Answer:
Step-by-step explanation: Half life period means half of the initial amount will be remaining after decay which is the same as half of the initial amount is decayed.
Nt= N0 *1/2 ^ (t/th)
After one hour Nt = N0 *√ 0.5 ^ (1/2) =0.7 N0 remaining or 0.3 has decayed
Hence it is TRUE that
After 1, less than 50 %of the original atoms in the container will have decayed
But the statement
After 1 hours, more than 50% of the original atoms in the container will have decayed is false.
======================================...
After 2 hours
Nt= *0.5 ^ (2/2) N0= 0.5 N0 is remaining and 0.5 of N0 has decayed.
Hence it is TRUE that
After 2 hours, 50% of the original atoms in the container will have decayed.
======================================...
After 4 hours
Nt= 0.5 ^ (4/2) N0= 0.5^2 N0 = 0.25 N0 is remaining or 0.75N0 has decayed.
Hence it is false that
After 4 hours, 25 %of the original atoms will have decayed and
After 4 hours, 25 %of the original atoms will have decayed
======================================...
Bob and Fred together make $20.00 a week less than double John. John makes $110.00 a week and Bob makes $140.00 a week. How much does Fred make? answer
If both Bob and Fred make $20 less a week than twice John's weekly salary, then
[tex]B+F+20 = 2*J[/tex],
where B, F, and J are Bob's, Fred's, and John's salaries, respectively.
We want to find F, Fred's salary. Plugging in Bob's and John's salaries, we obtain
[tex]140+F+20 = 2*110[/tex]
[tex]F+160 = 220[/tex]
[tex]F = 60[/tex]
So Fred makes $60 a week.
Answer:
Fred makes $60/week.
Step-by-step explanation:
Fred makes f dollars per week, john j dollars and bob b dollars.
Then b = $140/week; j = $110/week; and b + f = 2j - 20.
Substitute $140/week for b in this equation; also substitute $110/week for j. Then:
$140/week + f = 2($110) - $20. There's only one variable here, f, so we're ready to solve for f:
$140/week + f = $220/week - $20/week, or:
$140/week + f = $200/week
Subtract $140 from both sides, obtaining:
f = $60
Fred makes $60/week.
What are the values of x and y? [tex]-2x+3y=8\wedge2x-3y=10[/tex]
Answer:
no solutions
Step-by-step explanation:
-2x+3y=8
2x-3y=10
We can use elimination to solve for x and y
Add the two equations together
-2x+3y=8
2x-3y=10
---------------------
0 = 18
Since this is never true, there are no solutions to this system of equations
what are the coefficients in the polynomial 5x^2+2x-4
A. 5, 2
B. -5, -2
C. 5, 2, -4
D. 5, -2, -4
Answer:
A. 5,2
Step-by-step explanation:
Coefficients are numbers with a variable next to it (ex. 5 in 5x^2).
i planted 12 flower bulbs. this is 60% i purchased. how many total bulbs did i purchase?.
let's say "x" is the whole lot and thus the 100%.
we know 12 is 60%, how much is "x" or 100%?
[tex]\bf \begin{array}{ccll} amount&\%\\ \cline{1-2} x&100\\ 12&60 \end{array}\implies \cfrac{x}{12}=\cfrac{100}{60}\implies \cfrac{x}{12}=\cfrac{5}{3} \\\\\\ 3x=60\implies x=\cfrac{60}{3}\implies x=20[/tex]
–4y=10 in standard form
Answer:
Already in standard form
Step-by-step explanation:
-4y=10
-4y= by
10= c
And in this case ax=0x, so it will not show up in the equation
0x-4y=10, which is already in standward form
-4y=10 divide both sides by -2, so 2y=5 subtract 5 from both sides,
2y-5=0
g(n)=25−49(n−1) complete the recursive formula?
My answer:
g(1)=25
g(n)=g(n-1)+?
What is ?
Answer:
• g(1) = 25
• g(n) = g(n-1) -49
Step-by-step explanation:
You can get a clue by filling in n=2 in the explicit formula:
g(2) = 25 -49(2-1) = 25 -49 = g(1) -49
The explicit formula is of the form for an arithmetic sequence:
g(n) = g(1) +d(n-1) . . . . where g(1) is the first term and d is the common difference
Of course, this translates to the recursive formula ...
• g(1) = g(1)
• g(n) = g(n-1) +d
Here you have g(1) = 25, and d = -49. Filling these into the recursive form, you get ...
• g(1) = 25
• g(n) = g(n-1) -49
Answer:
• g(1) = 25
• g(n) = g(n-1) -49
Step-by-step explanation:
You can get a clue by filling in n=2 in the explicit formula:
g(2) = 25 -49(2-1) = 25 -49 = g(1) -49
The explicit formula is of the form for an arithmetic sequence:
g(n) = g(1) +d(n-1) . . . . where g(1) is the first term and d is the common difference
Of course, this translates to the recursive formula ...
• g(1) = g(1)
• g(n) = g(n-1) +d
Here you have g(1) = 25, and d = -49. Filling these into the recursive form, you get ...
• g(1) = 25
• g(n) = g(n-1) -49
Rhonda completed the right column of the table to help her find the sum of 1/2 and 1/3 in which Step did her first error occur
Step 4
The numerator of this fraction is right because there are 5 shaded sections, but the denominator is incorrect because there are 6 total boxes, not 5.
Hope this helps!!
Answer:
the answer is C step 3
Step-by-step explanation:
because out side the box said 1/2 when its 3/6 and the question sais
In which step did her first error occur? so thats the firt the second one
its 1/3 when its 2/6. Hope it helps :)
Which statement is best represented by the inequality d>11?
A. Mo worked more than 11 hours this week.
B. Mo worked 11 more hours than Quinn worked this week.
C. Mo worked less than 11 hours this week.
D. Mo worked 11 less hours than Quinn worked this week.
For this case we have the following inequality:[tex]d> 11[/tex]
Assuming that "d" is the variable that represents the number of hours worked by Mo during this week, we have that the hours were greater than 11, according to the inequality sign.
So, the correct option is:
Mo worked more than 11 hours this week.
Answer:
Option A
Answer: a
Step-by-step explanation:
Can I have some help here?
Answer:
-9⃣ = t
Step-by-step explanation:
You know that 6 - ? = -12, so just simply deduct six from both sides, leaving you with -18 = 2t; -9⃣ = t.
What is the value of x?
Find the ratio of the bases: 15 in / 5 in = 3
The triangle on the right side is 3 times larger.
X = 8 * 3
x = 24 inches.
Please help
must show work
There’s really no work to it tho unless you want to put the division. I did the first 5 since you only needed 5 of them. ( the r^# is the exponent numbers I don’t know how to make them look like exponents in my notes) Hope this helps <3
Gertrude took out a 30-year loan for $95,000 at 8.4% interest, compounded monthly. If her monthly payment on the loan is $723.75, how much of her first payment went toward note reduction?
Answer:
$58.75
Step-by-step explanation:
The monthly interest rate is 8.4%/12 = 0.7%, so the first month's interest is ...
$95,000×0.007 = $665
The amount of the first payment that goes to note reduction is the part that does not go for paying interest. That difference is ...
$723.75 - 665.00 = $58.75
Answer:$58.75
Step-by-step explanation:
Find the value of f(9) and g(–9) if f(x) = –7x – 9 and g(x) = 6x3 – 23x.
f(9) = –16
g(–9) = –760
f(9) = –54
g(–9) = 16764
f(9) = –72
g(–9) = –4167
f(9) = 63
g(–9) = 54
Answer:
Your answer should be A
Step-by-step explanation:
For this case we have the following functions:
[tex]f (x) = - 7x-9\\g (x) = 6x ^ 3-23x[/tex]
We must find [tex]f (9)[/tex] and [tex]g (-9):[/tex]
Substituting we have:
[tex]f (9) = - 7 (9) -9\\f (9) = - 63-9\\f (9) = - 72[/tex]
On the other hand:
[tex]g (-9) = 6 (-9) ^ 3-23 (-9)\\g (-9) = 6 (-729) -23 (-9)\\g (-9) = - 4374 + 207\\g (-9) = - 4167[/tex]
Answer:
Option C
A 6 sided die is rolled. Find the probability that either a 3 or a 5 is the number on top
The probability of rolling either a 3 or a 5 on a six-sided die is 1/3, or about 0.3333, as there are two favorable outcomes (3 or 5) and six possible outcomes in total.
Explanation:The question asks to find the probability of rolling either a 3 or a 5 when a fair six-sided die is rolled. The sample space for a six-sided die is {1, 2, 3, 4, 5, 6}. To calculate the probability of rolling either a 3 or a 5, we need to count the favorable outcomes, which are 2 (rolling a 3 and rolling a 5), and divide this by the total number of possible outcomes, which is 6.
Probability = Number of favorable outcomes / Total number of possible outcomes
Probability (rolling a 3 or 5) = 2 / 6 = 1 / 3.
Therefore, the probability of rolling either a 3 or a 5 on a six-sided die is 1/3, or approximately 0.3333.
If P=(-2,5) and (x,-27), find all numbers x such that the vector represented by PQ has length -40
Answer:
x ∈ {-26, 22}
Step-by-step explanation:
A graph shows that the points (-26, -27) and (22, -27) lie on a circle of radius 40 centered at (-2, 5). That is, if Q is either one of these points, the vector PQ will have a length of 40:
√((-26-(-2))^2 +(-27-5)^2) = √((-24)^2 +(-32)^2) = √1600 = 40√((22 -(-2))^2 +(-27 -5)^2) = √(24^2 +(-32)^2) = √1600 = 40You can call it -40 if you like, but you have to define what negative length means when you do that.
A common tangent is
segment CD
segment ST
segment RU
a tangential line to a circle is one that "touches" the circle but doesn't go inside, and keeps on going, in this case that'd be CD.
The correct answer would be: segment CD
Find the distance on the coordinate system from the point (-3,4)to the point (8,-7)Find
To find the distance between two points on a coordinate system, we can use the distance formula, which is derived from the Pythagorean theorem.
Explanation:To find the distance between two points on a coordinate system, we can use the distance formula. The distance formula is derived from the Pythagorean theorem and is given by:
d = sqrt((x2 - x1)^2 + (y2 - y1)^2)
Using the given points (-3,4) and (8,-7), we can plug in the coordinates into the formula:
d = sqrt((8 - (-3))^2 + (-7 - 4)^2)
Simplifying the equation, we get:
d = sqrt(11^2 + (-11)^2)
Finally, calculating the square root, we find that the distance between the two points is sqrt(242), which is approximately 15.56 units.
Thus, the distance on the coordinate system from the point (-3,4)to the point (8,-7) is fond to be 15.56 units.
Write the equation for the parabola that has x− intercepts (−4,0) and (1.5,0) and
y-intercept (0,−15).
Answer:
y = 2.5(x +4)(x -1.5) = 2.5x^2 +6.25x -15
Step-by-step explanation:
Each given zero corresponds to a factor that is zero at that point. Those factors are (x +4) and (x -1.5).
The y-intercept tells us the scale factor, the multiplier that is needed to make the function value be -15 at x=0.
y = a(x +4)(x -1.5) = a(0 +4)(0-1.5) = -6a
-15 = -6a
-15/-6 = a = 2.5
So, the quadratic is ...
y = 2.5(x +4)(x -1.5) = 2.5x^2 +6.25x -15
___
"The equation" can be written in many different forms. The simplest, given the information here, is the factored form (also called "intercept form"). We have also shown "standard form" (US version). The "standard form" (UK version) is also known as vertex form:
y = 2.5(x +1.25)^2 -18.90625
can someone teach me how to do this because the online class i take doesn't really teach us the way i learn stuff like i need a formula not how they got the answer and no formula anyways help
x =
1
3
7
Answer:
If what you are doing here is trying to get the value of x then:
Those two lines passing through the circle are secants.
Now, a formula I was taught in class is:
(outside)(whole) = (outside)(whole)
**1 SEGMENT'S VALUES PER SIDE** **DO NOT MIX**
"Outside" represents the value of the segment which is found outside of the circle.
The "whole" would be the outside segment plus the inside segment.
Thus, the formula would be:
(4)(9+4) = (x)(x + 12)
Next, you would simplify by adding, multiplying, and doing the distributive property:
(4)(13) = (x)(x + 12)
52 = x² + 12x
In this case, you would have to use the quadratic formula, while at other times, you could simply move around the terms and get the square root of a number.
Set the equation to zero:
x² + 12x - 52 = 0
Next plug-in the values
(-b (+ or -)√b² - 4 (a)(c) )/ (2)(a)
(-(12) (+ or - )√12² - 4(1)(-52)) / (2)(1)
(-12 (+ or -) √144 + 208) / 2
(-12 (+ or -) √352) / 2
Now, the square root of 352 would be approximate, since 352 is not a perfect square.
352 is approximately 18.7616630393 or, when rounded to the nearest hundredth, 18.76.
So.....
(-12 (+ or -) 18.76) / 2
Solve for both the + and the -
(-12 + 18.76) /2 = (approximately) 3.38 = x
(-12 - 18.76)/2 = (approximately) -15.38 = x
Therefore, x would be equal to 3.
HELP PLZ I BEG U BRAINLIEST AND 20 POINTS!!!!!!
Answer:
AB = (2 +2√3)r
Step-by-step explanation:
Let X be the point of tangency of circle O3 and AB. Then length XO3 is r. The triangle BXO3 is a 30°-60°-90° right triangle. You know this because BO3 bisects the 60° angle at B of the equilateral triangle ABC.
A 30°-60°-90° triangle has side lengths in the ratios 1 : √3 : 2. That means side XB of triangle BXO3 has length r√3. The distance from A to the point of tangency of AB with circle O1 has the same measure.
Of course the distance between those points of tangency is the same measure as the distance between centers O3 and O1: 2r. So, the total length of AB is ...
AB = r√3 + 2r + r√3
AB = (2 +2√3)r
From least to greatest 2/3 -4 1/2 1/4 - 1/2 2 1/3
Answer: -4 1/2 , -1/2 , 1/4 , 2/3 , 2 1/3
Step-by-step explanation:
For this case we have the following numbers:
[tex]\frac {2} {3} = 0.6667[/tex]
[tex]-4 \frac {1} {2} = \frac {-8 + 1} {2} = \frac {-7} {2} = - 3.5[/tex]
[tex]\frac {1} {4} = 0.25[/tex]
[tex]- \frac {1} {2} = - 0.5\\2 \frac {1} {3} = \frac {3 * 2 + 1} {3} = \frac {7} {3} = 2.3333[/tex]
If we order from least to greatest we have:
[tex]-3.5; -0.5; 0.25; 0.6667; 2.3333[/tex]
Answer:
[tex]-4 \frac {1} {2}; -\frac {1} {2}; \frac {1} {4}; \frac {2} {3}; 2 \frac {1} {3}[/tex]
The function g(x) = x2 + 3. The function f(x) = g(x+2)
Answer:
x2+3
Step-by-step explanation:
The selected value is 3 units up from g (x), the correct option is C.
What is a function?
Function is a type of relation, or rule, that maps one input to specific single output.
In mathematics, a function is an expression, rule, or law that describes the relationship between one variable (the independent variable) and another variable (the dependent variable) (the dependent variable). In mathematics and the physical sciences, functions are indispensable for formulating physical relationships.
Linear function is a function whose graph is a straight line
We are given that;
g(x) = x2 + 3.
f(x) = g(x+2)
Now,
Using these rules, we can fill in the blanks as follows:
The function g(x)+3. The function f(x) = g(x+2),
The function /(x) is shifted horizontally
Select a Value
2 units left from g (x).
The function /(x)is shifted vertically
Select a Value
3 units up from g (x).
Therefore, the answer of the function will be 3 units up from g (x).
Learn more about function here:
https://brainly.com/question/2253924
#SPJ7
Adrian, Ben and Charlie share some sweets in the ratio of 8:5:10.
Charlie got 24 more sweets than Adrian.
Work out the total number of sweets.
Answer:
252 candies
Step-by-step explanation:
Let A = 8x
Let B = 5x
Let C = 10x
10x = 8x + 24 Subtract 8x from both sides
10x - 8x = 24 Do the subtraction
2x = 24 Divide by 2
2x/2 = 24/2 Do the division
x = 12
So Adrian has 8*12 = 96 candies.
Ben has 5 * 12 = 60 candies
Charlie has 10*12 = 120 candies
Total = 276 candies
The total number of sweets shared by Adrian, Ben, and Charlie is 276,
To solve how many sweets were shared by Adrian, Ben, and Charlie, with the given ratio of 8:5:10 and knowing Charlie got 24 more sweets than Adrian, we can set up a ratio problem. Let the ratio part be 'x', so Adrian has 8x sweets, Ben has 5x sweets, and Charlie has 10x sweets. As Charlie got 24 more sweets than Adrian, we can write the equation 10x = 8x + 24. Solving this equation for 'x' gives us x = 12. Thus, Adrian has 96 sweets (8 x 12), Ben has 60 sweets (5 x 12), and Charlie has 120 sweets (10 x 12). Adding these together gives us a total of 276 sweets.
12. Complete the property of exponents. (ab)n = _______
A. an + bn
B. anbn
C. abn
D. an – bn
Answer:
(B) is the homogeneous mixture
Which answer is right?????
Answer:
See the attachment
Step-by-step explanation:
The point of the dashed line y=x in the problem statement graph is that the inverse function is a reflection of the function across that line. (y and x are interchanged) The graph of selection C has the appropriate pair of curves.
Plz help ASAP!! Explain your answer! I will mark at brainliest!!! And don’t copy anybody else’s answer
Answer:
No, it is not a square
Step-by-step explanation:
If one wall is 19", that would mean the wall perpendicular to this wall is also 19" (in fact all of the walls would be 19"!) If this was a square, then the diagonal we draw at 20.62" would serve as the hypotenuse of a right triangle. One wall would serve as a leg, and another wall as another leg. If this is a square, then the Pythagorean's Theorem would be satisfied when we plug in the 2 wall measures for a and b, and the diagonal for c:
[tex]19^2+19^2=20.62^2[/tex]
We need to see if this is a true statement. If the left side equals the right side, then the 2 legs of the right triangle are the same length, and the room, then is a square.
361 + 361 = 425.1844
Is this true? Does 722 = 425.1844? Definitely not. That means that the room is not a square.
The fraction 4/5 is equivalent to what percent
4/5 is equivalent to the percentage 80%.
Answer:
The correct answer is given by,
The fraction 4/5 is equivalent to 80%
Step-by-step explanation:
Points to remember
To convert fraction into percentage we have to multiply fraction with 100
x/y ⇒ 100x/y%
To find the equivalent percentage
Here fraction is 4/5
4/5 is equivalent to (4/5) * 100 = 400/5 = 80%
Therefore the correct answer is,
The fraction 4/5 is equivalent to 80%
A street that is 165 m long is covered in snow. City workers are using a snowplow to clear the street. The snowplow has tires that are 1.7 m in diameter. How many times does a tire have to turn in traveling the length of the street? Use the value 3.14 for π. Round your answer to the nearest tenth. Do not round any intermediate steps.
namely, how many go-around or revolutions does a tire have to make for those 165 meters.
[tex]\bf \textit{circuference of a circle}\\\\ C=\pi d~~ \begin{cases} d=diameter\\[-0.5em] \hrulefill\\ d=1.7 \end{cases}\implies C=1.7\pi \impliedby \textit{one revolution} \\\\\\ \textit{how many times does }1.7\pi \textit{ go into 165?}\qquad \stackrel{\pi =3.14}{\cfrac{165}{1.7\pi }\qquad \implies \qquad 30.9}[/tex]
The number of times the tire will have to turn in travelling the length of the street is 30.9 times.
To determine the number of times the tire will have to turn in travelling the length of the street, we will first calculate the circumference of the tire.
Since the tire is circular, the circumference of the tire can be calculated from the formula for calculating the circumference of a circle.
The circumference of a circle is given by
C = πd
Where C is the circumference and d is the diameter
From the question d = 1.7m and π = 3.14
∴ C = 3.14 × 1.7
C = 5.338 m
Therefore, the circumference of the tire is 5.338 m
Now, for the number of times the tire will have to turn in travelling the length of the street, we will divide the length of the street by the circumference of the tire.
Number of times the tire will have to turn = Length of the street ÷ Circumference of the tire
Number of times the tire will have to turn = 165 m ÷ 5.338 m
Number of times the tire will have to turn = 30.91045 times
Number of times the tire will have to turn ≅ 30.9 times
Hence, the number of times the tire will have to turn in travelling the length of the street is 30.9 times
Learn more here: https://brainly.com/question/16663653
Prove that for all whole values of n the value of the expression:
n(n+2)–(n–7)(n–5) is divisible by 7.
Explanation:
Multiply it out, collect terms, and look for a factor of 7:
n(n +2) -(n -7)(n -5) = n² +2n -(n² -12n +35)
= 14n -35
= 7(2n -5)
The expression has a factor of 7, so is divisible by 7 with a resulting quotient of 2n-5.
Solve the equation of exponential decay.
Suppose a country's exports declined 2.7% from 2010 to 2011. In 2010 the country exported $1.035 trillion. Assuming this continued what would the exports be in 2013
Answer:
$953.4 billion
Step-by-step explanation:
Each year, exports are (1-0.027) = 0.973 of what they were the year before. After 3 years, the export value is multiplied by 0.973^3. So, in 2013, the value of exports would be ...
($1035 billion)(0.973^3) ≈ $953.4 billion