, divide the number for each color by 500. Then, multiply it by 20, to find the amount expected out of 20.
A teacher has a 2 gallon ( 32 -cup ) container of juice. She gives each student 1/2 cup of juice. Which equation represents the amount of juice that remains ,y, after x student are served
Answer:
[tex]y = 2 - \frac{1}{32}x\text{ or } y=2-0.03125x[/tex]
Step-by-step explanation:
Here x represents the number of student and y represents the amount of juice remain after x students are served,
Given,
The total number of cup = 32,
And, the amount of juice in 32 cups = 2 gallon,
⇒ The amount in 1 cup = [tex]\frac{2}{32}[/tex] = [tex]\frac{1}{16}[/tex] gallons,
Number of cups served to a student = [tex]\frac{1}{2}[/tex] cup.
⇒ The amount of juice served to a student = [tex]\frac{1}{32}[/tex] gallon.
⇒ The amount of juice served to x students = [tex]\frac{x}{32}[/tex] gallon
Thus, the remaining amount of juice = The amount of juice in 32 cups - served amount
⇒ [tex]y = 2 - \frac{1}{32}x\text{ or } y=2-0.03125x[/tex]
Which is the required equation.