Answer:
A. 36,000 W
Explanation:
[tex]m[/tex] = mass of the car = 900 kg
[tex]v_{o}[/tex] = Initial speed of the car = 20 m/s
[tex]v_{f}[/tex] = Final speed of the car = 0 m/s
[tex]W[/tex] = Work done by the brakes on the car
Magnitude of work done on the car by the brakes is same as the change in kinetic energy of the car.hence
[tex]W = (0.5) m (v_{o}^{2} - v_{f}^{2})\\W = (0.5) (900) ((20)^{2} - (0)^{2})\\W = 180000 J[/tex]
[tex]t[/tex] = time taken by the car to come to stop = 5 s
[tex]P[/tex] = Average power produced by the car
Average power produced by the car is given as
[tex]P = \frac{W}{t} =\frac{180000}{5} \\P = 36000 W[/tex]
The parking brake on a 1000 kg Cadillac has failed, and it is rolling slowly, at 1 mph , toward a group of small children. Seeing the situation, you realize you have just enough time to drive your 2000 kg Volkswagen head-on into the Cadillac and save the children. You may want to review (Page 269) . Part A With what speed should you impact the Cadillac to bring it to a halt?
Answer:
0.5 mph in the opposite direction
Explanation:
[tex]m_1[/tex] = Mass of Cadillac = 1000 kg
[tex]v_1[/tex] = Velocity of Cadillac = 1 mph
[tex]m_2[/tex] = Mass of Volkswagen = 2000 kg
[tex]v_2[/tex] = Velocity of Volkswagen
In order to know the speed the system must have the momentum exchange
As the linear momentum of the system is conserved
[tex]m_1v_1+m_2v_2=0\\\Rightarrow v_2=-\dfrac{m_1v_1}{m_2}\\\Rightarrow v_2=\dfrac{1000\times 1}{2000}\\\Rightarrow v_2=-0.5\ mph[/tex]
The speed of the impact is given by 0.5 mph in the opposite direction
Final answer:
To bring the Cadillac to a halt using a 2000 kg Volkswagen, we can utilize the conservation of momentum. The necessary impact speed for the Volkswagen is calculated to be approximately 0.22352 m/s, opposing the direction of the Cadillac's motion.
Explanation:
To stop the Cadillac using a head-on collision with the Volkswagen, we must apply the principle of conservation of momentum which states that the total momentum of a system remains constant if no external forces act upon it. Given that both vehicles will come to a halt after the collision, we can set their combined momentum to zero.
Calculating Impact Speed
The Cadillac's momentum is its mass times its velocity (mass of Cadillac ×speed of Cadillac). Converting 1 mph to meters per second (approximately 0.44704 m/s), we get the Cadillac's momentum as 1000 kg × 0.44704 m/s.
The Volkswagen's mass is 2000 kg and we want to find out with what speed it should hit the Cadillac to bring both to a halt. Let's denote this unknown speed as v. The momentum of the Volkswagen right before the impact is 2000 kg × v.
Using conservation of momentum:
Total momentum before collision = Total momentum after collision
(1000 kg × 0.44704 m/s) + (2000 kg × v) = 0
447.04 kg× m/s + 2000 kg × v = 0
To find the speed v, we'll solve the equation:
2000 kg × v = -447.04 kg× m/s
v = -447.04 kg× m/s / 2000 kg
v = -0.22352 m/s
The negative sign indicates that the Volkswagen must be traveling in the opposite direction of the Cadillac's motion, which we already know. Thus, the required speed for the Volkswagen for a head-on impact to bring the Cadillac to a halt is approximately 0.22352 m/s.
If a source radiates sound uniformly in all directions and you triple your distance from the sound source, what happens to the sound intensity at your new position?
a. The sound intensity drops to 1 / 27 of its original value.b. The sound intensity increases to three times its original value.c. The sound intensity drops to 1 / 3 of its original value.d. The sound intensity drops to 1 / 9 of its original value.e. The sound intensity does not change.
Sound intensity (energy) falls inversely proportional to the square of the distance from the sound:
[tex]I \propto \frac{1}{r^2}[/tex]
Therefore if we have two values of intensities we have
[tex]\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}[/tex]
As we have that
[tex]r_1 = 3 r_2[/tex]
Then we have that
[tex]\frac{I_1}{I_2} = \frac{r_2^2}{(3r_2)^2}[/tex]
[tex]\frac{I_1}{I_2} = \frac{1}{9}[/tex]
Therefore the correct answer is D. The sound intensity drops to 1 / 9 of its original value.
A railroad crossing warning signal sounds at 120 Hz.A) If you are approaching the crossing at 3% of the speed of sound, find the frequency you would hear.B) If you were going away from the crossing at 3% of sound speed, find the observed frequency.
Answer
given,
frequency of sound (f)= 120 Hz
speed of sound (v)= 343 m/s
a) speed of approaching = 3 % of speed of sound
= 0.03 x 343 = 10.3 m/s
frequency you would hear
[tex]f' = f\dfrac{v+v_0}{v}[/tex]
[tex]f' = 120 \times \dfrac{343+10.3}{343}[/tex]
f' = 123.60 Hz
b) speed of going away = 3 % of speed of sound
= 0.03 x 343 = 10.3 m/s
frequency you would hear
[tex]f' = f\dfrac{v-v_0}{v}[/tex]
[tex]f' = 120 \times \dfrac{343-10.3}{343}[/tex]
f' = 116.39 Hz
Give the definition for diffusion.
(A) gas molecules mix unequally average distance between collisions
(B) gas molecules escape from a container into a vacuum through a small hole
(C) gas molecules mix equally
(D) gas molecules spread out in a concentration gradient
Answer:
option D.
Explanation:
The correct answer is option D.
Diffusion is the particle movement from high concentration to low concentration, such as air, water, etc.
Example: if you spray perfume spread throughout the room at one part of the fragrance scent.
The gas molecule thus spreads out in a gradient of concentration
Diffusion is equivalent to gas molecules spreading out in a concentration gradient. Option D.
What is diffusion?Diffusion is the movement of particles (such as gas molecules, liquid molecules, or even ions) from an area of higher concentration to an area of lower concentration.
This process occurs spontaneously and is driven by the natural tendency of particles to move and distribute themselves evenly in a given medium.
Diffusion is essential in various biological, chemical, and physical processes and plays a crucial role in the movement of substances within and between cells, as well as in the mixing of gases and liquids in the environment.
More on diffusion can be found here: https://brainly.com/question/29787215
#SPJ6
Some curious students hold a rolling race by rolling four items down a steep hill. The four items are a solid homogeneous sphere, a thin spherical shell, a solid homogeneous cylinder and a hoop with all its mass concentrated on the hoop's perimeter. All of the objects have the same mass and start from rest. Assume that the objects roll without slipping and that air resistance and rolling resistance are negligible. For each statement below, select True or False.
a) Upon reaching the bottom of the hill, the hoop will have a larger rotational kinetic energy than any of the other objects will when they reach the bottom of the hill.
A: True B: False
b) The hoop reaches the bottom of the hill before the homogeneous cylinder.
A: True B: False
Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
If the block is subjected to the force of F = 500 N, determine its velocity at s = 0.5 m. When s = 0, the block is at rest and the spring is uncompressed. The contact surface is smooth.
Answer:
The velocity is [tex]4.6 m/s^2[/tex]
Explanation:
Given:
Force = 500N
Distance s= 0
To find :
Its velocity at s = 0.5 m
Solution:
[tex]\sum F_{x}=m a[/tex]
[tex]F\left(\frac{4}{5}\right)-F_{S}=13 a[/tex]
[tex]500\left(\frac{4}{5}\right)-\left(k_{s}\right)=13 a[/tex]
[tex]400-(500 s)=13 a[/tex]
[tex]a = \frac{400 -(500s)}{13}[/tex]
[tex]a = (30.77 -38.46s) m/s^2[/tex]
Using the relation,
[tex]a=\frac{d v}{d t}=\frac{d v}{d s} \times \frac{d s}{d t}[/tex]
[tex]a=v \frac{d v}{d s}[/tex]
[tex]v d v=a d s[/tex]
Now integrating on both sides
[tex]\int_{0}^{v} v d v=\int_{0}^{0.5} a d s[/tex]
[tex]\int_{0}^{v} v d v=\int_{0}^{0.5}(30.77-38.46 s) d s[/tex]
[tex]\left[\frac{v^{2}}{2}\right]_{0}^{2}=\left[\left(30.77 s-19.23 s^{2}\right)\right]_{0}^{0.5}[/tex]
[tex]\left[\frac{v^{2}}{2}\right]=\left[\left(30.77(0.5)-19.23(0.5)^{2}\right)\right][/tex]
[tex]\left[\frac{v^{2}}{2}\right]=[15.385-4.807][/tex]
[tex]\left[\frac{v^{2}}{2}\right]=10.578[/tex]
[tex]v^{2}=10.578 \times 2[/tex]
[tex]v^{2}=21.15[/tex]
[tex]v = \sqrt{21.15}[/tex]
[tex]v = 4.6 m/s^2[/tex]
Two identical blocks, block A and block B, are placed on different horizontal surfaces. Block A is initially at rest on a smooth surface, while block B is initially at rest on a rough surface. A constant horizontal force of magnitude F0 is exerted on each block. After the force has been applied for a time Δt, the speeds of blocks A and B are vA and vB, respectively. Which of the following claims indicates the correct relation between vA and vB and provides the best justification for the relation? (A) Va < Vb. The forces between the atoms in a block and the atoms in a surface oppose the motion of the block and are greater on average for block A.(B) Va < Vb. The forces between the atoms in a block and the atoms in a surface oppose the motion of the block and are greater, on average for block B.(C) Va > Vb. The forces between the atoms in a block and the atoms in a surface oppose the motion of the block and are greater on average for block A (D) Va > Vb. The forces between the atoms in a block and the atoms in a surface oppose the motion of the block and are greater on average for block B.
Answer:
(D) Va > Vb. The forces between the atoms in a block and the atoms in a surface oppose the motion of the block and are greater on average for block B.
Explanation:
Given that, Two identical blocks, block A and block B, are placed on different horizontal surfaces. Block A is initially at rest on a smooth surface, while block B is initially at rest on a rough surface.
And now, a constant force F₀ is exerted on each block for a time Δt.
Now, speeds of blocks A and B are vA and vB respectively.
In case of block A the surface is smooth, so there is no opposing force.
Whereas as, in case of block B, the surface is rough which means friction opposes the motion
So, some of the applied force is used to overcome this friction which makes the speed of block B vB to be less than that of block A vA.
⇒ Va > Vb.
And completely eliminating friction is not possible.
so, even smooth surface has friction which is very very little.
so, The forces between the atoms in a block and the atoms in a surface oppose the motion of the block and are greater on average for block B.
The correct relation between vA and vB is vA > vB because block A encounters less friction on the smooth surface as compared to block B on the rough surface. Consequently, block A will have a larger final velocity vA when the same force is applied to both blocks for the same amount of time.
Explanation:The correct relation is vA > vB. This is because block A is on a smooth surface, meaning there is less friction to oppose its motion when a force is applied, compared to block B which is on a rough surface. Friction is a force that opposes the motion of an object when it moves across a surface. In this case, the frictional force on block B is greater on average than the force on block A because block B rests on a higher-friction, or rougher, surface.
When we apply a constant force to both blocks, block A, encountering less frictional resistance, moves more easily than block B. Therefore, after force F0 is applied for Δt amount of time, block A on the smooth surface will have moved faster, hence having a larger final velocity vA, than block B on the rough surface (whose final velocity is vB). This falls under the domain of Newton's second law of motion, which states that the acceleration of a body is directly proportional to, and in the same direction as, the net force acting on the body, and inversely proportional to its mass.
Learn more about Friction & Motion here:https://brainly.com/question/17011535
#SPJ11
Suppose you have two meter sticks, one made of steel and one made of invar (an alloy of iron and nickel), which are the same length (1.00 m) at 0°C. The coefficients of volume expansion for steel and invar are 3.6 × 10-5 /°C and 2.7 × 10-6 /°C respectively.What is their difference in length, in meters, at 20.5°C ?Repeat the calculation for two 30.0-m-long surveyor’s tapes
Answer:
Difference in Length of steel is 0.000246m
Difference in Length of invar is 0.00001845m
Difference in Length of steel surveyor's tape is 0.00738m
Difference in Length of invar surveyor's tape is 0.0005535m
Explanation:
Linear expansivity of steel is volume expansivity ÷ 3
Linear expansivity of steel = 0.000036/°C ÷ 3 = 0.000012/°C
Difference in Length of steel= Linear expansivity × initial length × temperature change
= 0.000012 × 1 × (20.5-0)
= 0.000012×1×20.5 = 0.000246m
Linear expansivity of invar = volume expansivity of invar ÷ 3
Linear expansivity of invar= 0.0000027/°C ÷ 3= 0.0000009/°C
Difference in Length of invar = 0.0000009×1×(20.5-0) = 0.00001845m
Difference in Length of steel surveyor's tape= 0.000012×30×(20.5-0) = 0.00738m
Difference in Length of invar surveyor's tape = 0.0000009×30×(20.5-0) = 0.0005535m
The difference in length between a steel and invar meter stick at 20.5°C is 6.83 mm, and for two 30-m-long surveyor's tapes, the difference at the same temperature is 20.5 cm.
Explanation:When a steel meter stick and an invar meter stick both expand due to an increase in temperature, we can determine their difference in length using the coefficients of linear expansion for each material.
The difference in length at 20.5°C can be determined using the formula:
ΔL = αLΔT
For steel, the coefficient of linear expansion (α) is 3.6 × 10^-5 /°C, and for invar it is 2.7 × 10^-6 /°C. Plugging in the values:
ΔL_steel = 3.6 × 10^-5 /°C × 1.00 m × 20.5 °C = 7.38 × 10^-3 mΔL_invar = 2.7 × 10^-6 /°C × 1.00 m × 20.5 °C = 5.54 × 10^-4 mThe difference in length is therefore 7.38 × 10^-3 m - 5.54 × 10^-4 m = 6.83 × 10^-3 m or 6.83 mm.
For two 30.00-m-long surveyor’s tapes:
ΔL_steel = 3.6 × 10^-5 /°C × 30.00 m × 20.5 °C = 2.21 × 10^-1 mΔL_invar = 2.7 × 10^-6 /°C × 30.00 m × 20.5 °C = 1.66 × 10^-2 mThe difference in length for the surveyor's tapes is 2.21 × 10^-1 m - 1.66 × 10^-2 m = 2.05 × 10^-1 m or 20.5 cm.
Compute the tensile strength and ductility (%Elongation, EL) of a cylindrical copper rod if it is cold worked such that the diameter is reduced from 15.2 mm to 12.2 mm. Note: Materials become harder or stronger as they are plastically deformed. This is called as strain hardening. It is also called as work hardening and cold working. %CW
The tensile strength and ductility cannot be directly calculated from the provided information, but the proportion of cold work (or percentage deformation) can be computed based on the diameter change.
Explanation:Despite the detailed context provided, the question lacks sufficient data or formulas to directly compute the tensile strength nor the ductility of a copper rod from its diameter change due to cold working. Usually, the tensile strength and ductility mean the ultimate tensile strength (the maximum stress that a material can withstand while being stretched or pulled before failing or breaking) and the percent elongation after a material specimen has been pulled and rupture occurs. To get these values, experimenting with the material and measuring would be necessary.
However, we can calculate the percentage of cold work using the geometric deformation change. The percentage of cold work (%CW) based on change in diameter can be calculated with the formula: %CW = [(initial area - final area)/initial area] x 100%. Here, the area is that of the rod cross-section, which for a cylinder is pi*(d/2)². Thus you can substitute and calculate for %CW with the given diameters.
Learn more about Cold Work Calculation here:https://brainly.com/question/16975741
#SPJ3
Why should galaxy collisions have been more common in the past than they are today?
a. Galaxies attracted each other more strongly in the past because they were more massive; they had not yet turned most of their mass into stars.
b. Galaxies were much bigger in the past since they had not contracted completely.
c. Galaxies were closer together in the past because the universe was smaller.
d. Galaxies were more active in the past and therefore would have collided with each other more frequently.
Answer:
I think d is the answer haha
Galaxy collisions were more common in the past as C. the universe was smaller, hence galaxies were closer together.
Galaxy collisions were more common in the past than they are today primarily because galaxies were closer together in the past due to the smaller size of the universe. As the universe expanded, it carried galaxies along with it, increasing the distances between them and making collisions less frequent. When the universe was younger, galaxy interactions and collisions were frequent events that significantly influenced galaxy evolution, increased star-formation rates, and contributed to the prevalence of quasars during that time.
Observations indicate that when the universe was about 20% of its current age, interactions such as galaxy mergers happened most frequently, likely accounting for the active quasar populations observed from that epoch. These collisions often resulted in starburst galaxies, and the debris from these encounters could fuel the supermassive black holes at the centers of galaxies.
A neutral copper block is polarized as shown in the figure below, due to an electric field made by external charges (notshown). Which arrow (a–j) in the figure below best indicates the direction of the net electric field at location B, which isinside the copper block?
Answer:
As point B is located inside the copper block so net electric field at point B is j.
Explanation:
Consider the figure attached below. The net electric field at location B,that is inside the copper block is zero because when a conductor is charged or placed in an electric field of external charges, net charge lies on the surface of conductor and there is no electric field inside the conductor. As point B is located inside the copper block so net electric field at point B is zero as well direction of net electric field at point B is zero.
Assuming that the final particles in each case are more stable than the initial particles, which of the statements regarding fission and fusion reactions is true? Both fusion and fission can release or absorb energy. Both fusion and fission absorb energy. Fusion releases energy and fission absorbs energy. Fusion absorbs energy and fission releases energy. Both fusion and fission release energy.
Answer:
Explanation:
Fission means breaking or splitting i.e. Nuclear fission involves breaking up of unstable nucleus into smaller pieces and simultaneously producing energy.
Fusion means joining of different elements to form a unified whole. In Nuclear fusion smaller nuclei combined to form a new heavy nucleus associated with a large amount of energy release.
Thus nuclear Fusion and fission can release Energy.
Astronaut Rob leaves Earth in a spaceship at a speed of 0.960crelative to an observer onEarth. Rob's destination is a star system 14.4 light-years away (one light-year is the distance lighttravels in one year). Relative to a frame of reference that is fixed with respect to Earth, how longdoes it take Rob to complete the trip?
To solve this problem we will use the mathematical definition of the light years in metric terms, from there, through the kinematic equations of motion we will find the distance traveled as a function of the speed in proportion to the elapsed time. Therefore we have to
[tex]1Ly =9.4605284*10^{15}m \rightarrow 'Ly'[/tex]means Light Year
Then
[tex]14.4Ly = 1.36231609*10^{17} m[/tex]
If we have that
[tex]v= \frac{x}{t} \rightarrow t = \frac{x}{t}[/tex]
Where,
v = Velocity
x = Displacement
t = Time
We have that
[tex]t = \frac{1.36231609*10^{17}}{0.96c} \rightarrow c[/tex]= Speed of light
[tex]t = \frac{1.36231609*10^{17}}{0.96(3*10^8)}[/tex]
[tex]t= 454105363 s (\frac{1hour}{3600s})[/tex]
[tex]t= 126140 hours(\frac{1day}{24hours})[/tex]
[tex]t= 5255.85 days(\frac{1 year}{365days})[/tex]
[tex]t = 14.399 years[/tex]
Therefore will take 14.399 years
It takes Rob approximately 15.0 years to complete the trip relative to a frame of reference fixed with respect to Earth.
To solve this problem, we can use the concept of time dilation from the theory of special relativity. According to this concept, time measured in a frame of reference moving at a high velocity relative to a stationary observer (in this case, Earth) will be dilated, or ""slowed down,"" compared to the time measured by the stationary observer.
The time dilation formula is given by:
[tex]\[ t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}} \][/tex]
where:
- [tex]\( t' \)[/tex]is the time interval measured by the moving observer (Rob),
- [tex]\( t \)[/tex]is the time interval measured by the stationary observer (Earth),
-[tex]\( v \)[/tex] is the relative velocity between the two frames of reference, and
- [tex]\( c \)[/tex] is the speed of light in a vacuum.
Given that Rob's speed is [tex]\( 0.960c \)[/tex]and the distance to the star system is [tex]\( 14.4 \)[/tex] light-years, we can calculate the time it takes for Rob to complete the trip according to Earth's frame of reference.
First, we calculate the Lorentz factor [tex]\( \gamma \),[/tex] which is the factor by which time is dilated:
[tex]\[ \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \][/tex]
Substituting \( v = 0.960c \):
[tex]\[ \gamma = \frac{1}{\sqrt{1 - (0.960)^2}} \][/tex]
[tex]\[ \gamma = \frac{1}{\sqrt{1 - 0.9216}} \][/tex]
[tex]\[ \gamma = \frac{1}{\sqrt{0.0784}} \][/tex]
[tex]\[ \gamma = \frac{1}{0.280} \][/tex]
[tex]\[ \gamma \approx 3.5714 \][/tex]
Now, we calculate the time [tex]\( t \)[/tex] it takes for Rob to travel 14.4 light-years at a speed of [tex]\( 0.960c \):[/tex]
[tex]\[ t = \frac{d}{v} \][/tex]
[tex]\[ t = \frac{14.4 \text{ light-years}}{0.960c} \][/tex]
[tex]\[ t = \frac{14.4}{0.960} \text{ years} \][/tex]
[tex]\[ t = 15 \text{ years} \][/tex]
Since the Lorentz factor [tex]\( \gamma \)[/tex] is approximately 3.5714, the time measured on Earth for Rob's journey, taking into account time dilation, would be:
[tex]\[ t' = \gamma \cdot t \][/tex]
[tex]\[ t' \approx 3.5714 \cdot 15 \text{ years} \][/tex]
[tex]\[ t' \approx 53.571 \text{ years} \][/tex]
However, since the question asks for the time according to the frame of reference fixed with respect to Earth, we do not need to multiply by the Lorentz factor. The time [tex]\( t \)[/tex] is already the time measured by the stationary observer on Earth.
Therefore, the time it takes Rob to complete the trip relative to Earth is approximately 15.0 years.
In an RL series circuit, an inductor of 3.54 H and a resistor of 7.76 Ω are connected to a 26.6 V battery. The switch of the circuit is initially open. Next close the switch and wait for a long time. Eventually the current reaches its equilibrium value. At this time, what is the corresponding energy stored in the inductor?
Answer:
Energy stored in inductor will be 20.797 J
Explanation:
We have given inductance L = 3.54 H
And resistance R = 7.76 ohm
Battery voltage V = 26.6 VOLT
After very long time means at steady state inductor behaves as short circuit
So current [tex]i=\frac{V}{R}=\frac{26.6}{7.76}=3.427Amp[/tex]
Now energy stored in inductor [tex]E=\frac{1}{2}Li^2=\frac{1}{2}\times 3.54\times 3.427^2=20.797J[/tex]
So energy stored in inductor will be 20.797 J
To find the energy stored in an inductor in an RL circuit at equilibrium, use Ohm's law to calculate the steady current, and then apply the energy formula E = (1/2)LI^2.
Explanation:When the switch in an RL series circuit is closed for a long time, the current in the circuit reaches an equilibrium value due to the voltage provided by the battery. The current, I, can be calculated using Ohm's law, I = V/R, where V is the voltage of the battery and R is the resistance in the circuit. In this case, with a 26.6 V battery and a 7.76 Ω resistor, the current would be I = 26.6 V / 7.76 Ω. After calculating the current, the energy stored in the inductor at equilibrium can be found using the formula for energy stored in an inductor, which is E = (1/2)LI^2, where L is the inductance and I is the current.
The corresponding energy stored in the inductor after a long time can be determined using these calculations.
Learn more about Energy Stored in Inductor here:https://brainly.com/question/32674859
#SPJ3
A guitar string of length L = 0.79 m is oriented along the x-direction and under a tension of T = 74 N. The string is made of steel which has a density of rho = 7800 kg / m3. The radius of the string is r = 8.5 x 10-4 m. A transverse wave of amplitude A = 0.0020 m is formed on the string. Find the string tension.
Answer:
74 N
Explanation:
T = Tension in the string = 74 N
[tex]\rho[/tex] = Density of the steel = 7800 kg/m³
A = Area = [tex]\pi r^2[/tex]
r = Radius = [tex]8.5\times 10^{-4}\ m[/tex]
Linear density is given by
[tex]\mu=\rho A\\\Rightarrow \mu=7800\times \pi (8.5\times 10^{-4})^2\\\Rightarrow \mu=0.0177\ kg/m[/tex]
The linear density is 0.0177 kg/m
Velocity is given by
[tex]v=\sqrt{\dfrac{T}{\mu}}\\\Rightarrow v=\sqrt{\dfrac{74}{0.0177}}\\\Rightarrow v=64.65903\ m/s[/tex]
The velocity of the wave on the guitar string is 64.65903 m/s
Suppose the velocity of an electron in an atom is known to an accuracy of 2.0×103m/s (reasonably accurate compared with orbital velocities). What is the electron’s minimum uncertainty in position, and how does this compare with the approximate 0.1-nm size of the atom?
Answer:
289.714 times bigger
Explanation:
[tex]\Delta x[/tex] = Uncertainty in position
[tex]\Delta p[/tex] = Uncertainty in momentum = [tex]\Delta v m[/tex]
[tex]\Delta v[/tex] = Uncertainty in velocity = [tex]2\times 10^3\ m/s[/tex]
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
m = Mass of electron = [tex]9.1\times 10^{-31}\ kg[/tex]
From the Heisenberg uncertainty principle we have
[tex]\Delta x\Delta p=\dfrac{h}{4\pi}\\\Rightarrow \Delta x\Delta v m=\dfrac{h}{4\pi}\\\Rightarrow \Delta x=\dfrac{h}{4\pi\Delta v m}\\\Rightarrow \Delta x=\dfrac{6.626\times 10^{-34}}{4\pi \times 2\times 10^3\times 9.1\times 10^{-31}}\\\Rightarrow \Delta x=2.89714\times 10^{-8}\ m[/tex]
Comparing with 0.1 nm size atom
[tex]\dfrac{\Delta x}{x}=\dfrac{2.89714\times 10^{-8}}{0.1\times 10^{-9}}\\\Rightarrow \dfrac{\Delta x}{x}=289.714[/tex]
So, the electron’s minimum uncertainty in position is 289.714 times bigger than an atom of size 0.1 nm
The Heisenberg Uncertainty Principle in quantum physics states a limit to how precisely the position and momentum of a particle, such as an electron, can be known simultaneously. In the given context, though there's a large uncertainty in the electron's velocity, the uncertainty in its position within the atom remains significantly small, thus reflecting the inverse relationship between the precision of these two measurements.
Explanation:The concept involved in this question is called the Heisenberg Uncertainty Principle which is a fundamental theory in quantum mechanics. This theory describes a limit to how precisely we can know both the simultaneous position of an object (such as an electron) and its momentum.
Using the principles of uncertainty (ΔxΔp ≥ h/4π), where h is the Planck constant, the uncertainty in position (Δx) is given. If the given velocity (v) of the electron is 2.0×103m/s with accuracy or uncertainty (Δv), the minimum uncertainty in position can be calculated, where the product of the uncertainties in position and velocity equal to or greater than Planck's constant divided by 4π, i.e. Δx ≥ h / (4πmΔv).
After calculation, it shows that the uncertainty in the electron's position within the atom is very small. Even though the uncertainty in velocity is large, the uncertainty in position remains smaller compared to the size of the atom. Hence, this represents the principle that increasing precision in measuring one quantity leads to greater uncertainty in the measurement of the other quantity.
Learn more about the Heisenberg Uncertainty Principle here:https://brainly.com/question/30402752
#SPJ11
What is the threshold frequency for sodium metal if a photon with frequency 6.66 × 1014 s−1 ejects a photon with 7.74 × 10−20 J kinetic energy? Will the photoelectric effect be observed if sodium is exposed to orange light?
Answer:
5.5 × 10^14 Hz or s^-1
no orange light has less frequency so no photoelectric effect
Explanation:
hf = hf0 + K.E
HERE h is Planck 's constant having value 6.63 × 10 ^-34 J s
f is frequency of incident photon and f0 is threshold frequency
hf0 = hf- k.E
6.63 × 10 ^-34 × f0 = 6.63 × 10 ^-34× 6.66 × 10^14 - 7.74× 10^-20
6.63 × 10 ^-34 × f0 = 3.64158×10^-19
f0 = 3.64158×10^-19/ 6.63 × 10 ^-34
f0 = 5.4925 × 10^14
f0 =5.5 × 10^14 Hz or s^-1
frequency of orange light is 4.82 × 10^14 Hz which is less than threshold frequency hence photo electric effect will not be observed for orange light
Bob and Lily are riding on a merry-go-round. Bob rides a horse on the outer edge of the circular platform and Lily rides a horse near the center. When the merry-go-round is rotating at a constant angular speed w, Bob's speed isa) exactly half as much as Lily'sb) exactly twice as much as Lily'sc) smaller than Lily'sd) larger than Lily'se) same as Lily's
Answer:
d) larger than Lily's
Explanation:
If the merry-go-round is rotating at a constant angular speed, this means that any two points, located at different positions along a radius, rotate at the same angular speed, which means that they sweep the same angle at a given time interval.
In order to both points keep aligned along the same radius, we have a single choice (assuming that we are talking about a rigid body) to meet this premise:
The point farther of the center (Bob) must have a linear speed greater than a point closer to the center (Lily).
Mathematically, we can explain this result as follows:
ω = Δθ / Δt (by definition of angular velocity) (1)
but, by definition of angle, we can say the following:
θ = s/r , where s is the arc along the circumference, and r, the radius.
⇒Δθ = Δs /r
Replacing in (1) we have:
ω = (Δs /Δt) / r
By definition, Δs/Δt = v, so, arranging terms, we get:
v = ω*r
If ω=constant, if r increases, v increases.
So, as Bob is at a distance r from the center larger than Lily's, Bob's speed must be larger than Lily's.
Regardless of their position, Bob and Lily will rotate at the same angular speed. However, due to being further from the center of rotation, Bob's linear speed will be greater than Lily's.
Explanation:The subject matter of the question revolves around rotational motion, specifically concerning angular speed, and how location on a rotating reference frame, such as a merry-go-round, affects linear speed. Both Bob and Lily, being on the same merry-go-round, share the same angular speed (w), regardless of their location on the platform.
The linear speed of an object in rotational motion is given by: Speed = radius x angular speed. Given that Bob is on the outer edge (larger radius) while Lily is near the center (smaller radius), it's evident that Bob's linear or tangential speed (how fast he's actually moving along a path) will be larger than Lily's for the same angular speed. Therefore, the answer is d) Bob's speed is larger than Lily's.
Learn more about Angular and Linear Speed here:https://brainly.com/question/34642666
#SPJ3
Energy that cannot be used to do useful work is referred to as Select one: a. potential energy. b. entropy. c. kinetic energy. d. enzymatic energy.
Entropy is the energy that cannot be used to do useful work.
The correct answer is b. entropy. Entropy is a measure of the disorder or randomness in a system. It is a form of energy that cannot be converted into useful work. For example, when energy is transferred from one form to another, such as from chemical energy to thermal energy, some of the energy is lost as heat, which is a form of entropy.
Learn more about Entropy here:https://brainly.com/question/17172535
#SPJ3
A stone is thrown upward from the top of a building at an angle of 30° to the horizontal and with an initial speed of 20 m/s. The point of release is 45 m above the ground. How long does it take for the stone to hit the ground? What is the stone's speed?
The time taken for the stone to hit the ground can be calculated using vertical motion equations, and the stone's speed at impact can be determined using the vertical velocity equation.
Time taken for the stone to hit the ground can be calculated using the vertical motion equation: t = sqrt(2h/g). Substituting the values, t = √(2×45/9.81) ≈ 3.0 seconds.
Stone's speed at impact can be calculated using the vertical velocity equation: vf = u + gt, where vf is the final velocity (0 m/s at impact), u is the initial vertical speed, and g is the acceleration due to gravity.
With the given information, the stone's speed at impact is approximately 29.4 m/s.
A car travels 40 miles in 30 minutes.
a) What is the average velocity in kilometers/hour?
b) If the car weighs 1.5 tons, what is its kinetic energy in joules (Note: you will need to convert your velocity to m/s)?
c) When the driver applies the brake, it takes 15 seconds to stop. How far does the car travel (in meters) while stopping?
d) What is the average acceleration of the car (in m/s2) during braking?
Answer:
a) v = 160.9 Km / h, b) K = 9,988 10⁵ J , c) d = 335.2 m , d) a = - 2.9796 m / s²
Explanation:
a) The average speed is defined as the distance traveled in the time interval
v = d / t
Let's reduce the magnitudes to the SI system
t = 30 min (60 s / 1min) = 1800 s
d = 50 mile (1609 m / 1mile) = 80450 m
v = 80450/1800
v = 44.6944 m / s
v = 44.6944 m / s (1 km / 1000m) (3600 s / 1h)
v = 160.9 Km / h
b) W = 2 ton (1000 kg / 1 ton) = 1000 kg
K = ½ m v²
K = ½ 1000 44.694²
K = 9,988 10⁵ J
c) take t = 15 s to stop
v = v₀ - at
v = 0
a = v₀ / t
a = 44,694 / 15
a = 2.9796 m / s²
v² = v₀² - 2 a d
v = 0
d = v₀² / 2 a
d = 44.694² / (2 2.9796)
d = 335.2 m
d) the average acceleration is the change of speed in the time interval
a = (v - v₀) / (t -t₀)
a = (0 - 44.694) / 15
a = - 2.9796 m / s²
2. At noon, ship A was 12 nautical miles due north of ship B. Ship A was sailing south at 12 knots (nautical miles per hour; a nautical mile is 2000 yards) and continued to do so all day. Ship B was sailing east at 9 knots and continued to do so all day. The visibility was 5 nautical miles. Did the ships ever sight each other?
Answer:
No
Explanation:
Let the reference origin be location of ship B in the beginning. We can then create the equation of motion for ship A and ship B in term of time t (hour):
A = 12 - 12t
B = 9t
Since the 2 ship motions are perpendicular with each other, we can calculate the distance between 2 ships in term of t
[tex]d = \sqrt{A^2 + B^2} = \sqrt{(12 - 12t)^2 + (9t)^2}[/tex]
For the ships to sight each other, distance must be 5 or smaller
[tex] d \leq 5[/tex]
[tex]\sqrt{(12 - 12t)^2 + (9t)^2} \leq 5[/tex]
[tex](12 - 12t)^2 + (9t)^2 \leq 25[/tex]
[tex]144t^2 - 288t + 144 + 81t^2 - 25 \leq 0[/tex]
[tex]225t^2 - 288t + 119 \leq 0[/tex]
[tex](15t)^2 - (2*15*9.6)t + 9.6^2 + 26.84 \leq 0[/tex]
[tex](15t^2 - 9.6)^2 + 26.84 \leq 0[/tex]
Since [tex](15t^2 - 9.6)^2 \geq 0[/tex] then
[tex](15t^2 - 9.6)^2 + 26.84 > 0[/tex]
So our equation has no solution, the answer is no, the 2 ships never sight each other.
A spider hangs by a strand of silk at an eye level 20 cm in front of a plane mirror. You are behind the spider, 65 cm from the mirror. Find the distance between your eye and the image of the spider in the mirror.
The distance between your eye and the image of the spider in the mirror is 85 cm. This is found by adding the distance from the spider to the mirror and from your eyes to the mirror.
Explanation:The situation regards the properties of reflection in a mirror. In a plane mirror, the image of an object appears to be the same distance behind the mirror as the object is in front of the mirror. So the image of the spider in the mirror is 20cm behind the mirror. The eye's distance from the mirror is 65cm. Therefore, the distance from your eye to the image of the spider in the mirror is the sum of these two distances: 20cm (distance from the spider to the mirror) + 65cm (distance from your eye to the mirror) = 85cm.
Learn more about Reflections in Mirrors here:https://brainly.com/question/10507280
#SPJ11
An electric eel (Electrophorus electricus) can produce a shock of up to 600 V and a current of 1 A for a duration of 2 ms, which is used for hunting and self-defense. To perform this feat, approximately 80% of its body is filled with organs made up by electrocytes. These electrocytes act as self-charging capacitors and are lined up so that a current of ions can easily flow through them.
a) How much charge flows through the electrocytes in that amount of time?
b) If each electrocyte can maintain a potential of 100 mV, how many electrocytes must be in series to produce the maximum shock?
c) How much energy is released when the electric eel delivers a shock?
d) With the given information, estimate the equivalent capacitance of all the electrocyte cells in the electric eel.
Answer:
[tex]2\times 10^{-3}\ C[/tex]
6000
1.2 J
[tex]3.33\times 10^{-6}\ F[/tex]
Explanation:
I = Current = 1 A
t = Time = 2 ms
n = Number of electrocyte
V = Voltage = 100 mV
Charge is given by
[tex]Q=It\\\Rightarrow Q=1\times 2\times 10^{-3}\\\Rightarrow Q=2\times 10^{-3}\ C[/tex]
The charge flowing through the electrocytes in that amount of time is [tex]2\times 10^{-3}\ C[/tex]
The maximum potential is given by
[tex]V_m=nV\\\Rightarrow n=\dfrac{V_m}{V}\\\Rightarrow n=\dfrac{600}{100\times 10^{-3}}\\\Rightarrow n=6000[/tex]
The number of electrolytes is 6000
Energy is given by
[tex]E=Pt\\\Rightarrow E=V_mIt\\\Rightarrow E=600\times 1\times 2\times 10^{-3}\\\Rightarrow E=1.2\ J[/tex]
The energy released when the electric eel delivers a shock is 1.2 J
Equivalent capacitance is given by
[tex]C_e=\dfrac{Q}{V_m}\\\Rightarrow C_e=\dfrac{2\times 10^{-3}}{600}\\\Rightarrow C_e=3.33\times 10^{-6}\ F[/tex]
The equivalent capacitance of all the electrocyte cells in the electric eel is [tex]3.33\times 10^{-6}\ F[/tex]
a) The charge that flows through the electrocytes is [tex]\( 2 \text{ mC} \).[/tex]
b) 6000 electrolytes must be in series to produce the maximum shock. c) the energy released when the electric eel delivers a shock is [tex]\( 0.6 \text{ J} \).[/tex]
d) the equivalent capacitance of all the electrocyte cells in the electric eel is approximately [tex]\( 3.33 \mu\text{F} \)[/tex]
To answer the questions about the electric eel's shock, we'll use the provided information and relevant physics formulas.
Part (a): We know:
- Current [tex]\( I = 1 \text{ A} \)[/tex]
- Time [tex]\( t = 2 \text{ ms} = 2 \times 10^{-3} \text{ s} \)[/tex]
The charge Q that flows can be found using the relation:
[tex]\[ Q = I \times t \][/tex]
Plugging in the values:
[tex]\[ Q = 1 \text{ A} \times 2 \times 10^{-3} \text{ s} \][/tex]
[tex]\[ Q = 2 \times 10^{-3} \text{ C} \][/tex]
[tex]\[ Q = 2 \text{ mC} \][/tex]
Part (b): We know:
- Maximum potential [tex]\( V = 600 \text{ V} \)[/tex]
- Potential of each electrocyte [tex]\( V_{\text{single}} = 100 \text{ mV} = 0.1 \text{ V} \)[/tex]
The number of electrocytes n in series required to produce 600 V can be found by:
[tex]\[ n = \frac{V}{V_{\text{single}}} \][/tex]
Plugging in the values:
[tex]\[ n = \frac{600 \text{ V}}{0.1 \text{ V}} \][/tex]
[tex]\[ n = 6000 \][/tex]
Part (c): We know:
- Voltage [tex]\( V = 600 \text{ V} \)[/tex]
- Charge [tex]\( Q = 2 \text{ mC} = 2 \times 10^{-3} \text{ C} \)[/tex]
The energy E released can be found using the relation:
[tex]\[ E = \frac{1}{2} Q V \][/tex]
Plugging in the values:
[tex]\[ E = \frac{1}{2} \times 2 \times 10^{-3} \text{ C} \times 600 \text{ V} \][/tex]
[tex]\[ E = \frac{1}{2} \times 1.2 \text{ J} \][/tex]
[tex]\[ E = 0.6 \text{ J} \][/tex]
Part (d): Given:
- Total voltage [tex]\( V = 600 \text{ V} \)[/tex]
- Charge [tex]\( Q = 2 \times 10^{-3} \text{ C} \)[/tex]
The capacitance C can be found using the relation:
[tex]\[ C = \frac{Q}{V} \][/tex]
Plugging in the values:
[tex]\[ C = \frac{2 \times 10^{-3} \text{ C}}{600 \text{ V}} \][/tex]
[tex]\[ C = \frac{2 \times 10^{-3}}{600} \text{ F} \][/tex]
[tex]\[ C = \frac{1}{300} \times 10^{-3} \text{ F} \][/tex]
[tex]\[ C \approx 3.33 \times 10^{-6} \text{ F} \][/tex]
[tex]\[ C = 3.33 \mu\text{F} \][/tex]
A firm wants to determine the amount of frictional torque in their current line of grindstones, so they can redesign them to be more energy efficient. To do this, they ask you to test the best-selling model, which is basically a diskshaped grindstone of mass 1.5 kg and radius 7.40 cm which operates at 730 rev/min. When the power is shut off, you time the grindstone and find it takes 38.8 s for it to stop rotating.
(a) What is the angular acceleration of the grindstone in rad/s^2? (Assume constant angular acceleration.)
(b) What is the frictional torque exerted on the grindstone in N·m?
Answer:
a) -1.97 rad/sec² b) -8.09*10⁻³ N.m
Explanation:
a) Assuming a constant angular acceleration, we can apply the definition of angular acceleration, as follows:
γ = (ωf -ω₀) / t
We know that the final state of the grindstone is at rest, so ωf =0
In order to be consistent in terms of units, we can convert ω₀ from rev/min to rad/sec:
ω₀ = 730 rev/min* (1 min/60 sec)* (2*π rad / 1 rev) = 73/3*π
⇒ γ = (0-73/3*π) / 38.8 sec = - 1.97 rad/sec²
b) In order to get the value of the frictional torque exerted on the grindstone, that caused it to stop, we can apply the rotational equivalent of the Newton's 2nd law, as follows:
τ = I * γ (1)
As the grindstone can be approximated by a solid disk, the rotational inertia I can be expressed as follows:
I = m*r² / 2, where m=1.5 kg and r = 0.074 m.
Replacing in (1) , m. r and γ (the one we calculated in a)), we get:
τ = (1.5 kg* (0.074)² m² / 2) * -1.97 rad/sec = -8.09*10⁻³ N.m
(The negative sign implies that the frictional torque opposes to the rotation of the grindstone).
Air resistance is a nonconservative force. It always opposes the motion of an object. An airplane flies from New York to Atlanta and then returns to its point of departure. The net work done by air resistance during this round trip ___________.a. is negative for slower speeds and positive for higher speedsb. is positivec. is negatived. is zeroe. is negative for higher speeds and positive for slower speeds
Answer:
c. is negative
Explanation:
When the magnitude of force is multiplied with the force vector's projection along the direction of the vector of displacement which is negative as it is a resistive force we get the work done.
As the wind is acting in opposite direction of the force which is being applied by the plane the work done will be negative. Also, the net work will be the sum of many smaller negative quantities.
Hence, the answer here is negative.
In Millikan’s oil-drop experiment, one looks at a small oil drop held motionless between two plates. Take the voltage between the plates to be 2210 V, and the plate separation to be 1.87 cm. The oil drop (of density 0.816 g/cm^3) has a diameter of 3.3x 10^−6 m . Calculate the charge in terms of the number of elementary charges (1.6 x 10^-19).
Answer:
q = 1,297 10⁻¹⁹ C , n=1
Explanation:
For this problem we will use Newton's second law in the case of equilibrium
[tex]F_{e}[/tex] + B - W = 0
Where [tex]F_{e}[/tex] is the electrical force up, B the thrust and W the weight of the drop.
Let's look for weight and thrust
oil
ρ = m / V
m = ρ V
Air
B = [tex]\rho _{air}[/tex] g V
Electric force
[tex]F_{e}[/tex] = qE
E = V / d
[tex]F_{e}[/tex] = q V/d
Let's replace
q V / d + [tex]\rho _{air}[/tex] g V - ρ V g = 0
qV / d = (4/3 π r³) g (ρ –[tex]\rho _{air}[/tex])
q = 4/3 π r³ (ρ –[tex]\rho _{air}[/tex]) d / V
Reduce to SI units
d = 1.87 cm (1m / 100cm) = 1.87 10⁻² m
ρ= 0.816 r / cm3 (1kg / 1000g) (102cm / 1m)³ = 816 kg / m³
[tex]\rho_{air}[/tex] = 1.28 kg / m³
Let's calculate the charge
r = d / 2 = 3.3 10⁻⁶ m
r = 1.65 10⁻⁶ m
q = 4/3 π (1.65 10⁻⁶)³ (816 - 1.28) 0.0187 / 2210
q = 12.9717 10⁻²⁰ C
q = 1,297 10⁻¹⁹ C
If we assume that the load is
q = n e
In this case n = 1
Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an angular acceleration of 0.745 rad/s2. The child is standing 4.65 m from the center of the merry-go-round. What is the magnitude of the linear acceleration of the child? Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an angular acceleration of 0.745 rad/s2. The child is standing 4.65 m from the center of the merry-go-round. What is the magnitude of the linear acceleration of the child?
a. 3.46 m/s2
b.4.10 m/s2
c. 8.05 m/s2
d. 7.27 m/s2
e. 2.58 m/s2
To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.
We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.
Our data is given as:
[tex]\omega = 1.25 rad/s \rightarrow[/tex] The angular speed
[tex]\alpha = 0.745 rad/s2 \rightarrow[/tex] The angular acceleration
[tex]r = 4.65 m \rightarrow[/tex] The distance
The relation between the linear velocity and angular velocity is
[tex]v = r\omega[/tex]
Where,
r = Radius
[tex]\omega =[/tex] Angular velocity
At the same time we have that the centripetal acceleration is
[tex]a_c = \frac{v^2}{r}[/tex]
[tex]a_c = \frac{(r\omega)^2}{r}[/tex]
[tex]a_c = \frac{r^2\omega^2}{r}[/tex]
[tex]a_c = r \omega^2[/tex]
[tex]a_c = (4.65 )(1.25 rad/s)^2[/tex]
[tex]a_c = 7.265625 m/s^2[/tex]
Now the tangential acceleration is given as,
[tex]a_t = \alpha r[/tex]
Here,
[tex]\alpha =[/tex] Angular acceleration
r = Radius
[tex]\alpha = (0.745)(4.65)[/tex]
[tex]\alpha = 3.46425 m/s^2[/tex]
Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be
[tex]|a| = \sqrt{a_c^2+a_t^2}[/tex]
[tex]|a| = \sqrt{(7.265625)^2+(3.46425)^2}[/tex]
[tex]|a| = 8.049 m/s^2 \approx 8.05 m/s2[/tex]
Therefore the correct answer is C.
Two coils, held in fixed positions, have a mutual inductance of M = 0.0034 H. The current in the first coil is I(t) = I0sin(ωt), where I0 = 5.4 A, ω = 143 rad/s.
M = 0.0034 H I0 = 5.4 A ω = 143 rad/s
(a) Express the magnitude of the induced emf in the second coil, ε2, in terms of M and I.
(b) Express the magnitude of ε2 in terms of M, Io, and ω.
(c) Express the maximum value of |ε2|, εmax, in terms of M, I0, and ω.
(d) Calculate the numerical value of εmax in V.
The magnitude of the induced emf in the second coil can be expressed using the mutual inductance, maximum current in the first coil, and angular frequency.
Explanation:(a) The magnitude of the induced emf in the second coil, ε2, can be expressed as ε2 = M * (dI2/dt), where M is the mutual inductance and dI2/dt is the rate of change of current in the second coil.
(b) The magnitude of ε2 can also be expressed as ε2 = M * I0 * ω * cos(ωt), where I0 is the maximum current in the first coil and ω is the angular frequency.
(c) The maximum value of |ε2|, εmax, can be calculated by taking the maximum value of the function ε2 = M * I0 * ω * cos(ωt) over one period.
(d) To calculate the numerical value of εmax, substitute the values of M, I0, and ω into the equation ε2 = M * I0 * ω * cos(ωt) and evaluate it at the maximum value of cos(ωt), which is 1.
Learn more about Induced emf in the second coil here:https://brainly.com/question/30891425
#SPJ11
A single-threaded power screw is 25 mm in diameter with a pitch of 5 mm. A vertical load on the screw reaches a maximum of 5 kN. The coefficients of friction are 0.06 for the collar and 0.09 for the threads. The frictional diameter of the collar is 45 mm. Find the overall efficiency and the torque to ""raise"" and ""lower"" the load.
Answer:
0.243
Explanation:
Step 1: Identify the given parameters
Force (f) = 5kN, length of pitch (L) = 5mm, diameter (d) = 25mm,
collar coefficient of friction = 0.06 and thread coefficient of friction = 0.09
Frictional diameter =45mm
Step 2: calculate the torque required to raise the load
[tex]T_{R} = \frac{5(25)}{2} [\frac{5+\pi(0.09)(25)}{\pi(25)-0.09(5)}]+\frac{5(0.06)(45)}{2}[/tex]
[tex]T_{R}[/tex] = (9.66 + 6.75)N.m
[tex]T_{R}[/tex] = 16.41 N.m
Step 3: calculate the torque required to lower the load
[tex]T_{L} = \frac{5(25)}{2} [\frac{\pi(0.09)(25) -5}{\pi(25)+0.09(5)}]+\frac{5(0.06)(45)}{2}[/tex]
[tex]T_{L}[/tex] = (1.64 + 6.75)N.m
[tex]T_{L}[/tex] = 8.39 N.m
Since the torque required to lower the thread is positive, the thread is self-locking.
The overall efficiency = [tex]\frac{F(L)}{2\pi(T_{R})}[/tex]
= [tex]\frac{5(5)}{2\pi(16.41})}[/tex]
= 0.243
The overall efficiency of the power screw is approximately 38.6%. The torque required to raise the load is 46.8 N·m, while the torque to lower the load is about 22.53 N·m.
Calculating Lead and Mean Diameter:Lead (L) = Pitch (p) = 5 mm
Mean diameter (dm) = 25 mm
Calculating Torque to Raise the Load ([tex]T_{up[/tex]):
Using the formula: [tex]T_{up[/tex] = (W dm/2) (L + π μt dm)/(π dm - μt L)
Where:
W = 5 kN = 5000 N
μt = 0.09
dm = 25 mm = 0.025 m
L = 5 mm = 0.005 m
Substituting the values:
[tex]T_{up[/tex] = (5000 × 0.025/2) (0.005 + π × 0.09 × 0.025)/(π × 0.025 - 0.09 × 0.005)
[tex]T_{up[/tex] ≈ 46.8 N·m
Calculating Torque to Lower the Load ([tex]T_{down[/tex]):
Using the formula: [tex]T_{down[/tex] = (W dm/2) (L - π μt dm)/(π dm + μt L)
Substituting the values:
[tex]T_{down[/tex] = (5000 × 0.025/2) (0.005 - π × 0.09 × 0.025)/(π × 0.025 + 0.09 × 0.005)
[tex]T_{down[/tex] ≈ 22.53 N·m
Calculating Overall Efficiency (η):
Efficiency η = (tan θ / (tan(θ + φ)))
Where:
θ = tan-1(L/π dm)
φ = tan-1(μt)
θ ≈ 0.064
φ ≈ 0.09
η ≈ (tan 0.064) / (tan(0.064 + 0.09))
η ≈ 38.6%
Therefore, the overall efficiency of the power screw is approximately 38.6%, the torque to raise the load is 46.8 N·m, and the torque to lower the load is around 22.53 N·m.