The histogram would change due to the different distribution of ages when all 20 students join the same event.
Explanation:A histogram is a graphical representation of the distribution of numerical data. It consists of bars, where the length or height of each bar corresponds to the frequency or relative frequency of data within a specific interval or range. Histograms provide insights into data patterns and distributions.
The histogram would change when all 20 students join the same event compared to the original because the distribution of ages would be different. The original histogram would show the number of students participating in each event, while the new histogram would show the number of students in each age group. The new histogram would have different bars representing each age group, and the heights of these bars would be determined by the number of students in each age group.
Learn more about Histograms here:https://brainly.com/question/30354484
#SPJ12
4x(3x-7)-19x^2 simplify the expression below
Answer:
opening the bracket, the expression becomes
12x^2-28-19x^2
collect like terms
12x2-19x^2-28
-7x^2-28
-7(x^2+4)
What are the x- and y-intercepts for the equation "2x + 3y = 6"?
(2,0) & (3,0)
(0, 2) & (3, 0)
(0,3) & (2,0)
(0,3) & (0,2)
Answer:
(0,2) & (3,0)
Step-by-step explanation:
Given the equation [tex]2x+3y=6[/tex]:
Step 1:
To find the y-intercept, you want to set the x value to zero. This will allow you to solve for y, and find where the equation intercepts why on the 0 line:
[tex]2(0)+3y=6 \\ 0+3y=6\\ 3y=6\\ y=\frac{6}{3} \\ y = 2[/tex]
So, at x=0, y=2. or (0,2)
Step 2:
Set y = 0 and solve for x:
[tex]2x+3(0)=6\\ 2x+0=6\\ 2x=6\\ x=\frac{6}{2}\\ x=3[/tex]
so at y=0, x=3. which is the same as saying: when x=3, y=0, or (3,0)
How to round 56 to the nearest ten
Answer:
The answer would be 60
Step-by-step explanation:
What you do is if the number if 5 or less (ex 55) you would round down to 50. However it is 56 so you would round up to the next highest tenth, 60.
Hope this helps! Have a great day!
[tex]\text{Hey there}[/tex]
[tex]\text{If you come across: 5, 6, 7 , 8 , \& 9 you're going}\uparrow\text{(up)}[/tex]
[tex]\text{If you come across 1 , 2 , 3 , \& 4 you're going}\downarrow\text{(down)}[/tex]
[tex]\text{In this equation we have a SIX (6) at the end of the equation so we're going UP!}[/tex]
[tex]\boxed{\boxed{\bf{Ansewr: 60}}}}\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{LoveYourselfFirst:)}[/tex]
write y+1=-2x-3 in standard form
Answer:
2y=-5x
Step-by-step explanation:
First you mark your terms, which means to basically put the equation in order.
Then you add, for instance, first you'll add y and 1, you'll have 2y because y means one. Then, you'll have -2 minus 3 and you'll get -5 then you carry on the variables to the solutions.
Answer:
2y=-5x
hope this helps :3
What is the volume of the pyramid?
A solid right pyramid has a square base. The length of the
base edge is 4 cm and the height of the pyramid is 3 cm.
Answer: 16 cm^2.
Step-by-step explanation: The volume of a pyramid is equal to one-third the product of the area of the base and the height:
[tex]V=\frac{1}{3}A*h[/tex]
In this case, the base is a square, so its area is:
A=L^2 where "L" is the lenght of the base edge
So the volume would be:
[tex]V=\frac{1}{3}L^{2} *h[/tex]
[tex]V=\frac{1}{3}4^{2} *3[/tex]
V=16*3/3
[tex]V=16cm^{2}[/tex]
Question 1
The number of laptop computers sold each month for one year was
recorded by an electronics store. The results were 14, 15, 15, 30, 29, 5, 9, 15,
21, 21, 26, and 15. Calculate the median number of laptop computers sold
per month.
The median number of laptop computers sold per month is 15, calculated by arranging the sales data in ascending order and averaging the two middle values in the even-numbered dataset.
Explanation:The median of laptop computers sold per month can be calculated by first arranging the given numbers in ascending order and then finding the middle value. If there is an even number of observations, the median is the average of the two middle numbers.
Arrange the sales numbers in ascending order: 5, 9, 14, 15, 15, 15, 15, 21, 21, 26, 29, 30.Since there are 12 months, we have an even number of observations, so we take the average of the 6th and 7th values which are both 15.The median number of laptop computers sold per month is 15.what is the distance between (1,4) and (4,0) ?
Answer:
5 units
Step-by-step explanation:
To calculate the distance (d) use the distance formula
d = √ (x₂ - x₁ )² + (y₂ - y₁ )²
with (x₁, y₁ ) = (1, 4) and (x₂, y₂ ) = (4, 0)
d = [tex]\sqrt{(4-1)^2+(0-4)^2}[/tex]
= [tex]\sqrt{3^2+(-4)^2}[/tex]
= [tex]\sqrt{9+16}[/tex] = [tex]\sqrt{25}[/tex] = 5
If f(x) = 3x + 10 and g(x) = 2x– 4, find (f+ g)(x).
Answer:
5x+6
Step-by-step explanation:
f(x) = 3x + 10
g(x) = 2x– 4
(f+ g)(x) = 3x+10 + 2x-4
Combine like terms
= 5x+6
Answer:
5x + 6
Step-by-step explanation:
(f+ g)(x) = 3x + 10 + 2x– 4
= 5x + 6
which of the following is equivalent to the expression i^88
Answer:
i^88 = 1
Step-by-step explanation:
i^88 = i^ 4*22 = 1 { i^4k = 1 ; i^4k+1 =i ; i^4k+2 = (-1); i^4k+3 = (-i) }
The equivalent expression for i^88 is 1 as the powers of i cycle every 4. Hence (i^4)^22 which is same as 1^22 ends up being 1.
Explanation:In complex numbers, i is the imaginary unit with the property i^2 = -1. The powers of i repeat in a cycle: i^1=i, i^2=-1, i^3=-i, and i^4=1. To find the equivalent expression for i^88, we will the fact that i^4=1 and i^88 would be equivalent to (i^4)^22, because 4*22 = 88.
Therefore, (i^4)^22 = 1^22. The equivalent expression for i^88 is 1.
Learn more about Imaginary Numbers here:https://brainly.com/question/13174285
#SPJ11
14. Solve -4x2 - 7x = -5.
Answer:
x=−7/8±129/8
Step-by-step explanation:
Assuming that is a -4x^2, i'll solve it. So, -4x^2 - 7x = -5. This is a quadratic, so move all the numbers to one side (and variables). So, -4x^2 - 7x + 5 = 0. Divide everything by -1, to make the coefficient of the x squared positive. This leaves: 4x^2 + 7x -5 = 0. Now, factoring attempts: (2x-1)(2x+5). This does not work, sadly, so we must find other methods. Using the quadratic formula would be easier than factoring, so use the quadratic formula. This gives us the answers of -7 plus or minus sqrt(129) all over 8. The quadratic formula comes in handy!
Which of the following is the result of using the remainder theorem to find F(-2)
for the polynomial function F(x) = -2x3 + x2 + 4x-3?
A. 9
B. -11
C.3
D. -23
Answer:
A. 9
Step-by-step explanation:
F(-2) = 9
We are given the polynomial function;
F(x) = -2x3 + x2 + 4x-3
In order to determine F(-2) using the remainder theorem, we plug in -2 in place of x in the equation and simplify;
F(-2) = -2(-2)^3 + (-2)^2 + 4(-2) - 3
F(-2) = 9
Answer:
A
Step-by-step explanation:
Evaluating F(- 2) gives the remainder on dividing the polynomial by (x + 2)
F(- 2) = - 2(- 2)³ + (- 2)² + 4(- 2) - 3 = 16 + 4 - 8 - 3 = 9 ← remainder
Help me out again Please
A change machine can accept $1, $5, $10, and $20 bills and returns quarters. What is the domain and range of this situation?
Answer:
Domain {1,5,10,20}
Ranger {4,20,40,80}
Step-by-step explanation:
$1=4 quarters
$5=20 quarters
$10=40 quarters
$20=80 quarters
Domain {1,5,10,20}
Ranger {4,20,40,80}
Interest rate is 4.25%, the time is 3 1/4 years, simple interest is $330. What is the principal?
Answer:
$2389.14
Step-by-step explanation:
The equation is I = PRT
330= (0.0425)(3.25)P
P=2389.14
Answer:
$2389.14.
Step-by-step explanation:
Use the formula
I = PRT/100 where I = interest , P is the principle, t = time and R = the rate.
330 = P * 4.25 * 3.25 / 100
33000 = P * 13.8125
P = 33,000 / 13.8125
P = $2389.14.
Hamid ha gained weight, he now weighs 88kg which is 10% higher than the normal, what i Hamid normal weight?
Answer:
80 kg is Hamid's normal weight
Step-by-step explanation:
The following equation will help you to find the answer:
(1.10)x = 88
Answer:79.2kg
Step-by-step explanation:
10%of 88kg is 8.8. Subtract 8.8 from 88 and the answer is 79.2.
1 and 3/4 + 2 and 3/8
Hello There!
1[tex]\frac{3}{4}[/tex] + 2[tex]\frac{3}{8}[/tex] = 4[tex]\frac{1}{8}[/tex]
First, when we are trying to find the sum of a mixed number, I always add the natural numbers first meaning that the numbers before the fraction so I would add 1 and 2 together so we get a sum of 3 and now we are left with just a plain fraction.
Next, I find the least common denominator which is the smallest number that can be a common denominator for a set of fractions. Our lowest common denominator is 8 because [tex]\frac{3}{4}[/tex] = [tex]\frac{6}{8}[/tex].
Then, we add our fractions with the denominator of 8 together and get a sum of 9/8 which we can turn into a mixed number because the numerator is bigger than our denominator.
Our mixed number turns into 1 and 1/8 and we add 4 to it because that was the sum of our natural numbers and get a sum of 4 and 1/8
ANSWER 4 1/8
The values in the table represent an exponential function. What is the common ratio of the associated geometric sequence?
Answer:
D. 3Step-by-step explanation:
[tex]a_1,\ a_2,\ a_3,\ ...,\ a_n-\text{geometric series}\\\\r=\dfrac{a_2}{a_1}=\dfrac{a_3}{a_2}=\dfrac{a_4}{a_3}=...=\dfrac{a_n}{a_{n-1}}-\text{common ratio}\\\\\text{From the table we have:}\\\\a_1=7,\ a_2=21,\ a_3=63,\ a_4=189,\ a_5=567\\\\\text{Check the common ratio:}\\\\\dfrac{21}{7}=3\\\\\dfrac{63}{21}=3\\\\\dfrac{189}{63}=3\\\\\dfrac{567}{189}=3\\\\\bold{CORRECT}[/tex]
At a point on the ground 60 Ft
from the base of a tree, the distance
to the top of the tree is 4 ft more
than 2 times the height of the tree.
Find the height of the tree in ft.
The height of the tree is 32 feet.
Step-by-step explanation:
Let the height of the tree be x.
Connect the top of the tree, the point on the ground, and the bottom of the tree to form a right triangle.
Use Pythagorean theorem to solve for x.
(4+2x)^2 = x^2 + 60^2
x = 32
The height of the tree is 4 feet.
Explanation:To find the height of the tree, we can set up a right triangle with the tree height as one leg, the distance from the base of the tree as the other leg, and the distance to the top of the tree as the hypotenuse. Let's call the tree height x. From the given information, we can write the equation:
x = 2x + 4
Simplifying this equation, we get:
x = 4
Therefore, the height of the tree is 4 feet.
Learn more about Geometry here:https://brainly.com/question/31408211
#SPJ3
What is the completely factored form of d4 − 81?
(d + 3)(d − 3)(d + 3)(d − 3)
(d2 + 9)(d + 3)(d − 3)
(d2 + 9)(d − 3)(d − 3)
(d2 + 9)(d2 − 9)
For this case we must factor the following expression:
[tex]d ^ 4-81[/tex]
Rewriting the expression:
[tex](d ^ 2) ^ 2-9 ^ 2[/tex]
We factor using the formula of the square difference:
[tex]a ^ 2-b ^ 2 = (a + b) (a-b)[/tex]
Where:
[tex]a = d ^ 2\\b = 9[/tex]
So:
[tex](d ^ 2 + 9) (d ^ 2-9)[/tex]
From the second term we have:
[tex]d ^ 2-3 ^ 2 = (d-3) (d + 3)[/tex]
Finally, the factored expression is:
[tex](d ^ 2 + 9) (d-3) (d + 3)[/tex]
Answer:
[tex](d ^ 2 + 9) (d-3) (d + 3)[/tex]
The complete factorization of the term:
[tex]d^4-81[/tex] is:
[tex](d-3)(d+3)(d^2+9)[/tex]
Step-by-step explanation:To factor a term means to express is as a product of distinct factors i.e. multiples.
We are asked to factor the algebraic expression which is given by:
[tex]d^4-81[/tex]
We could write this expression as:
[tex](d^2)^2-(3^2)^2=(d^2)^2-(9)^2[/tex]
We know that:
[tex]a^2-b^2=(a-b)(a+b)[/tex]
i.e.
[tex]d^4-81=(d^2-9)(d^2+9)\\\\i.e.\\\\d^4-81=(d^2-3^2)(d^2+9)\\\\i.e.\\\\d^4-81=(d-3)(d+3)(d^2+9)[/tex]
What is the volume of a rectangle Kay prism that is 16 meters by 25 meters by 37 meters? PLZ HELP QUICK
To find the volume multiply the three dimensions:
16 x 25 x 37 = 14,800 cubic meters.
6 x j = 42 ??????? Help
Answer:
j = 7
Step-by-step explanation:
flip the equation around: instead of using multiplication you use division to find out what j is.
1st step: 42 divided by 6 is 7
2nd step: (check your answer): 7 times 6 does equal 42, therefore j = 7 is correct.
Answer:
[tex]\huge \boxed{J=7}[/tex]
Step-by-step explanation:
Switch sides.
[tex]\displaystyle6j=42[/tex]
Divide by 6 from both sides.
[tex]\displaystyle \frac{6j}{6}=\frac{42}{6}[/tex]
Simplify, to find the answer.
[tex]\displaystyle 42\div6=7[/tex]
[tex]\huge \boxed{j=7}[/tex], which is our answer.
the sum of three consecutive natural numbers is 156 find the number which is the multiple of 13 out of these numbers
Answer:
52 is the multiple of 13
Step-by-step explanation:
3x+3=156
3x=153
x=52
Answer:
52 is the multiple of 13 out of 51 , 52, 53 numbers.
Step-by-step explanation:
Given: Sum of three consecutive integers 156
To find: Three consecutive integers .
Solution: We have given that
Let first consecutive number x ,
Second consecutive number= x+1
Third number = x+2
According to question :
Sum of three consecutive number
x + x+1 +x+2 = 156 .
Combine like term
3x+3 = 156
On subtracting by 3 both side
3x + 3 -3 = 156 - 3
3x = 153
On dividing by 3
x = 51.
X+1 = 51+1
x+1 = 52.
x +3 = 51+2 = 53.
We can see second number 52 is multiple of 13.
Therefore, 52 is the multiple of 13 out of 51 , 52, 53 numbers.
Which is a solution to the equation?
(х-2)(х + 5) = 18?
[tex]\bf (x-2)(x+5)=18\implies \stackrel{\mathbb{F~O~I~L}}{x^2+3x-10}=18\implies x^2+3x-28=0 \\\\\\ (x-4)(x+7)=0\implies x= \begin{cases} 4\\ -7 \end{cases}[/tex]
find the length of AB leave your answer in terms of pi help please
[tex]\bf \textit{arc's length}\\\\ s=\cfrac{\pi \theta r}{180}~~ \begin{cases} r=radius\\ \theta =\textit{angle in}\\ \qquad \textit{degrees}\\ \cline{1-1} r=6\\ \theta =30 \end{cases}\implies s=\cfrac{\pi (30)(6)}{180}\implies s=\pi[/tex]
How do you do this question down below?
Answer:
y = 3m - 6
Step-by-step explanation:
y = mx + b
b is the point where the line cuts the y axis.
That happens at (0,-6)
So far what you have on this equation is
y = mx - 6
You could use the point that cuts the x axis to find m.
y = 0
x = 2
0 = m*2 - 6 Add 6 to both sides
6 = m*2 - 6 + 6
6 = 2*m Divide by 2
6/2 = 2m/2 Do the division
3 = m
Answer
y = 3m - 6
What is the measure of A
Answer:
A. 60°
Step-by-step explanation:
From the diagram, in triangle ABC,
AB=BC=CA=15 units.
This means triangle ABC is an equilateral triangle.
All angles in equilateral triangle are congruent. The sum of all interior angles in triangle is always 180°, so one angle of equilateral triangle is equal to 60°. Thus,
∠A=∠B=∠C=60°
What is the slope of the line shown in the graph?
A) 3/2
B) 2/3
C) -3/4
D) -2/3
Choose two points
(4,1) and (-3 , 5)
rise/run = 4/6
Simplify - 2/3
Answer = B) 2/3
Hope this helps!!
we can simply get the slope by using two points off the line, hmmmm say the line passes through (0,3) and (-3,5)
[tex]\bf (\stackrel{x_1}{0}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{5}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{5-3}{-3-0}\implies \cfrac{2}{-3}\implies -\cfrac{2}{3}[/tex]
Can anyone answer this ?
For this case we have that by definition, the Pythagorean theorem states that:
[tex]c = \sqrt {a ^ 2 + b ^ 2}[/tex]
Where:
c: It is the hypotenuse of the triangle
a, b: They are the legs of the triangle
Then, we verify if the theorem for the given triangles is fulfilled:
Triangle 1:
[tex]\sqrt {13} = \sqrt {2 ^ 2 + 3 ^ 2}\\\sqrt {13} = \sqrt {4 + 9}\\\sqrt {13} = \sqrt {13}[/tex]
It is fulfilled!
Triangle 2:
[tex]25 = \sqrt {2 ^ 2 + (3 \sqrt {2}) ^ 2}\\25 = \sqrt {4+ (9 * 2)}\\25 = \sqrt {22}[/tex]
It is not fulfilled!
Triangle 3:
[tex]43 = \sqrt {2 ^ 2 + (3 \sqrt {3}) ^ 2}\\43 = \sqrt {4+ (9 * 3)}\\43 = \sqrt {4+ (9 * 3)}\\43 = \sqrt {31}[/tex]
It is not fulfilled!
ANswer:
Triangle A
The first two steps in determining the solution set of the system of equations, y = x2 - 2x - 3 and y = -x +3, algebraically are
shown in the table.
Step
Equation
Step 1 XP-2x-3--x+3
Step 2
0=x2-X-6
Which represents the solution(s) of this system of equations?
(3.0) and (-2,5)
(-6, 9) and (1, 2)
(-3,6) and (2, 1)
(6.-3) and (-1.4)
Answer:
(3,0) and (-2,5)
Step-by-step explanation:
The solutions of the equations are A ( 3 , 0 ) and B ( -2 , 5 ) and the graph is plotted
What is an Equation?Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the equation be represented as C
Now , the value of C is
Substituting the values in the equation , we get
y = x² - 2x - 3 be equation (1)
y = -x + 3 be equation (2)
On simplifying , we get
-x + 3 = x² - 2x - 3
Adding x on both sides , we get
x² - 3 - x = 3
Subtracting 3 on both sides , we get
x² - x - 6 = 0
On factorizing , we get
( x - 3 ) ( x + 2 ) = 0
So , the two values of x are 3 and -2
Hence , the solutions of equations are A ( 3 , 0 ) and B ( -2 , 5 )
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ7
suppose you want to convert kilometers to miles. you use the conversion of 1 mile = 1.6 kilometers. when using this conversion, which unit should be in the denominator?
Answer:
The unit that should be in the denominator is kilometers
Step-by-step explanation:
we know that
[tex]1\ mile=1.6\ kilometers[/tex]
To convert x km to mi
[tex]x\ km*(\frac{1}{1.6})\frac{mi}{km}=\frac{x}{1.6}\ mi[/tex]
therefore
The unit that should be in the denominator is kilometers