A CAT scan produces equally spaced cross-sectional views of a human organ that provide information about the organ otherwise obtained only by surgery. Suppose that a CAT scan of a human liver shows cross-sections spaced 1.5 cm apart. The liver is 15 cm long and the cross-sectional areas, in square centimeters,are 0,17,58,77,95,106,118,127,63,,40 and 0. Use the Midpoint Rule with n = 5 to estimate the volume V of the liver.

Answers

Answer 1

Answer:

X XCX X X C C  C C C CC C  C C C C C C C C C C C C  CC C C  SC S DCSD VSDCS CS CSDV SD SDC D D D VD  DFV DF DFV DF

Step-by-step explanation:

Answer 2

The estimated volume of the liver using the Midpoint Rule with n = 5 is approximately 1051.5 cubic centimeters.

To estimate the volume V of the liver using the Midpoint Rule with n = 5 , we need to first find the average area of adjacent cross-sections and then multiply it by the distance between these cross-sections.

Given the cross-sectional areas: 0, 17, 58, 77, 95, 106, 118, 127, 63, 40, and 0.

We will partition these areas into 5 equal intervals and use the midpoint of each interval to estimate the average area.

Interval 1: 0, 17

Interval 2: 17, 58

Interval 3: 58, 77

Interval 4: 77, 95

Interval 5: 95, 106

Interval 6: 106, 118

Interval 7: 118, 127

Interval 8: 127, 63

Interval 9: 63, 40

Interval 10: 40, 0

Now, we calculate the midpoints of each interval:

Midpoint 1: (0 + 17)/2 = 8.5

Midpoint 2: (17 + 58)/2 = 37.5

Midpoint 3: (58 + 77)/2 = 67.5

Midpoint 4: (77 + 95)/2 = 86

Midpoint 5: (95 + 106)/2 = 100.5

Midpoint 6: (106 + 118)/2 = 112

Midpoint 7: (118 + 127)/2 = 122.5

Midpoint 8: (127 + 63)/2 = 95

Midpoint 9: (63 + 40)/2 = 51.5

Midpoint 10: (40 + 0)/2 = 20

Next, we find the average area of these intervals:

[tex]\( A_1 = 8.5 \)[/tex], [tex]\( A_2 = 37.5 \)[/tex], [tex]\( A_3 = 67.5 \)[/tex], [tex]\( A_4 = 86 \)[/tex], [tex]\( A_5 = 100.5 \)[/tex], [tex]\( A_6 = 112 \)[/tex], [tex]\( A_7 = 122.5 \)[/tex], [tex]\( A_8 = 95 \)[/tex], [tex]\( A_9 = 51.5 \)[/tex], [tex]\( A_{10} = 20 \)[/tex]

Now, we use the Midpoint Rule formula to estimate the volume:

[tex]\[ V \approx \Delta x \sum_{i=1}^{n} A_i \][/tex]

Where [tex]\( \Delta x \)[/tex] is the distance between cross-sections, given as 1.5 cm, and n = 5 intervals.

V [tex]\approx[/tex] 1.5 * (8.5 + 37.5 + 67.5 + 86 + 100.5 + 112 + 122.5 + 95 + 51.5 + 20) \]

[tex]\[ V \approx 1.5 \times (701) \][/tex]

[tex]\[ V \approx 1051.5 \][/tex]

So, the estimated volume of the liver using the Midpoint Rule with n = 5 is approximately 1051.5 cubic centimeters.


Related Questions

seven people are seated in a row. They all got up and sit down again in random order. What is the probability that the two originally seated at the two end are no longer at the ends

Answers

Answer:

P(A&B) = 0.4

Explanation:

Because it is a random process and there are no special constraints the probability for everybody is the same, the probability of choosing a particular site is 1/7, the person originally seated in chair number seven has 5/7 chance of not seating in chair number six and seven, the same goes for the person originally seated in chair number six; Because we want the probability of the two events happening, we want the probability of the intersection of the two events, and because the selection of a chair change the probability for the others (Dependents events) the probability P(A&B) = P(A) * P(B/A) where P(A) is 5/7 and the probability of choosing the right chair after the event A is 4/7, therefore, P(A&B) = 4/7*5/7 = 0.4.

If the events were independent the probability would be 0.51.

A set S of strings of characters is defined recursively by 1. a and b belong to S. 2. If x belongs to S, so does xb. Which of the following strings belong to S? a. a b. ab c. aba d. aaab e. bbbbb

Answers

Answer:

a) a

b) ab

e) bbbbb

Step-by-step explanation:

We are given the following in the question:

[tex]a, b \in S[/tex]

[tex]x \in S \Rightarrow xb \in S[/tex]

a) a

It is given that [tex]a \in S[/tex]

b) ab

[tex]\text{If }a \in S\\\Rightarrow ab \in S[/tex]

Thus, ab belongs to S.

c) aba

This does not belong to S because we cannot find x for which xb belongs to S.

d) aaab

This does not belong to S because we cannot find x for which xb belongs to S.

e) bbbbb

[tex]\text{If }b \in S\Rightarrow bb \in S\\\text{If }bb \in S\Rightarrow bbb \in S\\\text{If }bbb \in S\Rightarrow bbbb \in S\\\text{If }bbbb \in S\Rightarrow bbbbb \in S[/tex]

Thus, bbbbb belongs to S.

A concrete beam may fail either by shear (S) or flexure (F). Suppose that three failed beams are randomly selected and the type of failure is determined for each one. Let X = the number of beams among the three selected that failed by shear. List each outcome in the sample space along with the associated value of X.

Answers

The Possible outcomes and associated values in the sample space along with X are SSS (X = 3), SSF, SFS, FSS, SFF (X = 1), FSF, FFS,

FFF (X = 0).

We have,

Let's list all the possible outcomes in the sample space when three concrete beams are selected and their failure types (shear or flexure) are determined.

For each outcome, we'll also determine the value of X, which represents the number of beams that failed by shear.

Let S represent shear failure and F represent flexure failure.

Possible outcomes and associated values of X:

SSS (All three beams failed by shear)

X = 3

SSF (Two beams failed by shear, one by flexure)

X = 2

SFS (Two beams failed by shear, one by flexure)

X = 2

FSS (Two beams failed by shear, one by flexure)

X = 2

SFF (One beam failed by shear, two by flexure)

X = 1

FSF (One beam failed by shear, two by flexure)

X = 1

FFS (One beam failed by shear, two by flexure)

X = 1

FFF (All three beams failed by flexure)

X = 0

These are the eight possible outcomes in the sample space along with the associated values of X, representing the number of beams that failed by shear in each outcome.

Thus,

Possible outcomes and associated values of X: SSS (X = 3), SSF, SFS, FSS, SFF (X = 1), FSF, FFS, FFF (X = 0).

Learn more about sample space here:

https://brainly.com/question/24273864

#SPJ12

Final answer:

The outcomes in the sample space for three concrete beams failing are: (S,S,S) with X = 3, (S,S,F),(S,F,S),(F,S,S) with X = 2, (S,F,F),(F,F,S),(F,S,F) with X = 1, and (F,F,F) with X = 0. S represents a shear failure, F a flexure failure, and X the number of shear failures.

Explanation:

The sample space for this problem includes all possible outcomes for the three concrete beams that can fail. The possible outcomes are:

(S,S,S) for 3 shear failures with X = 3.(S,S,F),(S,F,S),(F,S,S) for 2 shear failures with X = 2.(S,F,F),(F,F,S),(F,S,F) for 1 shear failure with X = 1.(F,F,F) for no shear failures with X = 0.

Here, S represents a shear failure and F represents a flexure failure. The number specified by X in each scenario represents how many beams among the three randomly selected ones failed by shear.

Learn more about probability here:

https://brainly.com/question/22962752

#SPJ3

Fifty pro-football rookies were rated on a scale of 1 to 5, based on performance at a training camp as well as on past performance. A ranking of 1 indicated a poor prospect whereas a ranking of 5 indicated an excellent prospect. The following frequency distribution was constructed.
Rating Frequency
1 4
2 10
3 14
4 18
5 4
a-1. How many of the rookies received a rating of 4 or better?
a-2. How many of the rookies received a rating of 2 or worse?
b-1. Construct the corresponding relative frequency distribution. (Round your answers to 2 decimal places.)
b-2. What percent received a rating of 5?

Answers

Answer:

(a-1) 22 rookies receiving a rating of 4 or better.

(a-2) 14 rookies received a rating of 2 or worse.

(b-1) Constructed below in explanation.

(b-2) 8% of total rookies received a rating of 5.

Step-by-step explanation:

We are provided the rating of Fifty pro-football rookies on a scale of 1 to 5 based on performance at a training camp as well as on past performance.

The frequency distribution constructed is given below:

 Rating          Frequency

     1                       4

     2                     10       where ranking of 1 indicate a poor prospect whereas

     3                     14         ranking of 5 indicate an excellent prospect.

     4                     18

     5                      4

(a-1) Rookies receiving a rating of 4 or better = Rating of 4 + Rating of 5

       So, by seeing the frequency distribution 18 rookies received a rating of

         4 and 4 rookies received a rating of 5.

Hence, Rookies receiving a rating of 4 or better = 18 + 4 = 22 rookies.

(a-2) Number of rookies received a rating of 2 or worse = Rating of 2 +

                                                                                                 Rating of 1

     So, by seeing the frequency distribution 10 rookies received a rating of

      2 and 4 rookies received a rating of 1.

Hence, Rookies receiving a rating of 2 or worse = 10 + 4 = 14 rookies.

(b-1) Relative Frequency is calculated as = Each frequency value /

                                                                         Total Frequency

   Rating        Frequency(f)        Relative Frequency

     1                       4                          4 / 50 = 0.08

     2                     10                         10 / 50 = 0.2

     3                     14                          14 / 50 = 0.28

     4                     18                          18 / 50 = 0.36

     5                     4                           4 / 50  = 0.08

                     [tex]\sum f[/tex]= 50                

Hence, this is the required relative frequency distribution.

(b-2) To calculate what percent received a rating of 5 is given by equation :

             x% of 50 = 4 {Here 4 because 4 rookies received rating of 5}

         x = [tex]\frac{4*100}{50}[/tex] = 8% .

Therefore, 8% of total rookies received a rating of 5.

Final answer:

22 rookies received a performance rating of 4 or better, and there are 14 rookies that received a rating of 2 or worse. The relative frequency distribution rounded to 2 decimal places for ratings 1, 2, 3, 4, and 5 is 0.08, 0.2, 0.28, 0.36, and 0.08 respectively. Finally, 8% of rookies received a rating of 5.

Explanation:

To answer question a-1, we add the frequencies of the ratings 4 and 5 together. So 18 (the number of rookies who received a 4) plus 4 (the number of rookies who received a 5) equals 22. Therefore, 22 rookies received a rating of 4 or better.

For question a-2, we add the frequencies of the ratings 1 and 2 together. So 4 (the number of rookies who received a 1) plus 10 (the number of rookies who received a 2) equals 14. Thus, 14 rookies received a rating of 2 or worse.

Next, for question b-1, we find the relative frequency distribution by dividing each frequency by the total number of players (50). So, the relative frequency for 1 would be 4/50 ≈ 0.08, for 2 it's 10/50=0.2, for 3 it's 14/50 ≈ 0.28, for 4 it's 18/50 = 0.36, and for 5 it's 4/50 ≈ 0.08. These are all rounded to 2 decimal places.

Finally, for question b-2, to find the percent of players who received a rating of 5, we take the frequency of 5 which is 4, and divide it by the total number of rookies, which is 50, then multiply by 100 to convert it to a percentage (4/50 * 100). The answer is 8%.

Learn more about Data Analysis here:

https://brainly.com/question/33332656

#SPJ3

The Nielsen Media Research Company uses people meters to record the viewing habits of about 5000 households, and today those meters will be used to determine the proportion of households tuned to CBS Evening News.

Answers

Answer:

Cross-sectional study.

Step-by-step explanation:

- In a cross-sectional study, data are observed, measured, and collected at one point in time.

- In a prospective (or longitudinal) study, data are collected in the future from

groups sharing common factors.

- In a retrospective (or case-control) study, data are collected from the past by going

back in tirme (through exanmination of records, interviews, arıd so on).

Hope this Helps!!

Ruby has $0.86 worth of pennies and nickels. She has 4 more nickels than pennies. Determine the number of pennies and the number of nickels that Ruby has.

Answers

Answer:

15 Nickels, 11 Pennies

Step-by-step explanation:

Simplify your life and take out the decimals

5*N + P = 86

P + 4 = N (4 more nickels than pennies)

By substitution of the second eq into the first: 5*(P+4) + P = 86

5*P + 20 + P = 86

6P = 66

P = 11, so N = 4 + 11 = 15

Answer:Ruby has 11 pennies and 15 nickels.

Step-by-step explanation:

The worth of a penny is 1 cent. Converting to dollars, it becomes

1/100 = $0.01

The worth of a nickel is 5 cents. Converting to dollars, it becomes

5/100 = $0.05

Let x represent the number of pemnies that Ruby has.

Let y represent the number of nickels that Ruby has.

She has 4 more nickels than pennies. This means that

y = x + 4

Ruby has $0.86 worth of pennies and nickels. This means that

0.01x + 0.05y = 0.86 - - - - - - - - - - - 1

Substituting y = x + 4 into equation 1, it becomes

0.01x + 0.05(x + 4) = 0.86

0.01x + 0.05x + 0.2 = 0.86

0.06x = 0.86 - 0.2 = 0.66

x = 0.66/0.06

x = 11

y = x + 4 = 11 + 4

y = 15

A. Find n so that the number sentence below is true. 2^-6*2^n=2^9.
N=_____________


B. Use the laws of exponents to demonstrate why 2^3•4^3=2^9 is true and explain.

This is true because

Answers

n = 15

Step-by-step explanation:

Step 1: Calculate n by using the law of exponents that a^m × a^n = a^m+n

For 2^-6*2^n=2^9, a = 2, m = -6 and m + n = 9

⇒ -6 + n = 9

⇒ n = 15

Step 2: Given 2³ × 4³=2^9. Use law of exponents to prove it.

⇒ 2³ × 4³ can also be written as 2³ × (2²)³ = 2³ × 2^6 [This is based on the law of exponents (a^m)^n = (a)^m×n]

⇒ 2³ × 2^6 = 2^ (3 + 6) = 2^9 [Using the law of exponents a^m × a^n = a^m+n]

How much
fencing does
the farmer
need to
enclose the
area below?
30 2/9 50 5/8 will mark brainest new to this can any one help ​

Answers

The farmer will need:

[tex]\boxed{191\frac{11}{12}yd}[/tex]

In order to enclose the area shown in the figure below.

Explanation:

The diagram below shows the representation of this problem. Let:

[tex]x: The \ length \ of \ the \ rectangular \ pastures \\ \\ y: The \ width \ of \ the \ rectangular \ pastures[/tex]

We know that:

[tex]x=5\frac{5}{8}yd \\ \\ y=30\frac{2}{9}yd[/tex]

So the fencing the farmer needs can be calculated as the perimeter of the two adjacent rectangular pastures:

[tex]P=2(x+y)+y \\ \\ P=2(50\frac{5}{8}+30\frac{2}{9})+30\frac{2}{9} \\ \\ P=100\frac{10}{8}+60\frac{4}{9}+30\frac{2}{9} \\ \\ P=100\frac{10}{8}+90\frac{6}{9} \\ \\ P=100\frac{5}{4}+90\frac{2}{3} \\ \\ P=190(\frac{15+8}{12}) \\ \\ P=190(\frac{23}{12}) \\ \\ \\ Expressing \ as \ a \ mixed \ fraction: \\ \\ P=190+1+\frac{11}{12} \\ \\ P=191+\frac{11}{12} \\ \\ \boxed{P=191\frac{11}{12}yd}[/tex]

Learn more:

Enclosing areas: https://brainly.com/question/1904034

#LearnWithBrainly

A factory makes rectangular sheets of cardboard, each with an area 2 1/2 square feet. Each sheet of cardboard can be cut into smaller pieces of cardboard measuring 1 1/6 square feet. How many smaller pieces of cardboard does each sheet of cardboard provide?

Answers

Answer: each sheet of cardboard provides 2 pieces of smaller pieces of cardboard

Step-by-step explanation:

The area of each rectangular sheet of cardboard that the factory makes is 2 1/2 square feet. Converting

2 1/2 square feet to improper fraction, it becomes 5/2 square feet.

Each sheet of cardboard can be cut into smaller pieces of cardboard measuring 1 1/6 square feet. Converting

1 1/6 square feet to improper fraction, it becomes 7/6 square feet.

Therefore, the number of smaller pieces of cardboard that each sheet of cardboard provides is

5/2 ÷ 7/6 = 5/2 × 6/7 = 15/7

= 2 1/7 pieces

answer is 15 smaller pieces  Step-by-step explanation:

2 video games and 3 DVDs cost $90.00. 1 video game and 2 DVDs cost $49.00. What is the cost of a DVD? What is the cost of a video game?

Answers

Answer: the cost of a DVD is $8 and the cost of a video game is $33

Step-by-step explanation:

Let x represent the cost of a video game.

Let y represent the cost of a DVD.

2 video games and 3 DVDs cost $90.00. This is expressed as

2x + 3y = 90 - - - - - - - - - - - 1

1 video game and 2 DVDs cost $49.00. This is expressed as

x + 2y = 49 - - - - - - - - - - - 2

Multiplying equation 1 by 1 and equation 2 by 2, it becomes

2x + 3y = 90 - - - - - - - - - - - -3

2x + 4y = 98 - - - - - - - - - - - - 4

Subtracting equation 4 from equation 3, it becomes

3y - 4y = 90 - 98

- y = - 8

y = 8

Substituting y = 8 into equation 2, it becomes

x + 2 × 8 = 49

x + 16 = 49

x = 49 - 16

x = 33

By solving a system of linear equations, it is determined that the cost of a video game is $33 and the cost of a DVD is $8.

The question involves solving a system of linear equations to determine the cost of a video game and a DVD.

Let's denote the cost of one video game as V and the cost of one DVD as D. Based on the given information, we can set up the following two equations:

2V + 3D = 90V + 2D = 49

To solve for D, we can multiply the second equation by 2 and subtract it from the first equation:

2V + 3D - (2V + 4D) = 90 - 98

This simplifies to -D = -8, which means D = $8.

Now that we know the cost of a DVD, we can substitute it back into the second equation:

V + 2(8) = 49

V + 16 = 49

V = 49 - 16

V = $33.

Therefore, the cost of a video game is $33, and the cost of a DVD is $8.

A quantum object whose state is given by is sent through a Stern-Gerlach device with the magnetic field oriented in the y-direction. What is the probability that this object will emerge from the + side of this device?

Answers

Answer:

The probability that the object will emerge from the + side of this device is 1/2

Step-by-step explanation:

Orienting the magnetic field in a Stern-Gerlach device in some direction(y - direction) perpendicular to the direction of motion of the atoms in the beam, the atoms will emerge in two possible beams, corresponding to ±(1/2)h. The positive sign is usually referred to as spin up in the direction, the negative sign as spin down in the explanation, the separation has always been in the y direction. There can be some other cases where magnetic field may be orientated in x-direction or z-direction.

Which car traveled the farthest on 1 gallon of gas? SEE THE PICTURE​

Answers

Answer:

Car A. would travel the farthest

Answer:

Step-by-step explanation:

i need help to show the work

A fast food restaurant processes on average 5000 pounds of hamburger per week. The observed inventory level of raw meat, over a long period of time, averages 2500 pounds. What is the average time spent by a pound of meat in production (in weeks)

Answers

Answer:

0.5 week

Step-by-step explanation:

The time spent by a pound of meat in this system is given by the average number of pounds of meat on inventory (2500 pounds) divided by the average weekly meat consumption (5000 pounds per week).

The time, in weeks, is:

[tex]t=\frac{2500\ pounds}{5000\ pounds/week} \\t= 0.5\ week[/tex]

The average time spent by a pound of meat in production is 0.5 week.

An urn contains n black balls and n white balls. Three balls are chosen from the urn at random and without replacement. What is the value of n if the probability is 1/12 that all three balls are white

Answers

Answer:

The value of n is 5.

Step-by-step explanation:

It is provided that in there are n black and n white balls in an urn.

Three balls are selected at random without replacement.

And if all the three balls are white the probability is [tex]\frac{1}{12}[/tex]

The probability of selecting 3 white balls without replacement is:

[tex]P(3\ white\ balls)=\frac{n}{2n}\times \frac{n-1}{2n-1}\times \frac{n-2}{2n-2} \\\frac{1}{12}=\frac{n(n-1)(n-2)}{2n(2n-1)(2n-2)} \\\frac{1}{12}=\frac{(n-1)(n-2)}{2(2n-1)(2n-2)} \\2(4n^{2}-6n+2)=12(n^{2}-3n+2)\\8n^{2}-12n+4=12n^{2}-36n+24\\4n^{2}-24n+20=0\\n^{2}-6n+5=0\\[/tex]

Solve the resultant equation using factorization as follows:

[tex]n^{2}-6n+5=0\\n^{2}-5n-n+5=0\\n(n-5)-1(n+5)=0\\(n-1)(n-5)=0[/tex]

So the value of n is either 1 or 5.

Since 3 white balls are selected the value of n cannot be 1.

So the value of n is 5.

Check:

[tex]P(3\ white\ balls)=\frac{n}{2n}\times \frac{n-1}{2n-1}\times \frac{n-2}{2n-2} \\=\frac{5}{2\times5}\times \frac{5-1}{(2\times5)-1}\times \frac{5-2}{(2\times5)-2}\\=\frac{1}{2}\times\frac{4}{9}\times\frac{3}{8} \\=\frac{1}{12}[/tex]

Thus, the value of n is 5.

In clinIcal study, volunteers are tested for a gene that has been found to increase the risk for a disease. The probability that a person carries the gene is 0.1.
a) what is the probability four or more people will have to be tested before two with the gene are detected?b) How many people are expected to be tested before two with gene are detected?

Answers

Answer:

(a) P (X ≥ 4) = 0.972

(b) E (X) = 20

Step-by-step explanation:

Let X = number of people tested to detect the presence of gene in 2.

Then the random variable X follows a Negative binomial distribution with parameters r (number of success) and p probability of success.

The probability distribution function of X is:

[tex]f(x)={x-1\choose r-1}p^{r}(1-p)^{x-r}[/tex]

Given: r = 2 and p = 0.1

(a)

Compute the probability that four or more people will have to be tested before two with the gene are detected as follows:

P (X ≥ 4) = 1 - P (X = 3) - P (X = 2)

              [tex]=1-[{3-1\choose 2-1}(0.1)^{2}(1-0.1)^{3-2}]-[{2-1\choose 2-1}(0.1)^{2}(1-0.1)^{2-2}]\\=1-0.018-0.01\\=0.972[/tex]

Thus, the probability that four or more people will have to be tested before two with the gene are detected is 0.972.

(b)

The expected value of a negative binomial random variable X is:

[tex]E(X)=\frac{r}{p}[/tex]

The expected number of people to be tested before two with gene are detected is:

[tex]E(X)=\frac{r}{p}=\frac{2}{0.1}=20[/tex]

Thus, the expected number of people to be tested before two with gene are detected is 20.

Which statements are true about the graph of f(x)=sec(x) ?

Select each correct answer.

Answers

The correct statements regarding the secant function are as follows:

The graph has a vertical asymptote at [tex]x = \frac{\pi}{2}[/tex].The graph has a vertical asymptote at [tex]x = 3\frac{\pi}{2}[/tex].The graph will go through point [tex]\left(\frac{\pi}{4}, \sqrt{2}\right)[/tex]The graph will go through point [tex]\left(\frac{\pi}{3}, 2\right)[/tex]

What is the secant function?

It is one divided by the cosine, that is:

[tex]\sec{x} = \frac{1}{\cos{x}}[/tex]

The vertical asymptotes are when the cosine is 0, that is, [tex]x = k\frac{\pi}{2}, k = 1, 2, ...[/tex]

As for the values of the function:

[tex]\sec{\left(\frac{\pi}{4}\right)} = \frac{1}{\cos{\left(\frac{\pi}{4}\right)}} = \sqrt{2}[/tex]

[tex]\sec{\left(\frac{\pi}{3}\right)} = \frac{1}{\cos{\left(\frac{\pi}{3}\right)}} =  2[/tex]

You can learn more about the secant function at https://brainly.com/question/14961055

Find all values of m the for which the function y=emx is a solution of the given differential equation. ( NOTE : If there is more than one value for m write the answers in a comma separated list.) (1) y′′+3y′−4y=0, (2) y′′′+2y′′−3y′=0

Answers

Answer:

1) m=[1,4]

2) m=[-3,0,1]

Step-by-step explanation:

for y= e^(m*x) , then

y′=m*e^(m*x)

y′′=m²*e^(m*x)

y′′′=m³*e^(m*x)

thus

1) y′′+3y′−4y=0

m²*e^(m*x) + 3*m*e^(m*x) - 4*e^(m*x) =0

e^(m*x) *(m²+3*m-4) = 0 → m²+3*m-4 =0

m= [-3±√(9-4*1*(-4)] /2 → m₁=-4 , m₂=1

thus m=[1,4]

2) y′′′+2y′′−3y′=0

m³*e^(m*x) + 2*m²*e^(m*x) - 3*m*e^(m*x) =0

e^(m*x) *(m³+2*m²-3m) = 0 → m³+2*m²-3m=0

m³+2*m²-3m= m*(m²+2*m-3)=0

m=0

or

m= [-2±√(4-4*1*(-3)] /2  → m₁=-3 , m₂=1

thus m=[-3,0,1]

Andy is always looking for ways to make money fast. Lately, he has been trying to make money by gambling. Here is the game he is considering playing: The game costs $2 to play. He draws a card from a deck. If he gets a number card (2-10), he wins nothing. For any face card ( jack, queen or king), he wins $3. For any ace, he wins $5, and he wins an extra $20 if he draws the ace of clubs.
Create a probability model and find Andy's expected profit per game.

Answers

Final answer:

Andy's expected profit per game is $1.73 when playing the described gambling game.

Explanation:

To find Andy's expected profit per game, we need to calculate the probability and corresponding profit for each possible outcome. Let's create a probability model:

- Andy draws a number card (2-10): This has a probability of 36/52 since there are 36 number cards in a standard deck of 52 cards. The profit for this outcome is $0.

- Andy draws a face card: This has a probability of 12/52 since there are 12 face cards in a standard deck. The profit for this outcome is $3 if the coin lands on heads, $2 if it lands on tails.

- Andy draws an ace: This has a probability of 4/52 since there are 4 aces in a standard deck. The profit for this outcome is $5, except if he draws the ace of clubs, in which case the profit is $25.

To find the expected profit, we multiply each probability by the corresponding profit and sum them up:

(36/52) * $0 + (12/52) * (($3 * 1/2) + ($2 * 1/2)) + (4/52) * (($5 * 3/4) + ($25 * 1/4)) = $0 + $0.69 + $1.04 = $1.73

Therefore, the expected profit per game for Andy is $1.73.

Research suggests that children who eat hot breakfast at home perform better at school. Many argue that not only hot breakfast but also parental care of children before they go to school has an impact on children’s performance. In this case, parental care is moderating variable.TrueFalse

Answers

The given statement is true, and the further discussion can be defined as follows:

Moderating variable:

The moderating variable is the variable that can alter the relationship between independent and dependent variables by increasing, weakening, canceling, or otherwise altering it. The direction of this association can be influenced by moderator factors.According to research, kids who have a good breakfast at home perform better in school. Several say that not only a hot breakfast but also parental care of children before they leave for school affects their performance. Parental involvement is a mitigating factor in this scenario.

That's why the given statement is "true".

Find out more about the moderating variable here:

brainly.com/question/26982929

Final answer:

True. Parental care is considered a moderating variable that can influence the relationship between eating a hot breakfast and a child's school performance.

Explanation:

Research indicates that children who eat a hot breakfast at home tend to perform better in school. However, this outcome is not solely based on the meal itself, but also on the parental care provided before the child goes to school. In this context, parental care acts as a moderating variable, potentially influencing the relationship between having a hot breakfast and a child's school performance. A moderating variable is one that affects the strength or direction of the relationship between an independent variable (hot breakfast) and a dependent variable (school performance). Therefore, the statement is True.

How many solutions are there to this system? A. None B. Exactly 1 C. Exactly 2 D. Exactly 3 E. Infinitely many F. None of the above

Answers

Hello, you haven't provided the system of equations, therefore I will show you how to do it for a particular system and you can follow the same procedure for yours.

Answer:

For E1 -> Exactly one

For E2 -> None

For E3 -> Infinitely many

Step-by-step explanation:

Consider the system of equations E1:  y = -6x + 8 and 3x + y = 4, replacing equation one in two 3x -6x +8 = 4, solving x = 4/3 and replacing x in equation one y = 0. This system of equations have just one solution -> (4/3, 0)

Consider the system of equations E2:  y = -3x + 9 and y = -3x -7, replacing equation one in two -3x + 9 = -3x -7, solving 9 = -3. This system of equations have no solution because the result is a fallacy.

Consider the system of equations E3:  2 = -6x + 4y and -1 = -3x -2y, taking equation one and solving y = 1/2 + 3/2x, replacing equation one in two -1 = -3x -1 +3x, solving -1 = -1. This system of equations have infinitely many solution because we find a true equation when solving .

A new extended-life light bulb has an average life of 750 hours, with a standard deviation of 50 hours. If the life of these light bulbs approximates a normal distribution, about what percent of the distribution will be between 600 hours and 900 hours?

Answers

Answer:

99.7% of the distribution will be between 600 hours and 900 hours.

Step-by-step explanation:

The Empirical Rule states that, for a normally distributed random variable:

68% of the measures are within 1 standard deviation of the mean.

95% of the measures are within 2 standard deviation of the mean.

99.7% of the measures are within 3 standard deviations of the mean.

In this problem, we have that:

Mean = 750

Standard deviation = 50

What percent of the distribution will be between 600 hours and 900 hours?

600 = 750 - 3*50

600 is 3 standard deviations below the mean

900 = 750 + 3*50

900 is 3 standard deviations above the mean

By the Empirical Rule, 99.7% of the distribution will be between 600 hours and 900 hours.

Fred wants to buy a video game that costs $54. There was a markdown of 20%. How much is the discount?

Answers

Mar 10, 2012 - Markups and Markdowns Word Problems - Independent Practice Worksheet. $6640. $3.201 ... 2) Fred buys a video game disk for $4. There was a discount of 20%.What is the sales price? 20% of 1 pay 8090 ... 5) Timmy wants to buy.a scooter and the price was $50. When ... at a simple interest rate of 54%.

$54 - 20%
= $43.20

You can also calculate how much you save by simply moving the period in 50.00 percent two spaces to the left, and then multiply the result by $54 as follows: $54 x . 50 = $27.00 savings. Furthermore, you can get the final price by simply deducting.

In a West Texas school district the school year began on August 1 and lasted until May 31. On August 1 a Soft Drink company installed soda machines in the school cafeteria. It found that after t months the machines generated income at a rate of f(t) = 300t/2t2 + 8 dollars per month. Find the total income, $Tscc, produced during the second semester beginning on January 1.

Answers

Answer:

$95.78

Step-by-step explanation:

f(t) = 300t / (2t² + 8)

t = 0 corresponds to the beginning of August.  t = 1 corresponds to the end of August.  t = 2 corresponds to the end of September.  So on and so forth.  So the second semester is from t = 5 to t = 10.

$T₂ = ∫₅¹⁰ 300t / (2t² + 8) dt

$T₂ = ∫₅¹⁰ 150t / (t² + 4) dt

$T₂ = 75 ∫₅¹⁰ 2t / (t² + 4) dt

$T₂ = 75 ln(t² + 4) |₅¹⁰

$T₂ = 75 ln(104) − 75 ln(29)

$T₂ ≈ 95.78

On a map of Texas, the
distance between Houston
and Austin is 2 3/4 inches. The
scale on the map is
1 inch = 50 miles. What is
the actual distance between
Houston and Austin?​ will mark brainest can u show ur work if not the answer is ok ty please help me been on this a hour

Answers

1 inch on the map = 50 miles on the Earth.

A certain trip on the map is 2-3/4 inches.

-- first inch = 50 miles

-- second inch = another 50 miles

-- 3/4 inch = 3/4 of 50 miles (37.5 miles)

Total:

Here's an equation;

1 map-inch = 50 real-miles

Multiply each side by 2-3/4 :

2-3/4 inches = (2-3/4) x (50 miles)

2-3/4 map-inches = 137.5 real-miles

The actual distance between Houston and Austin is 137.5 miles.

We are given that;

The distance between Houston and Austin = 2 3/4 inches

Now,

To find the actual distance between Houston and Austin, we need to multiply the map distance by the scale factor.

The map distance is 2 3/4 inches, which is equivalent to 11/4 inches. The scale factor is 1 inch = 50 miles, which means that every inch on the map corresponds to 50 miles in reality. So, we have:

11/4 x 50 = (11 x 50) / 4

= 550 / 4

= 137.5

Therefore, by unit conversion answer will be 137.5 miles.

Learn more about the unit conversion here:

brainly.com/question/11543684

#SPJ6

The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwisestate that there is no solution. Use x1, x2, x3 as variables.

Answers

Answer:

The augmented matrix has been given in the attachment

Step-by-step explanation:

The steps for the determination of INCONSISTENCY  are as shown in the attachment.

The volume of the cone when x = 3 is 18. Which equation can be used to represent the volume of the cone, V(x)?

Answers

Answer: the last option is the correct answer.

Step-by-step explanation:

When x = 3, height = 2 × 3 = 6

When x = 3, base = π × 3² = 9π

Volume = 1/3 × 6 × 9π = 18π

Therefore,

The formula for determining the volume of the cone is

Volume = 1/3 × height × area of base

Height is f(x) = 2x

Area of base is g(x) = πx²

Therefore, the equation that can be used to the volume of the cone, V(x) would be

1/3(f.g)(x)

Final answer:

The student needs to find an equation V(x) representing the volume of a cone. Using the volume formula V(x) = kx² and the given volume of 18 when x is 3, the constant k can be calculated. Thus, the equation for the volume is V(x) = 2x².

Explanation:

The student is asking for an equation that represents the volume of a cone, V(x), based on a given volume when x equals 3. The general formula for the volume of a cone is V = (1/3)πr²h, where r is the radius of the base and h is the height of the cone. Since the volume is given as a quadratic function of x, and we know that when x equals 3 the volume is 18, a possible representation for the volume as a function of x could be V(x) = kx², where k is a constant that we would solve for using the given volume at x = 3.

To find the constant k, we substitute x with 3 and V(x) with 18 in the equation V(x) = kx² and solve for k. Therefore, the equation becomes 18 = k(3²), which simplifies to 18 = 9k. Solving for k gives us k = 2, so the equation for the volume of the cone as a function of x is V(x) = 2x².

ests for tuberculosis like all other diagnostic tests are not perfect. QFT-G is one of such tests for tuberculosis. Suppose that for the population of adults that is taking the test, 5% have tuberculosis. The test correctly identifies 74.6% of the time adults with a tuberculosis and correctly identifies those without tuberculosis 76.53% of the time. Suppose that POS stands for the test gives a positive result and S means that the adult really has tuberculosis. Represent the "76.53%" using notation. Group of answer choices P(S) P(Sc) P(POSc | Sc) P( POSc | C)

Answers

Final answer:

The 76.53% percentage, which represents the rate at which the QFT-G test correctly identifies those without tuberculosis, can be represented using notation as P(POSc | Sc). This is a conditional probability noting the likelihood of a negative test result when the individual does not have tuberculosis.

Explanation:

In the context of probabilities and statistics, you've asked about the interpretation of the 76.53% correctly identified as non-tuberculosis afflicted individuals in terms of notation. Based on the notation you provided and the description of the problem, the 76.53% would be represented as P(POSc | Sc).

This can literally be translated as the probability that the QFT-G test will result as negative (i.e., no tuberculosis, or POSc), given that the person is indeed not afflicted with tuberculosis (i.e., Sc). This is a conditional probability, expressing how likely we are to get a negative test result, given that the person doesn't really have tuberculosis.

Learn more about Conditional Probability here:

https://brainly.com/question/32171649

#SPJ3

If the atomic radius of a metal that has the face-centered cubic crystal structure is 0.137 nm, calculate the volume of its unit cell.

Answers

Answer:

[tex]5.796\times 10^{-29}m^3[/tex]

Step-by-step explanation:

Atomic radius of metal=0.137nm=[tex]0.137\times 10^{-9}[/tex]m

[tex]1nm=10^{-9}m[/tex]

Structure is  FCC

We know that

The relation between edge length and radius  in FCC structure

[tex]a=2\sqrt 2r[/tex]

Where a=Edge length=Side

r=Radius

Using the relation

[tex]a=2\sqrt 2\times 0.137\times 10^{-9}=0.387\times 10^{-9}m[/tex]

We know that

Volume of cube=[tex](side)^3[/tex]

Using the formula

Volume of unit cell=[tex](0.387\times 10^{-9})^3=5.796\times 10^{-29} m^3[/tex]

The volume of a unit cell is approximately 0.0580 nm³.

To find the volume of the unit cell for a metal with a face-centered cubic (FCC) crystal structure given an atomic radius of 0.137 nm, follow these steps:

Atomic Radius Interpretation: In a face-centered cubic unit cell, the atomic radius (r) is related to the edge length (a) of the unit cell by the equation:
a = 2√2 rCalculating the Edge Length: Plug in the given atomic radius (r = 0.137 nm) into the equation:
a = 2√2 x 0.137 nm = 2 x 1.414 x 0.137 nm = 0.387 nmCalculating the Volume of the Unit Cell: The volume (V) of a cube is given by V = a³. Therefore:
V = 0.387 nm x 0.387 nm x 0.387 nm ≈ 0.0580 nm³

Thus, the volume of the unit cell is approximately 0.0580 nm³.

What is the surface area of the figure
240
48
192

Answers

Answer:

[tex]240cm^2[/tex]

Step-by-step explanation:

The area of the rectangular face with dimension 8 by 8 is [tex]8*8=64cm^2[/tex]

The area of the rectangular face with dimension 10 by 8 is [tex]10*8=80cm^2[/tex]

The area of the rectangular face with dimension 6 by 8 is [tex]6*8=48cm^2[/tex]

The area of the two rectangular faces is [tex]2*\frac{1}{2}*8*6=48cm^2[/tex]

The total surface area is [tex]64+80+48+48=240cm^2[/tex]

A group of 6 men and 6 women is randomly divided into 2 groups of size 6 each. What is the probability that both groups will have the same number of men?

Answers

Answer:

P(A) = 400/924 = 100/231 or 0.4329

Step-by-step explanation:

The probability that both groups will have the same number of men P(A);

For the two groups to have the same number of men they must include 3 men and 3 women in each group.

P(A) = Number of possible selections of 3 men from 6 and 3 women from 6 into each of the two groups N(S) ÷ total number of possible selections of members into the two groups N(T).

P(A) = N(S)/N(T)

Since order is not important, we will use combination.

N(S) = 6C3 × 6C3 = 20 × 20 = 400

N(T) = 12C6 = 924

P(A) = 400/924 = 100/231 or 0.4329

The probability that both groups will have the same number of men is 0.43.

When dividing the group into two equal-sized groups of 6 each, the total number of ways to do this is represented by the binomial coefficient C(12, 6), which is equal to 924.

Now, to ensure that both groups have the same number of men, we need to consider the ways in which we can choose 3 men from the 6 available men, which is represented by C(6, 3), and similarly, we can choose 3 women from the 6 available women, which is also represented by C(6, 3).

The total number of ways to choose 3 men and 3 women for both groups is C(6, 3) * C(6, 3) = 20 * 20 = 400.

Since there are 2 equally likely outcomes (either both groups have the same number of men or they don't), the probability is 400/924, which simplifies to 0.43.

In summary, the probability that both groups will have the same number of men is 0.43 because there are 400 ways to select 3 men and 3 women for each group out of a total of 924 possible ways to divide the 12 people into two groups.

This results in a 0.43 probability for the desired outcome.

for such more questions on probability

https://brainly.com/question/25839839

#SPJ3

Other Questions
Two people bought a 13-inch sandwich to share. How many inches of sandwich does each person get if they split it evenly? Choose the correct answer from the choices below. As a technician in a large pharmaceutical research firm, you need to produce 300. mL of 1.00 M a phosphate buffer solution of pH = 7.36. The pKa of H2PO4 is 7.21. You have 2.00 L of 1.00 M KH2PO4 solution and 1.50 L of 1.00 M K2HPO4 solution, as well as a carboy of pure distilled H2O. How much 1.00 M KH2PO4 will you need to make this solution? Which War of 1812 battle was the most decisive in asserting American dominance over the British in the Old Northwest? 19) Name two ways the traditional calendar changed? Why were the allied trenches flooded more than the central powers? For an animal to move in one direction, its muscles must do all of the following excepta. overcome the effects of friction.b. exert a force in the opposite direction.c. spend energy.d. overcome the effects of gravity.e. exert a force in the same direction. How relevant are references when information about an applicant can be easily located through an online search of blogs, social networking sites, and news sources? Need Help Asap Will Give BrainliestThose opposed to Manifest Destiny wanted:A. to spread Christianity around the world.B. the United States to extend to the Pacific Ocean.C. the United States to remain the same size.D. new territories to be added to the union, but no new states. The five-dollar Burger Joint gift card that your friend gave you for your birthday expires today. You can either use the gift card to buy yourself dinner at Burger Joint, or you can stay home and eat a delicious home-cooked meal. What is the opportunity cost of eating the home-cooked meal?a. The value of a five-dollar dinner at Burger Joint.b. The value of the ingredients that go into the home-cooked meal and the value of a five-dollar dinner at Burger Joint .c. There is no opportunity cost since you did not pay for the gift card.d. The time it takes to eat your home-cooked meal and the value of the five-dollar dinner at Burger Joint.e. The value of the ingredients that go into the home-cooked meal. In the SI system of units, dynamic viscosity of water at temperature T (K) can be computed from =A10B/(T-C), where A=2.410-5, B=250 K and C=140 K. (6 points) (a) Determine the dimensions of A. (b) Determine the kinematic viscosity of water at 20C. Express your results in both SI and BG units. What is 7 3/8 + 3 1/4? Tia owns a fruit shop and is selling a fresh lot of apples and oranges. She wants the ratio of apples to oranges sold to be 4 to 2. Tiawants to sell a total of 54 apples and oranges. How many apples should she sell?A.52 applesB. 36 applesC. 9 applesD. 32 apples Does the Death Penalty have a positive effect on crime? Challenger Factory produces two similar products: regular widgets and deluxe widgets. The total factory overhead budget is $630,400 with 330,800 estimated direct labor hours. Deluxe widget production requires 4 direct labor hours for each unit, and regular widget production requires 6 direct labor hours for each unit. Mary took out a student loan for $15000 at 4% simple interest. How much interest will she pay in 10 years? suppose she paid it off in 8 years instead of 10 years. how much would she save in interest? Researchers and scholars realized that subjects behaved differently because of the active participation of researchers in the Hawthorne experiments. This phenomenon has come to be known as the Hawthorne.True / False. Which concept is an application of natural law to the governments role in the economic lives of its citizens How many times does 5 go into 236 Which of the following is most closely related to the unit of time that humans call the month? A. the rotation of the Earth once on its axis B. the cycle of the Moon through all its phases C. the rotation of the Sun once on its axis D. the revolution of the Earth once around the Sun Never mind found the answer Is it true that Andrew Jackson was born into a wealthy family? Steam Workshop Downloader