Answer:
0.953c
Explanation:
T₀ = lifetime of the particle at rest = 2.52 μs
T = Observed lifetime of the particle while in motion = 8.32 μs
v = speed of particle
c = speed of light
Using the formula for time dilation
[tex]T = \frac{T_{o}}{\sqrt{1-(\frac{v}{c})^{2}}}[/tex]
inserting the values
[tex]8.32 = \frac{2.52}{\sqrt{1-(\frac{v}{c})^{2}}}[/tex]
v = 0.953c
Final answer:
To calculate the speed at which a particle's lifetime appears dilated to 8.32 μs, one uses the time dilation formula from special relativity. The calculated speed is approximately 0.995c, which does not match the provided choices. A careful review of the calculation and rounding effects might lead to one of the options being the nearest correct answer.
Explanation:
To find the required speed for the particle's lifetime to be observed as 8.32 μs, we need to apply the concept of time dilation from Einstein's theory of special relativity. Time dilation is given by the equation τ' = τ / √(1 - v²/c²), where τ' is the dilated lifetime, τ is the proper lifetime (lifetime at rest), v is the velocity of the particle, and c is the speed of light.
The problem gives us τ' = 8.32 μs and τ = 2.52 μs. We substitute these values into the equation and solve for v:
8.32 μs = 2.52 μs / √(1 - v²/(3.00 × 10⁸ m/s)²)
We first square both sides, rearrange the equation, and then take the square root to find v:
(8.32 μs / 2.52 μs)² = 1 / (1 - v²/c²)
(3.30)² = 1 / (1 - v²/c²)
10.89 = 1 + v²/c²
v²/c² = 10.89 - 1
v²/c² = 9.89
v = √(9.89) ∑ c
v ≈ 0.995c
Thus the required speed of the particle for its lifetime to be observed as 8.32 μs is approximately 0.995c. However, this speed is not listed among the multiple-choice options, suggesting either a calculation error or that none of the provided answers are correct. It's important to review the calculation carefully and consider rounding effects that might lead to one of the provided answers being the nearest correct choice.
The equation for free fall at the surface of a celestial body in outer space (s in meters, t in seconds) is sequals10.04tsquared. How long does it take a rock falling from rest to reach a velocity of 28.6 StartFraction m Over sec EndFraction on this celestial body in outer space?
Answer:
1.42 s
Explanation:
The equation for free fall of an object starting from rest is generally written as
[tex]s=\frac{1}{2}at^2[/tex]
where
s is the vertical distance covered
a is the acceleration due to gravity
t is the time
On this celestial body, the equation is
[tex]s=10.04 t^2[/tex]
this means that
[tex]\frac{1}{2}g = 10.04[/tex]
so the acceleration of gravity on the body is
[tex]g=2\cdot 10.04 = 20.08 m/s^2[/tex]
The velocity of an object in free fall starting from rest is given by
[tex]v=gt[/tex]
In this case,
g = 20.08 m/s^2
So the time taken to reach a velocity of
v = 28.6 m/s
is
[tex]t=\frac{v}{g}=\frac{28.6 m/s}{20.08 m/s^2}=1.42 s[/tex]
It takes approximately [tex]\( 1.424 \)[/tex] seconds for the rock to reach a velocity of 28.6 m/s on this celestial body.
We need to use the given equation and the relationship between position, velocity, and acceleration.
The equation for the position [tex]\( s \)[/tex] as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[s = 10.04t^2\][/tex]
Step 1: Find the Acceleration
This equation is similar to the general form of the kinematic equation for free fall under constant acceleration:
[tex]\[s = \frac{1}{2} a t^2\][/tex]
Comparing the two equations:
[tex]\[10.04t^2 = \frac{1}{2} a t^2\][/tex]
We can solve for the acceleration [tex]\( a \)[/tex]:
[tex]\[10.04 = \frac{1}{2} a\][/tex]
[tex]\[a = 2 \times 10.04 = 20.08 \, \text{m/s}^2\][/tex]
Step 2: Use the Acceleration to Find the Time
The velocity [tex]\( v \)[/tex] of an object in free fall under constant acceleration is given by:
[tex]\[v = at\][/tex]
We need to find the time [tex]\( t \)[/tex] when the velocity [tex]\( v \)[/tex] is 28.6 m/s:
[tex]\[28.6 = 20.08 t\][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[t = \frac{28.6}{20.08}\][/tex]
[tex]\[t \approx 1.424 \, \text{seconds}\][/tex]
A long, straight wire with 2 A current flowing through it produces magnetic field strength 1 T at its surface. If the wire has a radius R, where within the wire is the field strength equal to 84 % of the field strength at the surface of the wire? Assume that the current density is uniform throughout the wire. (μ 0 = 4π × 10-7 T · m/A)
Answer:
[tex]r = 3.36 \times 10^{-7} m[/tex]
Explanation:
As per Ampere's law of magnetic field we know that
line integral of magnetic field along closed ampere's loop is equal to the product of current enclosed and magnetic permeability of medium
So it is given as
[tex]\int B. dl = \mu_0 i_{en}[/tex]
here we can say that enclosed current is given as
[tex]i_{en} = \frac{i}{\pi R^2} (\pi r^2)[/tex]
now from ampere'e loop law for any point inside the wire we will have
[tex]B.(2\pi r) = \mu_o (\frac{ir^2}{R^2}[/tex]
[tex]B = \frac{\mu_0 i r}{2\pi R^2}[/tex]
now we know that magnetic field inside the wire is 84% of the field at its surface
so we will have
[tex]0.84 \frac{\mu_o i}{2\pi R} = \frac{\mu_o i r}{2\pi R^2}[/tex]
so we have
[tex]r = 0.84 R[/tex]
now we know
[tex]\frac{\mu_o i}{2\pi R} = 1[/tex]
here i = 2 A
[tex]R = 2\times 10^{-7} m[/tex]
so now we have
[tex]r = 3.36 \times 10^{-7} m[/tex]
The point ( r ) within the wire where the field strength equals 84% of the field strength at the wire surface is : 0.84 R
Given data :
Radius of wire = R
current in the wire = 2A
magnetic field strength = 1 T
Determine the area within the wire where the field strength equals 84%we will apply Ampere's law
i) Ampere's law applied inside the wire
B₁ (2πr ) = μ₀I ( r² / R² )
ii) Ampere's law applied at the surface
B₂ ( 2πr ) = μ₀ I
Resolving equations above
Therefore : B₁ / B₂ = 0.84 also r / R = 0.84
Hence ( r ) = 0.84 R
Therefore we can conclude that The point ( r ) within the wire where the field strength equals 84% of the field strength at the wire surface is : 0.84 R
Learn more about Field strength : https://brainly.com/question/1592046
From Center Station, a train departs every 30 minutes on the Fast Line and a train departs every 50 minutes on the State Line. If two trains depart from Center Station at 8:00 A.M., one on each of the two lines, what is the next time that two trains, one on each line, will depart at the same time?
Explanation:
You need to find the least common multiple (LCM) of 30 and 50. First, write the prime factorization of each:
30 = 2×3×5
50 = 2×5²
The LCM must contain all the factors of both, so:
LCM = 2×3×5²
LCM = 150
It will take 150 minutes (or 2 hours and 30 minutes) before two trains depart at the same time again.
The next time that two trains, one on each line, will depart from Center Station at the same time is at 10:30 A.M. This is calculated by finding the least common multiple of the two train schedules.
Explanation:This question requires finding the least common multiple (LCM) of the two train schedules, which represents the time duration when both trains will depart again at the same time. The LCM of 30 and 50 is 150 minutes. This means, from 8:00 A.M., it will be the next 150 minutes or 2 hours and 30 minutes when both trains will depart from Center Station at the same time. Therefore, the answer is 10:30 A.M.
Learn more about Least Common Multiple here:https://brainly.com/question/34291727
#SPJ2
A bike with 15cm diameter wheels accelerates uniformly from rest to a speed of 7.1m/s over a distance of 35.4m. Determine the angular acceleration of the bike's wheels.
Answer:
9.47 rad/s^2
Explanation:
Diameter = 15 cm, radius, r = diameter / 2 = 7.5 cm = 0.075 m, u = 0, v = 7.1 m/s,
s = 35.4 m
let a be the linear acceleration.
Use III equation of motion.
v^2 = u^2 + 2 a s
7.1 x 7.1 = 0 + 2 x a x 35.4
a = 0.71 m/s^2
Now the relation between linear acceleration and angular acceleration is
a = r x α
where, α is angular acceleration
α = 0.71 / 0.075 = 9.47 rad/s^2
Which of the following is an example of the conclusion phase of the scientific method?
a scientist decides on a question to explore
a scientist collects data
a scientists creates graphs and performs calculations
a scientist examines the results and answers the lab question
Answer:
a scientist examines the results and answers the lab question- last choice
Answer:
D. a scientist examines the results and answers the lab question
A projectile is shot from the edge of a vertical cliff 60.0 m above the ocean. It has a speed of 100 m/s and is fired at an angle of 35.0° below the horizontal. How far from the foot of the vertical cliff does the projectile hit the water?
Answer:
79.5 m
Explanation:
Let t be the time taken to hit the surface of water and x be the horizontal distance traveled.
use II equation of motion in Y axis direction
h = uy t + 1/2 g t^2
- 60 = - 100 Sin 35 x t - 1/2 x 9.8 x t^2
-60 = - 57.35 t - 4.9 t^2
4.9 t^2 + 57.35 t - 60 = 0
[tex]t = \frac{-57.35\pm \sqrt{57.35^{2} + 4 \times 4.9 \times 60}}{2\times 4.9}[/tex]
By solving we get
t = 0.97 second
The horizontal distance traveled is
x = ux t
x = 100 Cos 35 x 0.97
x = 79.5 m
Final answer:
To find how far from the cliff a projectile hits the water, one must use projectile motion principles to calculate the time of flight based on vertical movement and then determine the horizontal distance traveled during this time.
Explanation:
The question involves calculating how far from the foot of a vertical cliff a projectile hits the water when it is shot from an elevation with a given initial speed and angle. To solve this, we need to use the concepts of projectile motion, specifically focusing on the horizontal distance traveled by a projectile. The key equations involve splitting the initial velocity into its horizontal and vertical components, calculating the time of flight based on the vertical motion, and then using this time to find the horizontal distance traveled.
Given the projectile has a speed of 100 m/s and is fired at an angle of 35.0° below the horizontal from a height of 60.0 m, the calculation involves several steps:
Determine the initial horizontal and vertical velocity components.
Calculate the time of flight using the vertical motion equations.
Finally, compute the horizontal distance traveled using the time of flight.
Due to the complexity and the need for specific formulae and calculations, a detailed step-by-step solution would be necessary to find the exact distance.
A science teacher tells her class that their final project requires students to measure a specific variable and determine the velocity of a car with no more than 2.5% error. Jennifer and Johnny work hard and decide the velocity of the car is 34.87 m/s. The teacher informs them that the actual velocity is 34.15 m/s. Will Jennifer and Johnny pass their final project?
Answer:
Yes
Explanation:
The velocity measured by Jennifer and Johnny is
[tex]v_m = 34.87 m/s[/tex]
The actual velocity is
[tex]v=34.15 m/s[/tex]
We can calculate the % error of the students measurement as follows:
[tex]Err = \frac{v_m - v}{v}\cdot 100 = \frac{34.87 m/s-34.15 m/s}{34.15 m/s}\cdot 100 =0.021 \cdot 100 = 2.1 \%[/tex]
Which is lower than the 2.5% maximum error required, so the two students will pass the test.
Final answer:
Jennifer and Johnny's measurement has a percentage error of approximately 2.11%, which is less than the maximum allowed error of 2.5%. Therefore, they will pass their final project.
Explanation:
To determine if Jennifer and Johnny passed their final project, we need to calculate the percentage error of their measured velocity. The percentage error is calculated using the formula:
Percentage Error = |(Actual Value - Experimental Value) / Actual Value| × 100%
First, let's find the absolute difference between the actual velocity (34.15 m/s) and the measured velocity (34.87 m/s):
|34.15 m/s - 34.87 m/s| = |(-0.72 m/s)| = 0.72 m/s
Now, we calculate the percentage error:
Percentage Error = (0.72 m/s / 34.15 m/s) × 100% ≈ 2.11%
Since the percentage error they obtained (2.11%) is less than the maximum allowed error of 2.5%, Jennifer and Johnny will pass their final project.
A proton moves with a speed of 4.00 106 m/s horizontally, at a right angle to a magnetic field. What magnetic field strength is required to just balance the weight of the proton and keep it moving horizontally? (The mass and charge of the proton are 1.67 ✕ 10−27 kg and 1.60 ✕ 10−19 C, respectively.)
Answer:
Magnetic field, [tex]B=2.55\times 10^{-14}\ T[/tex]
Explanation:
It is given that,
Speed of proton, [tex]v=4\times 10^6\ m/s[/tex]
Mass of the proton, [tex]m=1.67\times 10^{-27}\ kg[/tex]
Charge on proton, [tex]q=1.6\times 10^{-19}\ C[/tex]
We need to find the magnetic field strength required to just balance the weight of the proton and keep it moving horizontally.
The Lorentz force is given by :
[tex]F=q(v\times B)=qvB\ sin90[/tex].............(1)
The weight of proton,
[tex]W=mg[/tex]..............(2)
From equation (1) and (2), we get :
[tex]mg=qvB[/tex]
[tex]B=\dfrac{mg}{qv}[/tex]
[tex]B=\dfrac{1.67\times 10^{-27}\ kg\times 9.8\ m/s^2}{1.6\times 10^{-19}\ C\times 4\times 10^6\ m/s}[/tex]
[tex]B=2.55\times 10^{-14}\ T[/tex]
Hence, this is the required solution.
Final answer:
The magnetic field strength required to balance the weight of a proton and keep it moving horizontally is 3.07 x 10^-4 Tesla, calculated by setting the magnetic force (qvB) equal to the gravitational force (mg) and solving for B with given values for q, v, m, and g.
Explanation:
To calculate the magnetic field strength required to balance the weight of a proton and keep it moving horizontally, we can use the relationship between the magnetic force and the gravitational force acting on the proton. The magnetic force that will balance the weight of the proton is given by FB = qvB sin(θ), where q is the charge of the proton, v is its velocity, B is the magnetic field strength, and θ is the angle between the velocity and the magnetic field. Because the proton is moving at a right angle to the magnetic field, sin(θ) will be 1.
The weight of the proton (gravitational force) is given by W = mg, where m is the mass of the proton and g is the acceleration due to gravity. Setting the magnetic force equal to the weight gives us:
FB = W
qvB = mg
B = mg/qv
Substituting the given values for mass m = 1.67 x 10-27 kg, charge q = 1.60 x 10-19 C, speed v = 4.00 x 106 m/s, and the acceleration due to gravity g = 9.81 m/s2, we can find the magnetic field strength:
B = (1.67 x 10-27 kg * 9.81 m/s2) / (1.60 x 10-19 C * 4.00 x 106 m/s)
B = 3.07 x 10-4 T
The magnetic field strength required is 3.07 x 10-4 Tesla.
Calculate the deflection at point C of a beanm subjected to uniformly distributed load w 275 N/mm on span AB and point load P-10 kN at C. Assume that L = 5 m and EI = 1.50 × 107 N·m2
To calculate the deflection at point C of the beam, we can use the deflection equation for beams under a uniformly distributed load and a point load.
Explanation:To calculate the deflection at point C of the beam, we will use the formula for deflection under a uniformly distributed load and a point load. The deflection equation for beams is given by
δ = (5wL⁴ - PL³) / (384EI)
where δ is the deflection, w is the uniformly distributed load, L is the span length, P is the point load, E is the modulus of elasticity, and I is the moment of inertia of the beam. Substituting the given values into the equation, we can calculate the deflection at point C.
A 75 kg skier rides a 2830-m-long lift to the top of a mountain. The lift makes an angle of 14.6°with the horizontal. What is the change in the skier's gravitational potential energy?
Answer:
Gravitational potential energy = 524.85 kJ
Explanation:
Refer the figure.
Gravitational potential energy = mgh
Mass, m = 75 kg
Acceleration due to gravity, g = 9.81 m/s²
We have
[tex]sin14.6=\frac{h}{2830}\\\\h=713.36m[/tex]
Gravitational potential energy = 75 x 9.81 x 713.36 = 524854.62 J = 524.85 kJ
If two metal balls each have a charge of -10^-6 C and the repulsive force between them is 1 N, how far apart are they? (Coulomb's constant is k = 9.0x 10^9 N-m^2/C^2? 9.5 m 9.0 mm 9.5 cm 0.9 m .
Answer:
The distance between the charges is 9.5 cm
(c) is correct option
Explanation:
Given that,
Charge [tex]q= 10^{-6}\ C[/tex]
Force F = 1 N
We need to calculate the distance between the charges
Using Coulomb's formula
[tex]F = \dfrac{kq_{1}q_{2}}{r^2}[/tex]
Where, q = charge
r = distance
F = force
Put the value into the formula
[tex]1=\dfrac{9.0\times10^{9}\times(-10^{-6})^2}{r^2}[/tex]
[tex]r=\sqrt{9\times10^{9}\times(-10^{-6})^2}[/tex]
[tex]r=0.095\ m[/tex]
[tex]r= 9.5\ cm[/tex]
Hence, The distance between the charges is 9.5 cm
In 1610 Galileo made a telescope and used it to study the planet Jupiter. He discovered four moons. One of them was Ganymede. The mean radius of the orbit of Ganymede around Jupiter is 10.7 × 108m and the period of the orbit is 7.16 days. i) Determine the mass of Jupiter.
Answer: [tex]1.893(10)^{27}kg [/tex]
Explanation:
This problem can be solved by the Third Kepler’s Law of Planetary motion, which states:
“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
In other words, this law stablishes a relation between the orbital period [tex]T[/tex] of a body (moon, planet, satellite) orbiting a greater body in space with the size [tex]a[/tex] of its orbit.
This Law is originally expressed as follows:
[tex]T^{2}=\frac{4\pi^{2}}{GM}a^{3}[/tex] (1)
Where;
[tex]T=7.16days=618624s[/tex] is the period of the orbit Ganymede describes around Jupiter
[tex]G[/tex] is the Gravitational Constant and its value is [tex]6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex]
[tex]M[/tex] is the mass of Jupiter (the value we need to find)
[tex]a=10.7(10)^{8}m[/tex] is the semimajor axis of the orbit Ganymede describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find [tex]M[/tex], we have to express equation (1) as written below and substitute all the values:
[tex]M=\frac{4\pi^{2}}{GT^{2}}a^{3}[/tex] (2)
[tex]M=\frac{4\pi^{2}}{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(618624s)^{2}}(10.7(10)^{8}m)^{3}[/tex] (3)
Finally:
[tex]M=1.8934(10)^{27}kg[/tex] This is the mass of Jupiter
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 9.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85x10-12 C2/N.m2 . Find the energy U1 of the dielectric-filled capacitor.
Answer:
[tex]9.96\cdot 10^{-10}J[/tex]
Explanation:
The capacitance of the parallel-plate capacitor is given by
[tex]C=\epsilon_0 k \frac{A}{d}[/tex]
where
ϵ0 = 8.85x10-12 C2/N.m2 is the vacuum permittivity
k = 3.00 is the dielectric constant
[tex]A=30.0 cm^2 = 30.0\cdot 10^{-4}m^2[/tex] is the area of the plates
d = 9.00 mm = 0.009 m is the separation between the plates
Substituting,
[tex]C=(8.85\cdot 10^{-12}F/m)(3.00 ) \frac{30.0\cdot 10^{-4} m^2}{0.009 m}=8.85\cdot 10^{-12} F[/tex]
Now we can calculate the energy of the capacitor, given by:
[tex]U=\frac{1}{2}CV^2[/tex]
where
C is the capacitance
V = 15.0 V is the potential difference
Substituting,
[tex]U=\frac{1}{2}(8.85\cdot 10^{-12}F)(15.0 V)^2=9.96\cdot 10^{-10}J[/tex]
Astronomers discover an exoplanet (a planet of a star other than the Sun) that has an orbital period of 3.87 Earth years in its circular orbit around its sun, which is a star with a measured mass of 3.59 x 1030 kg. Find the radius of the exoplanet's orbit.
Answer: [tex]4.487(10)^{11}m[/tex]
Explanation:
This problem can be solved using the Third Kepler’s Law of Planetary motion:
“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
This law states a relation between the orbital period [tex]T[/tex] of a body (the exoplanet in this case) orbiting a greater body in space (the star in this case) with the size [tex]a[/tex] of its orbit:
[tex]T^{2}=\frac{4\pi^{2}}{GM}a^{3}[/tex] (1)
Where:
[tex]T=3.87Earth-years=122044320s[/tex] is the period of the orbit of the exoplanet (considering [tex]1Earth-year=365days[/tex])
[tex]G[/tex] is the Gravitational Constant and its value is [tex]6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex]
[tex]M=3.59(10)^{30}kg[/tex] is the mass of the star
[tex]a[/tex] is orbital radius of the orbit the exoplanet describes around its star.
Now, if we want to find the radius, we have to rewrite (1) as:
[tex]a=\sqrt[3]{\frac{T^{2}GM}{4\pi^{2}}}[/tex] (2)
[tex]a=\sqrt[3]{\frac{(122044320s)^{2}(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(3.59(10)^{30}kg)}{4\pi^{2}}}[/tex] (3)
Finally:
[tex]a=4.487(10)^{11}m[/tex] This is the radius of the exoplanet's orbit
Given the orbital period and mass of the exoplanet, its radius of orbit is 4.488 × 10¹¹m.
Given the data in the question;
Orbital period;[tex]T = 3.87 \ Earth\ years = [ 3.87yrs*365days*24hrs*60min*60sec = 122044320s[/tex] Mass of the Planet; [tex]M = 3.59*10^{30}kg[/tex]Radius of the exoplanet's orbit; [tex]r= \ ?[/tex]To determine the radius of the exoplanet's orbit, we use the equation from Kepler's Third Law:
[tex]T^2 = \frac{4\pi^2 }{GM}r^3\\[/tex]
Where, T is the period of the orbit of the exoplanet, G is the Gravitational Constant, M is the mass of the star and r is orbital radius.
We make "r", the subject of the formula
[tex]r = \sqrt[3]{\frac{T^2GM}{4\pi ^2} }[/tex]
We substitute our given values into the equation
[tex]r = \sqrt[3]{\frac{(122044320s)^2*(6.67430 * 10^{-11} m^3/kg s^2)*(3.59*10^{30}kg)}{4*\pi ^2} } \\\\r = \sqrt[3]{\frac{(1.48948*10^{16}s^2)*(6.67430 * 10^{-11} m^3/kg s^2)*(3.59*10^{30}kg)}{4*\pi ^2} }\\\\r = \sqrt[3]{\frac{3.5689*10^{36}m^3}{4*\pi ^2} }\\\\r = \sqrt[3]{9.04*10^{34}m^3}\\\\r = 4.488*10^{11}m[/tex]
Therefore, given the orbital period and mass of the exoplanet, its radius of orbit is 4.488 × 10¹¹m.
Learn more; https://brainly.com/question/13998753
An experimenter measures the frequency, f, of an electromagnetic wave Its wavelength in free space is a) c/f b) cf c) f/c d) independent of the frequency.
Answer:
Wavelength, [tex]\lambda=\dfrac{c}{f}[/tex]
Explanation:
In an electromagnetic wave both electric and magnetic field propagate simultaneously. Radio waves, microwaves, gamma rays etc are some of the examples of electromagnetic waves.
If f is the frequency of electromagnetic wave, c is the speed of light, then the relationship between the frequency f, wavelength and the speed is given by :
[tex]\lambda=\dfrac{c}{f}[/tex]
Hence, the correct option that shows the wavelength of electromagnetic wave in free space is(a) " c/f ".
An Australian emu is running due north in a straight line at a speed of 13.0 m/s and slows down to a speed of 10.5 m/s in 4.20 s. (a) What is the magnitude and direction of the bird’s acceleration? (b) Assuming that the acceleration remains the same, what is the bird’s velocity after an additional 1.50 s has elapsed?
Explanation:
It is given that,
Initial velocity of the bird, u = 13 m/s
Final speed of the bird, v = 10.5 m/s
Time taken, t = 4.20 s
(a) Acceleration of the bird is given by :
[tex]a=\dfrac{v-u}{t}[/tex]
[tex]a=\dfrac{10.5\ m/s-13\ m/s}{4.20\ s}[/tex]
[tex]a=-0.59\ m/s^2[/tex]
So, The direction of acceleration is opposite to the direction of motion.
(b) We need to find the bird’s velocity after an additional 1.50 s has elapsed i.e. t = 4.2 + 1.5 = 5.7 s. Let v' is the new final velocity.
It can be calculated using first equation of motion as :
[tex]a=\dfrac{v'-u}{t}[/tex]
v' = u + at
[tex]v'=(-0.59)\times 5.7+13[/tex]
v' = 9.64 m/s
Hence, this is the required solution.
Point charge A is located at point A and point charge B is at point B. Points A and B are separated by a distance r. To determine the electric potential at the mid-point along a line between points A and B, which of the following mathematical approaches is correct? a. The difference in the absolute value (the sign of the charges does not enter into the calculation) of the two electric potentials is determined at a distance r/2 from each of the charges. b. The algebraic sum of the two electric potentials is determined at a distance r/2 from each of the charges, making sure to include the signs of the charges. c. The electric potential due to each charge is determined at a distance r/2 from each of the charges and an average is taken of the two values. d. The vector sum of the two electric potentials determines the total electric potential at a distance r/2 from each of the charges
Answer:
B. The algebraic sum of the two electric potentials is determined at a distance r/2 from each of the charges, making sure to include the signs of the charges.
Explanation:
Total electric potential is the sum of all the electric potential. And because electric potential is a scalar quantity you have to account for the signs.
A barrel ride at an amusement park starts from rest and speeds up to 0.520 rev/sec in 7.26 s. What is the angular acceleration during that time? (Unit = rad/s^2)
The angular acceleration of the barrel ride is 0.0714 rad/s^2.
Explanation:To find the angular acceleration, we first need to convert the rotational speed from rev/s to radians per second (rad/s) because the standard unit for angular speed and acceleration is in rad/s and rad/s² respectively. We know that 1 revolution is equal to 2π radians, therefore 0.520 rev/s equals 0.520 x 2π rad/s.
Angular acceleration (α) is calculated using the formula α = Δω / Δt, where Δω is the change in angular velocity and Δt is the time it takes for the change. As the ride started from rest, the change in angular velocity was simply its final angular velocity. Thus, by putting the values in the formula, we will get the angular acceleration during the 7.26 s.
The angular acceleration of the barrel ride at the amusement park can be calculated using the formula:
α = (Δω) / t
Plugging in the values from the question, we have:
Δω = 0.520 rev/sec
t = 7.26 s
Therefore, the angular acceleration during that time is α = (0.520 rev/sec) / (7.26 s) = 0.0714 rad/s^2.
Learn more about angular acceleration here:https://brainly.com/question/31682256
#SPJ12
The angular acceleration of the barrel ride at the amusement park, which sped up from rest to 0.520 rev/sec in 7.26 s, is 0.45 rad/s².
Explanation:To answer this question the first step we should do is to convert the given rate of 0.520 revolutions per second to radians per second, as our target unit is rad/s². We know that 1 revolution is equal to 2π radians, so multiplying the revolution rate by 2π, we get: 0.520 rev/sec * 2π rad/rev = 3.27 rad/sec.
Next, we need to calculate the angular acceleration using the formula α = (ωf- ωi) / t. Where ωi is the initial angular velocity, ωf is the final angular velocity, and t is the time. The ride starts from rest, so the initial angular velocity is 0, the final angular velocity is 3.27 rad/sec and the time is 7.26 seconds.
Substituting these values into the equation, we get: α = (3.27 rad/sec - 0 rad/sec) / 7.26 s = 0.45 rad/s².
Learn more about Angular Acceleration here:
https://brainly.com/question/32293403
#SPJ12
An astronomer finds that a meteorite sample has a mass of 15.6 g along with an apparent mass of 9.2 g when submerged in water. find the density of the meteorite?
Answer:
Density of meteorite = 2.44 g/cm³
Explanation:
Apparent mass = Mass of solid - Mass of water displaced
Mass of water displaced = Mass of solid - Apparent mass
= 15.6 - 9.2 = 6.4 g
Density of water = 1 g/cm³
Volume of water displaced [tex]=1\times 6.4=6.4cm^3[/tex]
Volume of meteorite = Volume of water displaced = 6.4 cm³
[tex]\texttt{Density of meteorite}=\frac{\texttt{Mass of meteorite}}{\texttt{Volume of meteorite}}=\frac{15.6}{6.4}=2.44g/cm^3[/tex]
Density of meteorite = 2.44 g/cm³
An object is dropped from a tower, 400 ft above the ground. The object's height above ground x seconds after the fall is s(x)equals400minus16xsquared. About how long does it take the object to hit the ground? What is the object's velocity at the moment of impact?
1) 5 s
The vertical position of the object is given by
[tex]y(t) = h - \frac{1}{2}gt^2 = 400 - 16 t^2[/tex]
where
h=400 ft represents the initial height
g = 32 ft/s^2 is the acceleration of gravity
t is the time
We want to find the time t at which the object reaches the ground, so the time t at which
y(t) = 0
By substituting this into the equation, we find
[tex]0 = 400 - 16t^2\\t=\sqrt{\frac{400}{16}}=5 s[/tex]
2) 160 ft/s
The object is released from rest, so the initial velocity is zero
u = 0
The final vertical velocity can be found by using
[tex]v^2 - u^2 = 2ah[/tex]
where
v is the final velocity
a = 32 ft/s^2 is the acceleration of gravity
h = 400 ft is the vertical distance covered
Solving for v, we find
[tex]v=\sqrt{u^2 +2ay}=\sqrt{2(32 ft/s)(400 ft)}=160 ft/s[/tex]
Final answer:
The object takes approximately 5 seconds to hit the ground and has an impact velocity of 160 feet per second.
Explanation:
Time to Hit the Ground and Velocity at Impact
To find out how long it takes the object to hit the ground, we need to solve the equation s(x) = 400 - 16x2 for the moment when the height s(x) is zero (s(x) = 0). Setting the equation to zero, we get 0 = 400 - 16x2, which simplifies to x2 = 25 after dividing both sides by 16. Taking the square root of both sides gives us x ≈ 5 seconds, which is the time the object takes to hit the ground.
For the object's velocity at the moment of impact, we use the formula v = gt, where g is the acceleration due to gravity (32 feet per second squared), and t is the time in seconds. Thus, the velocity at impact is v = 32 * 5 = 160 feet per second.
44. A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of 1.40 m/s and observes that it takes 1.8 s to reach the water. (a) List the knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable.
Answer:
18.4 m
Explanation:
(a)
The known variables in this problem are:
u = 1.40 m/s is the initial vertical velocity (we take downward direction as positive direction)
t = 1.8 s is the duration of the fall
a = g = 9.8 m/s^2 is the acceleration due to gravity
(b)
The vertical distance covered by the life preserver is given by
[tex]d=ut + \frac{1}{2}at^2[/tex]
If we substitute all the values listed in part (a), we find
[tex]d=(1.40 m/s)(1.8 s)+\frac{1}{2}(9.8 m/s^2)(1.8 s)^2=18.4m[/tex]
Using the equation of motion, the calculation shows the life preserver was released from approximately 18.4 meters above the water.
Initial velocity of the life preserver (vo) = 1.40 m/s (downward)Time the life preserver takes to reach the water (t) = 1.8 sAcceleration due to gravity (a) ≈ 9.8 m/s² (downward)y = vot + 1/2(at²)
Substituting the known values, we get:
y = (1.40 m/s)(1.8 s) + 1/2(9.8 m/s²)(1.8 s)²
y = 2.52 m + 15.876 m
y = 18.396 m
The life preserver was released approximately 18.4 meters above the water.
A wheelhas a radius of 4.8 m. Howfar (path length) does a point on the circumference travel if thewheel is rotated through angles of 30°, 30 rad, and 30 rev,respectively?
Answer:
(a) 2.512 m
(b) 144 m
(c) 904.32 m
Explanation:
radius, r = 4.8 m
(a) for 30 degree
As we know that in 360 degree it rotates a complete round that means circumference.
In 360 degree, it rotates = 2 x π x r
in 30 degree, it rotates = 2 x π x r x 30 / 360
= 2 x 3.14 x 4.8 x 30 / 360
= 2.512 m
(b) for 30 rad
As we know that in one complete rotation, it rotates by 2π radian.
so,
for 2π radian it rotates = 2 x π x r
for 30 radian, it rotates = 2 x π x r x 30 / 2 π = 144 m
(c) For 30 rev
In one complete revolution, it travels = 2 x π x r
in 30 rev, it travels = 2 x π x r x 30 = 2 x 3.14 x 4.8 x 30 = 904.32 m
A battery has an emf of 15.0 V. The terminal voltage of the battery is 12.2 V when it is delivering 26.0 W of power to an external load resistor R. (a) What is the value of R? Ω (b) What is the internal resistance of the battery?
Answer:
(a) 5.725 Ω
(b) 1.3 Ω
Explanation:
(a)
E = emf of the battery = 15.0 Volts
V = terminal voltage of the battery = 12.2 Volts
P = Power delivered to external load resistor "R" = 26.0 W
R = resistance of external load resistor
Power delivered to external load resistor is given as
[tex]P = \frac{V^{2}}{R}[/tex]
26.0 = 12.2²/R
R = 5.725 Ω
(b)
r = internal resistance of the battery
i = current coming from the battery
Power delivered to external load resistor is given as
P = i V
26.0 = i (12.2)
i = 2.13 A
Terminal voltage is given as
V = E - ir
12.2 = 15 - (2.13) r
r = 1.3 Ω
Final answer:
The external load resistor R is calculated to be 5.72 Ohms using the power and terminal voltage, and the internal resistance of the battery is 1.31 Ohms as determined from the emf, terminal voltage, and the current flowing through R.
Explanation:
To solve for external load resistor R and the internal resistance of the battery, we can use the formulas related to electric power and the relation between emf, terminal voltage, and internal resistance.
(a) Value of R:
The power delivered to the resistor (P) is given by:
P = V2 / R
Where V is the terminal voltage and R is the resistance.
Substituting the given values:
26.0 W = (12.2 V)2 / R
Hence, R = (12.2 V)2 / 26.0 W = 5.72 Ω (Ohms)
(b) Internal resistance of the battery:
We know that terminal voltage V is emf - (current * internal resistance).
The current I flowing through R can be calculated using the power:
I = P / V = 26.0 W / 12.2 V = 2.13 A
Now, using the emf (E) of the battery and terminal voltage (V):
E = V + Ir
15.0 V = 12.2 V + (2.13 A × r)
We solve for r, the internal resistance:
r = (15.0 V - 12.2 V) / 2.13 A = 1.31 Ω (Ohms)
An isotope of Uranium, Z = 92 and A = 235, decays by emitting an alpha particle. Calculate the number of neutrons in the nucleus left behind after the radioactive decay.
Answer:
141
Explanation:
The atomic number (Z) corresponds to the number of protons:
Z = p
while the mass number (A) corresponds to the number of protons+neutrons:
A = p + n
So the number of neutrons in a nucleus is equal to the difference between mass number and atomic number:
n = A - Z
For the initial nucleus of Uranium, Z = 92 and A = 235, so the initial number of neutrons is
n = 235 - 92 = 143
An alpha particle carries 2 protons and 2 neutrons: so, when the isotope of Uranium emits an alpha particle, it loses 2 neutrons. Therefore, the number of neutrons after the decay will be
n = 143 - 2 = 141
A particle's position is given by x = 7.00 - 9.00t + 3t2, in which x is in meters and t is in seconds. (a) What is its velocity at t = 1 s? (b) Is it moving in the positive or negative direction of x just then? (c) What is its speed just then? (d) Is the speed increasing or decreasing just then? (Try answering the next two questions without further calculation.) (e) Is there ever an instant when the velocity is zero? If so, give the time t; if not, answer "0". (f) Is there a time after t = 3 s when the particle is moving in the negative direction of x? If so, give the time t; if not, answer "0".
[tex]x(t)=7.00\,\mathrm m-\left(9.00\dfrac{\rm m}{\rm s}\right)t+\left(3\dfrac{\rm m}{\mathrm s^2}\right)t^2[/tex]
a. The particle has velocity at time [tex]t[/tex],
[tex]\dfrac{\mathrm dx(t)}{\mathrm dt}=-9.00\dfrac{\rm m}{\rm s}+\left(6\dfrac{\rm m}{\mathrm s^2}\right)t[/tex]
so that after [tex]t=1\,\mathrm s[/tex] it will have velocity [tex]\boxed{-3.00\dfrac{\rm m}{\rm s}}[/tex].
b. The sign of the velocity is negative, so it's moving in the negative [tex]x[/tex] direction.
c. Its speed is 3.00 m/s.
d. The particle's velocity changes according to
[tex]\dfrac{\mathrm d^2x(t)}{\mathrm dt^2}=6\dfrac{\rm m}{\mathrm s^2}[/tex]
which is positive and indicates the velocity/speed of the particle is increasing.
e. Yes. The velocity is increasing at a constant rate. Solving for [tex]\dfrac{\mathrm dx(t)}{\mathrm dt}=0[/tex] is trivial; this happens when [tex]\boxed{t=1.50\,\mathrm s}[/tex].
f. No, the velocity is positive for all [tex]t[/tex] beyond 1.50 s.
Two point charges of +2.0 μC and -6.0 μC are located on the x-axis at x = -1.0 cm and x = +2.0 cm respectively. Where should a third charge of +3.0-μC be placed on the +x-axis so that the potential at the origin is equal to zero? (k = 1/4πε0 = 8.99 × 109 N · m2/C2)
Answer:
see attachment
Explanation:
The electric potential varies inversely with the distance. So, the third charge should be placed at a distance of 3 cm from the origin on the x-axis.
What is electric potential?The work done on an electric charge to shift it from infinity to a point is known as electric potential at that point. And its expression is,
[tex]V = \dfrac{kq}{r}[/tex]
here, k is the coulomb's constant.
Given data:
The magnitude of two point charges are, [tex]+2.0 \;\rm \mu C[/tex] and [tex]-6.0 \;\rm \mu C[/tex].
The location of each charge on the x-axis is -1.0 cm and +2.0 cm.
Let the third charge ( [tex]+3.0 \;\rm \mu C[/tex] ) be placed at a distance of x. Then the electric potential at origin is,
[tex]V = \dfrac{k \times 2.0}{0.01} +\dfrac{k \times -6.0}{0.02} +\dfrac{k \times 3.0}{x}[/tex]
Since, potential at origin is zero (V = 0). Then,
[tex]0 = \dfrac{k \times 2.0}{0.01} +\dfrac{k \times -6.0}{0.02} +\dfrac{k \times 3.0}{x}\\\\\dfrac{k \times 6.0}{0.02} = \dfrac{k \times 2.0}{0.01} +\dfrac{k \times 3.0}{x}\\\\\dfrac{6.0}{0.02} = \dfrac{2.0}{0.01} +\dfrac{3.0}{x}\\\\x = 0.03 \;\rm m =3 \;\rm cm[/tex]
Thus, we can conclude that the third charge should be placed at a distance of 3 cm from the origin on the x-axis.
Learn more about the electric potential here:
https://brainly.com/question/9383604
A 2.0kg solid disk rolls without slipping on a horizontal surface so that its center proceeds to the right with a speed of 5.0 m/s. What is the instantaneous speed of the point of the disk that makes contact with the surface?
Answer:
Instantaneous speed of contact point will be ZERO
Explanation:
As we know that disc is rolling without slipping on horizontal surface
So here the speed of center of the disc is given as
v = 5 m/s
now at the contact point the tangential speed will be in reverse direction
[tex]v_t = R\omega[/tex]
now we know that net contact speed with respect to its lower surface must be zero
[tex]v_{net} = v - v_t = 0[/tex]
so net velocity of contact point with respect to its lower surface must be ZERO here
The instantaneous speed of the point of a disc that is rolling without slipping and makes contact with the surface is zero. This is because that point is momentarily at rest relative to the surface at that instant.
Explanation:The instantaneous speed of the point of the disc that makes contact with the surface is zero. This is because for a disc rolling without slipping on a surface, the point of contact at any instant is momentarily at rest relative to the surface. This can be understood by imagining the point of contact as the 'pivot' or point about which the disc rotates while rolling. As the disc rolls, the pivot point changes, but whichever point is in contact with the surface at a given instant is not moving relative to the surface. Hence, the instantaneous speed of that point is zero.
Learn more about Rolling Disc Instantaneous Speed here:https://brainly.com/question/17661499
#SPJ3
A ball is thrown upward in the air, and its height above the ground after t seconds is H ( t ) = 57 t − 16 t 2 feet. Find the time t when the ball will be traveling upward at 14.25 feet per second.
Answer:
1.34 seconds
Explanation:
h(t) = 57t - 16t²
Velocity is the derivative of position with respect to time:
v(t) = dh/dt
v(t) = 57 - 32t
When v = 14.25:
14.25 = 57 - 32t
32t = 42.75
t = 1.34
A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed Vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density p 3.84 x108 g/m3 and volume V 2.17 x 1012 m3 Recall that the universal gravitational constant is G 6.67 x 10-11 N m2/kg2
Explanation:
The escape velocity [tex]V_{esc}[/tex] is given by the following equation:
[tex]V_{esc}=\sqrt{\frac{2GM}{R}}[/tex] (1)
Where:
[tex]G[/tex] is the Gravitational Constant and its value is [tex]6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex]
[tex]M[/tex] is the mass of the asteroid
[tex]R[/tex] is the radius of the asteroid
On the other hand, we know the density of the asteroid is [tex]\rho=3.84(10)^{8}g/m^{3}[/tex] and its volume is [tex]V=2.17(10)^{12}m^{3}[/tex].
The density of a body is given by:
[tex]\rho=\frac{M}{V}[/tex] (2)
Finding [tex]M[/tex]:
[tex]M=\rhoV=(3.84(10)^{8} g/m^{3})(2.17(10)^{12}m^{3})[/tex] (3)
[tex]M=8.33(10)^{20}g=8.33(10)^{17}kg[/tex] (4) This is the mass of the spherical asteroid
In addition, we know the volume of a sphere is given by the following formula:
[tex]V=\frac{4}{3}\piR^{3}[/tex] (5)
Finding [tex]R[/tex]:
[tex]R=\sqrt[3]{\frac{3V}{4\pi}}[/tex] (6)
[tex]R=\sqrt[3]{\frac{3(2.17(10)^{12}m^{3})}{4\pi}}[/tex] (7)
[tex]R=8031.38m[/tex] (8) This is the radius of the asteroid
Now we have all the necessary elements to calculate the escape velocity from (1):
[tex]V_{esc}=\sqrt{\frac{2(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(8.33(10)^{17}kg)}{8031.38m}}[/tex] (9)
Finally:
[tex]V_{esc}=117.626m/s[/tex] This is the minimum initial speed the rocks need to be thrown in order for them never return back to the asteroid.
To calculate the minimum speed to escape the gravitational pull of the asteroid, you'll first determine the asteroid's mass using its density and volume. Find its radius assuming it's a sphere. Plug these into the escape speed equation sqrt(2*G*M/R) to determine the velocity.
Explanation:The escape velocity of an object from another object’s gravitational pull can be determined by the formula: V_esc = sqrt(2*G*M/R). Here, V_esc is the escape speed, G is the universal gravitational constant, M is the mass of the object (in this case, the asteroid), and R is the radius of the object. To find M in this case, we can multiply the given density (p) of the asteroid by its volume (V), and convert this to kg. Once we know the mass, we can find the radius of the asteroid (assuming it is spherical), using the formula for the volume of a sphere (V = 4/3 * pi * R^3).
Once we have determined all the values above, we can substitute them into the escape speed formula to find the minimum initial speed a rock would need to be thrown in order never to fall back to the asteroid.
Learn more about Escape Speed here:https://brainly.com/question/28608063
#SPJ11
A disc initially at rest experiences an angular acceleration of 3.11 rad/s for a time of 15.0 s. What will the angular speed of the disc be at this time, in units of rad/s?
Answer:
The angular speed of the disc be at this time is 46.65 rad/s.
Explanation:
Given that,
Angular acceleration [tex]\alpha= 3.11\ rad/s^2[/tex]
Time t =15.0 s
We will calculate the angular speed of the disc
A disc initially at rest.
So, [tex]\omega=0[/tex]
Using rotational kinematics equation
[tex]\omega'=\omega+\alpha\ t[/tex]
Where, [tex]\omega[/tex] = initial angular speed
[tex]\omega'[/tex] =final angular speed
[tex]\alpha[/tex] = angular acceleration
Put the value in the equation
[tex]\omega'=0+3.11\times15[/tex]
[tex]\omega'=46.65\ rad/s[/tex]
Hence, The angular speed of the disc be at this time is 46.65 rad/s.