Answer:
The number of moles of oxygen gas comes out to be 0.0548 mole
Explanation:
Given volume of gas = V = 3.0 L
The mixture contains 30 % oxygen gas by mole.
Pressure of mixture of gas = P = 2.0 atm
Temperature = T = 400 K
Assuming n be the total number of moles of the mixture of gas.
The ideal gas equation is shown below
[tex]\textrm{PV} = \textrm{nRT} \\2.0 \textrm{ atm}\times 3.0\textrm{ L} = n \times 0.0821 \textrm{ L.atm.mol}^{-1}.K^{-1} \times 400 \textrm{ K} \\n = 0.18270 \textrm{ mole}[/tex]
The mixture contains 30% oxygen gas by mole
[tex]\textrm{ Number of moles of oxygen gas} = \displaystyle \frac{30\times 0.18270 \textrm{ mole}}{100} = 0.0548 \textrm{ mole}[/tex]
Number of moles of oxygen gas is 0.0548 mole
Final answer:
At 2.0 atm and 400 K, there are 0.9 moles of oxygen in the 3.0-L gas mixture that contains 30.% oxygen and 70.% nitrogen, as determined using the ideal gas law.
Explanation:
To calculate the number of moles of oxygen, we first need to find the total number of moles in the mixture using the ideal gas law:
n = PV / RT
where n is the number of moles, P is the pressure in atmospheres, V is the volume in liters, R is the ideal gas constant (8.31 J/mol·K), and T is the temperature in kelvins.
Substituting our values into this equation, we get:
n = (2.0 atm)(3.0 L) / (8.31 J/mol·K)(400 K) = 0.069 moles total
we need to find the fraction of moles that is oxygen:
x = (mass of oxygen) / (total mass) = (30.%)(0.069 moles total) = 0.021 moles oxygen
we can use this fraction to find the number of moles of oxygen:
n(O₂) = x(n total) = (0.021 moles oxygen) / (total moles) = (0.9 moles oxygen) / (total moles) = 0.9 moles oxygen
explain why the event in the picture takes place
Answer:
What picture
Explanation:
Final answer:
Analyzing a photograph involves considering the context, motivations, and physical evidence within the image to determine why certain events are depicted. The underlying causes for events, whether in human behavior or natural processes, such as global warming from carbon dioxide, are critical for understanding the scene. The perspective of the photographer and the choice of images by editors also significantly influence the narrative constructed around the photograph.
Explanation:
Understanding the event depicted in a photograph requires analyzing various factors such as the context of the image, the physical and emotional states of any subjects present, and the environment. For example, a photo capturing a table with items like a cup, saucer, newspaper, and tickets might suggest a moment of daily life, perhaps the morning routine of an individual. However, these items could also indicate a broader story, perhaps of travel plans (suggested by the tickets), a reflection of personal habits or interests (indicated by the newspaper choice), or even the socioeconomic status of the individual (suggested by the type of cup and saucer).
Furthermore, understanding why certain events occur, whether in human behavior or physical sciences, involves identifying the underlying causes. For instance, the example of carbon dioxide trapping heat in the atmosphere to warm the planet serves as a clear illustration of how and why certain events, like global warming, occur.
In the case of human behavior captured in photographs, motivations such as love, hate, envy, greed, or a desire for power could play a crucial role in explaining the scene. The choice of angle and perspective by the photographer, as well as the decision by a newspaper editor to publish a particular image, further add layers of meaning, revealing not just the moment captured but also the storytelling intent behind it.
Describe the “backbone” of many polymers
In polymer science, the backbone chain of a polymer is the longest series of covalently bonded atoms that together create the continuous chain of the molecule.
What is the ability to do work or cause change is called ?
Energy is the capacity to do work. Work is the process of causing matter to move against an opposing force, such as inflating a bicycle tire.
Explanation:Energy can be defined as the capacity to supply heat or do work. One type of work is the process of causing matter to move against an opposing force. For example, we do work when we inflate a bicycle tire—we move matter (the air in the pump) against the opposing force of the air already in the tire.
Learn more about Energy here:https://brainly.com/question/1932868
#SPJ6
What is the percent by mass of water in the hydrate?
What is the percent by mass of the anhydrous salt in the hydrate?
Answer:
1. dividing the mass of water lost by the mass of hydrate used is equal to the fraction of water in the compound. Multiplying this fraction by 100 gives the percent water in the hydrate.
2. hydrate or compounds that incorporate water molecules into the fundamental solid structure in a hydrate which usually has a Pacific crystalline form a Define number of water molecules are associated with each formula unit on the primary material Gypsum is a hydrate with two water molecules present for each formula unit of caso4 the chemical formula for Gypsum is caso4 . H2O
Answer:
45.4% and 54.6%
Use these images to identify each state of matter.
Match each image with the correct state of matter.
Answer:
Match each image with the correct state of matter.
A: Gas
B: solid
C: liquid
Explanation:
hope this helps
What are two factors that can affect salinity?
Answer:
precipitation and evaporation
Explanation:
salinity :salt concentration
Precipitation: this brings freshwater into the ocean which are not salty, so it is diluting its salt concentration.
evaporation: takes all the water and leaves the salt behind
1. What is the equation for Boyle's Law?.
2. What does the letter P stand for?
3. What are the units for P?
4. What does the letter V stand for?
5. What are the units for V?
Answer: 1. P1V1 = P2V2
2. P stands for pressure
3. Units for Pressure are atm and Pa
4. V stands for volume
5. Units for volume is in mL
Explanation: Boyle's Law is a gas law that states the relationship between pressure and volume of a gas.
1. P₁V₁ = P₂V₂
2. P stands for pressure
3. Units for Pressure are atm and Pa
4. V stands for volume
5. Units for volume in mL
Boyle's Law:The volume of a gas at constant temperature varies inversely with the pressure exerted on it. It is given by:
P₁V₁ = P₂V₂
Where,
P is the pressure and
V is the Voulme
The units can be given in volume is measured in litres; pressure in atmospheres; and temperature in degrees Kelvin.
Find more information about Boyle's law here:
brainly.com/question/1437490
In a soil profile, which is the second layer?
solid rock
subsoil
parent rock
topsoil
Subsoil is the layer of soil under the topsoil on the surface of the ground.
Answer:
Subsoil is the layer of soil under the topsoil
Explanation:
A sample of neon occupies a volume of 478 mL at STP. What will be the volume of the neon when the pressure is reduced to 93.3 kPa?
The volume of neon when the pressure is reduced to 93.3 kPa is 519 mL.
Explanation:
The kinetic theory of gases is mostly based on Boyle's law. From the Boyle's law, the pressure experienced by any gas molecules is inversely proportional to volume of the gas molecules. Also this inverse relation is obeyed if and only if the number of moles and temperature of the gas molecules remained constant.
So,[tex]P=\frac{1}{V}[/tex]
So if there is a change in pressure then there will be inverse change in volume. That means if there is decrease in the pressure of gas molecules then there will be increase in the volume and vice versa.
So the Boyle's law is combined as [tex]P_{1} V_{1} = P_{2} V_{2}[/tex]
As here the initial pressure or [tex]P_{1}[/tex] is 1 atm or 101.3 kPa and the initial volume is 478 mL. Similarly, the final pressure is 93.3 kPa and the final volume will be
[tex]101.3*10^{3}*478*10^{-3} = 93.3*10^{3} * V_{2}[/tex]
[tex]V_{2} = 519 mL[/tex]
So, the volume of neon when the pressure is reduced to 93.3 kPa is 519 mL.
What is the difference between asexual and sexual
Answer:
a
Explanation:
The difference between asexual and sexual is one letter "a". this is becuase if you subtract the first letter a off of asexual then you get sexual.
During an endothermic phase change, what happens to the potential energy and the kinetic energy?
During endothermic phase change, the potential energy of the system always increases while the kinetic energy of the system remains constant. The potential energy of the reaction increases because energy is been added to the system from the external environment.
Explanation:
Those are three distinct methods for demonstrating a specific energy condition of an object. They don't affect one another. "Potential Energy" is a relative term showing a release of possible energy to the environment. If we accept its pattern as the overall energy state of a compound, at that point, an endothermic phase change would infer an increase in "potential" as energy is being added to the compound by the system. A phase change will display an increase in the kinetic energy at whatever point the compound is transforming from a high density to a low dense phase. The kinetic energy will decrease at whatever point the compound is transforming from a less dense to high dense phase.Answer:
d. Potential energy increases, and kinetic energy stays the same.
Explanation:
This is correct on edge.
The answers to the Enthalpy and Phase Changes quiz are:
1. D 25.0 kJ
2. A Delta Hfus
3. C heat of fusion
4. D Potential energy increases, and kinetic energy stays the same.
5. B This is an exothermic reaction that involves freezing.
6. B a thermometer
7. C 549 g
8. B Energy is absorbed, and potential energy increases.
9. D a solid to a liquid
10. C the periodic table
calculate the final temperature of 202 mL of water initially at 32 degrees celsius upon absorption of 19 kJ of heat
Answer:
The Final Temperature of water = 54.48°C.
Explanation:
Given,
Volume of water = 202 mL.
Initial Temperature T₁ = 32°C
Heat energy absorbed = 19 kJ = 19000 Joules
Final Temperature T₂ = ?
Final temperature can be calculated using the formula,
Q = (mass) (ΔT) (Cp)
Here ΔT = T₂ - T₁
Cp = specific heat of water = 4.184 J/g°C.
For finding the mass, we use the formula,
Density = Mass/Volume
Since, Density of water = 1 g/mL.
Mass of water = 202 grams.
Now Substituting all values in the formula Q = (mass) (ΔT) (Cp)
19000 = (202)(T₂ - T₁)(4.184)
Solving, we get,
(T₂ - T₁) = 22.48°C
Therefore, T₂ = 22.48°C + 32°C = 54.48°C.
Therefore, Final Temperature of water = 54.48°C.
4 protons, 2 electrons
Express your answer as an ion.
Answer:
positively charged (+2).
4th element on the periodic table
I don't know what else to say srry if I failed my mission :')
An atom with 4 protons and 2 electrons can be expressed as a cation with a charge of 2⁺ if it has lost electrons or as a neutral atom if it hasn't undergone any electron changes.
An ion is an atom or molecule that has gained or lost electrons, resulting in an electrical charge. In this case, you've provided an atom with 4 protons and 2 electrons. To express this as an ion, we need to determine whether it has gained or lost electrons and the resulting charge.
If the atom has lost electrons:
An atom loses electrons when it becomes positively charged (cation).
In this scenario, with 4 protons and 2 electrons, it has lost 2 electrons.
This results in a net positive charge of 2⁺. So, the ion is written as:
Ion: Cation with a charge of 2⁺
For example, this could be a helium atom (He) that has lost its 2 electrons, becoming He²⁺.
If the atom has gained electrons:
An atom gains electrons when it becomes negatively charged (anion).
In this case, with 4 protons and 2 electrons, it has not gained or lost any electrons, maintaining a neutral charge.
Ion: Neutral Atom
So, depending on whether the atom gained or lost electrons, it can either be a cation with a charge of 2⁺ (if it lost electrons) or simply a neutral atom (if it maintained its original electron count).
For more such information on: cation
https://brainly.com/question/30754382
#SPJ3
PLEASE HELP FAST IM ABOUT TO FAIL PLEASE HELP PLEASE HELP FAST HELP HELP THIS IS DESPRATE
How many liters of water would be needed to dissolve 21.6 g of lithium nitrate to make a 1.3 M (molar) solution?
What is the molarity of a solution made of 215.1 g of HCl is dissolved to make 2.0 L of solution?
How much concentrated 18 M H[tex]x_{2}[/tex]SO[tex]x_{4}[/tex] is needed to prepare 250.0 mL of a 6.0 M solution?
A chemist has a stock solution of HBr that is 10.0 M and would like to make 450.0 mL of 3.0 M HBr, how would he/she do it?
How much water should be added to 50.0 mL of 12 M hydrochloric acid to make a 4.0 M solution?
Lulu Labwrecker carefully pipeta 25.0 mL of 0.525 M NaOH into a test tube. She places the test tube into a small beaker to keep it from spilling and then pipets 75.0 mL of 0.355 M HCl into another test tube. When Lulu reaches out to put this test tube of acid into the beaker along with test tube of base she accidentally knocks the test tubes together hard enough to break them and their respective contents combine in the bottom of the beaker. Is the solution formed from the contents of the two test tubes acidic or basic? What is the pH of the resulting solution?
1. 0.240 liters of water would be needed to dissolve 21.6 g of lithium nitrate to make a 1.3 M (molar) solution.
2. 2.9 M is the molarity of a solution made of 215.1 g of HCl is dissolved to make 2.0 L of solution.
3.83.3 ml of concentrated 18 M H2SO4 is needed to prepare 250.0 mL of a 6.0 M solution.
4. 135 ml of stock HBr will be required to dilute the solution.
5. 150 ml of water should be added to 50.0 mL of 12 M hydrochloric acid to make a 4.0 M solution
6. The pH of the resulting solution is 13.89
Explanation:
The formula used in solving the problems is
number of moles= [tex]\frac{mass}{atomic mass of one mole}[/tex] 1st equation
molarity = [tex]\frac{number of moles}{volume}[/tex] 2nd equation
Dilution formula
M1V1 = M2V2 3rd equation
1. Data given
mass of Lithium nitrate = 21.6 grams
atomic mass of on emole lithium nitrate = 68.946 gram/mole
Molarity is given as 1.3 M
VOLUME=?
Calculate the number of moles using equation 1
n = [tex]\frac{21.6}{68.946}[/tex]
= 0.313 moles of lithium nitrate.
volume is calculated by applying equation 2.
volume = [tex]\frac{0.313}{1.3}[/tex]
= 0.240 litres of water will be used.
2. Data given:
mass of HCl = 215.1 gram
atomic mass of HCl = 36.46 gram/mole
volume = 2 litres
molarity = ?
using equation 1 number of moles calculated
number of moles = [tex]\frac{215.1}{36.46}[/tex]
number of moles of HCl = 5.899 moles
molarity is calculated by using equation 2
M = [tex]\frac{5.899}{2}[/tex]
= 2.9 M is the molarity of the solution of 2 litre HCl.
3. data given:
molarity of H2SO4 = 18 M
Solution to be made 250 ml of 6 M
USING EQUATION 3
18 x V1= 250 x 6
V1 = 83.3 ml of concentrated 18 M H2SO4 will be required.
4. data given:
M1= 10M, V1 =?, M2= 3 ,V2= 450 ml
applying the equation 3
10 x VI = 3x 450
V1 = 135 ml of stock HBr will be required.
5. Data given:
V1 = 50 ml
M1= 12 M
V2=?
M2= 4
applying the equation 3
50 x 12 = 4 x v2
V2 = 150 ml.
6. data given:
HCl + NaOH ⇒ NaCl + H20
molarity of NaOH = 0.525 M
volume of NaOH = 25 ml
molarity of acid HCl= 75 ml
volume of HCl = 0.335 ml
pH=?
Number of moles of NaOH and HCl is calculated by using equation 1 and converting volume in litres
moles of NaOH = 0.0131
moles of HCl= 0.025 moles
The ratio of moles is 1:1 . To find the unreacted moles of acid and base which does not participated in neutralization so the difference of number of moles of acid minus number of moles of base is taken.
difference of moles = 0.0119 moles ( NaOH moles is more)
Molarity can be calculated by using equation 1 in (25 +75 ml) litre of solution
molarity = [tex]\frac{0.0119}{0.1}[/tex]
= 0.11 M (pOH Concentration)
14 = pH + pOH
pH = 14 - 0.11
pH = 13.89
You make a solution that has 20 molecules of glucose, 210 molecules of hemoglobin, and 770 molecules of water. What is the solute concentration in %?
Answer:
Percentage of water = 2%
Percentage of water = 21%
Percentage of water = 77%
Explanation:
Given data:
Number of molecules of glucose = 20
Number of molecules of hemoglobin = 210
Number of molecules of water = 770
Solution:
To calculate the percentage 1st of all we will determine the total number of molecules.
Total number of molecules = Number of molecules of water + hemoglobin + glucose
Total number of molecules = 770 + 210 + 20
Total number of molecules = 1000
Percentage of water:
Percentage of water = 770/1000 ×100
Percentage of water = 0.77 ×100
Percentage of water = 77%
Percentage of hemoglobin:
Percentage of water = 210/1000 ×100
Percentage of water = 0.21 ×100
Percentage of water = 21%
Percentage of hemoglobin:
Percentage of water = 20/1000 ×100
Percentage of water = 0.02 ×100
Percentage of water = 2%
in this lesson you learned that absolute time is time mesured in definite periods such as minutes days, and years, lest two ways of recording or meauring absolute time.
Absolute time is measured using fixed units, with early methods involving hourglasses using sand, and modern methods using atomic oscillations. Calendars derive from celestial motions, with years, months, and days based on Earth and the Moon's movements.
Absolute time is the measurement of time in fixed units such as seconds, minutes, days, and years. There are two main ways to record or measure absolute time: one is based on the duration of events, and the other is through periodic motion.
Early methods of measuring time duration included devices like hourglasses that used the flow of sand to measure the passing of time. Today, precise measurement of time uses the oscillation of physical phenomena, such as the vibration of a cesium atom to define a second.
As for periodic motion, our common calendar is derived from celestial movements: years from Earth's orbit around the Sun, months from the Moon's orbit around Earth, and days from Earth's rotation on its axis. These are fundamental in tracking the passage of time in our daily lives.
How much heat is required to melt 26.0 g of ice at its melting point?
Answer:
Heat required to melt 26.0 g of ice at its melting point is 8.66 kJ.
Explanation:
Number of moles of water in 26 g of water: 26× [tex]\frac{1}{18.02}[/tex] moles
=1.44 moles
The enthalpy change for melting ice is called the entlaphy of fusion. Its value is 6.02 kj/mol.
we have relation as:
q = n × ΔH
where:
q = heat
n = moles
Δ H = enthalpy
So calculating we get,
q= 1.44*6.02 kJ
q= 8.66 kJ
We require 8.66 kJ of energy to melt 26g of ice.
use the molar volume of a gas at STP to calculate the density of nitrogen gas at STP. How do I use the molar volume?
Answer:
Density=1.25g/dm^3
Explanation:
Density=mass/volume
Mass of nitrogen gas is 2(14)=28g
Volume at STP=22.4dm^3
Density=28/22.4=1.25g/dm^3
The mass is the molar mass of N₂ (28.01 g) and the volume is 1.25 L
To calculate the density of nitrogen gas at STP using the molar volume of a gas at STP, you can follow these steps:
1. Understand the concept: Molar volume of a gas at STP (Standard Temperature and Pressure) is 22.4 L/mol.
This means that one mole of any ideal gas occupies 22.4 liters at STP.2. Determine the molar mass of nitrogen: The molar mass of nitrogen (N2) is approximately 28.02 g/mol.
This means that one mole of nitrogen gas weighs 28.02 grams.3. Use the ideal gas law: The ideal gas law states that PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant, and T is temperature.
At STP, pressure (P) is 1 atm and temperature (T) is 273 K.4. Calculate the number of moles: Since the molar volume at STP is 22.4 L/mol, and the volume is equal to 22.4 liters, the number of moles of nitrogen gas is 1 mole.
5. Calculate the density: Density (ρ) is defined as mass divided by volume. Since we have one mole of nitrogen gas, which weighs 28.02 grams, we can calculate the density as follows:
ρ = [tex]\frac{m}{V}[/tex] ρ = [tex]\frac{28.02g}{22.4 L}[/tex] ρ = 1.25 g/LTherefore , the density of nitrogen gas at STP is 1.25 g/ L
Claims • Evidence • Reasoning Make a
claim about how the sun's energy affects the
climate of an area. Provide evidence with
factors supporting your claim. Explain your
reasoning
Answer:
The Earth spins on its axis, but it also precesses about that same axis - it wobbles - and the Earth’s temperature is affected. A Desert makes a terrible heat; look at Arabia - it was once COVERED IN LUSH greenery - that is where The oil came from, millions of years of pressure on all that detritus. Britain was once very famous (2000 years ago) for all its wines - not so much now, huh?
Explanation:
Final answer:
The sun's energy affects Earth's climate through its intensity and distribution due to natural cycles and Earth's orbital dynamics, contributing to weather patterns and temperature variations.
Explanation:
Claims, Evidence, and Reasoning on Sun's Energy and Climate:
Here's a claim about how the sun's energy affects the climate of an area: The intensity and distribution of solar energy directly influence Earth's climate, leading to variations in temperature and weather patterns across the globe. The evidence supporting this claim includes the observation of the sun's natural 11-year cycle, which brings about small changes in the energy output that can affect climate patterns minimally. Additionally, scientific data shows that changes in Earth's orbit, tilt, and axial position can significantly alter the distribution of sunlight, leading to seasonal climate changes and potentially contributing to longer-term climate variations.
The reasoning behind this claim lies in the understanding of the greenhouse effect and how it modulates global temperatures. Gases in Earth's atmosphere trap heat from the sun, which can be intensified by stronger solar intensity resulting in global warming or reduced with weaker solar intensity leading to global cooling. The interactions among Earth's climate system components also regulate the overall climate, with the sun being the primary source of energy driving these interactions.
What do radio waves and gamma rays have in common?
Answer: The sequence from longest wavelength (radio waves) to shortest wavelength (gamma rays) is also a sequence in energy from lowest energy to highest energy. ... The energy carried by a radio wave is low, while the energy carried by a gamma ray is high. Different materials can block different types of light.
PLEASE MARK BRAINLIEST
They are both electromagnetic waves.
I hope this helps :/
Which statements describe an element? Check all that apply.
Answer:
Hello, Your answer will be B,C,E, And F.
Explanation:
An element is a substance whose atoms have same number of protons which means all atoms in an element have same atomic number. Elements are simplest substances which cannot be broken down by physical changes or chemical reactions. Elements are classified by their names and symbols. Hope That Helps!
Answer:
your answer would be A,B and E
Explanation:
i got it right on edge
What is the molar mass of a 1.25 g sample of gas that occupies a volume of 1.00L at a pressure of 0.961 ATM and a temp of 27°C
Answer:
The molar mass of the gas is 32.03 g/mol
Explanation:
Pressure of gas = P = 0.961 atm
Volume occupied by gas = V = 1.00 L
Temperature = T = 27[tex]^{\circ}C[/tex] = 300 K
Assuming M g/mol be the molar mass of the gas and the gas behaves as an ideal gas.
The ideal gas equation is shown below
[tex]\textrm{PV} =\textrm{nRT} \\\textrm{PV} = \displaystyle \frac{m}{M}\textrm{ RT } \\0.961 \textrm{ atm}\times 1.00 \textrm{ L} = \displaystyle \frac{1.25 \textrm{ g}}{M}\times 0.0821 \textrm{ L.atm.mol}^{-1}.K^{-1}\times 300\textrm{K} \\M = 32.03 \textrm{ g/mol}[/tex]
Molar mass of given sample of gas = 32.03 g/mol
The two main categories of energy are ______ energy (stored energy) and __________ energy (energy presently doing work or causing change).
What is bond length?
Answer:
Bond length or bond distance is defined as the average distance between nuclei of two bonded atoms in a molecule.
Explanation:
Answer:
In molecular geometry, bond length or bond distance is defined as the average distance between nuclei of two bonded atoms in a molecule.
Explanation:
It is a transferable property of a bond between atoms of fixed types, relatively independent of the rest of the molecule.
The speed of a wave on a guitar string is 100 m/s, and the frequency is 1,000 Hz. what is the wavelength of the wave?
Answer:3
Explanation:
Cadaverine, a foul-smelling substance produced by the action of bacteria on meat, contains 58.55% C, 13.81% H, and 27.40% N by mass; its molar mass is 102.2 g/mol.
Cadaverine, a foul-smelling substance produced by the action of bacteria on meat, contains 58.55% C, 13.81% H, and 27.40% N by mass. The empirical formula of cadaverine is C2H7N.
Explanation:Cadaverine is a foul-smelling substance produced by the action of bacteria on meat. It contains 58.55% C, 13.81% H, and 27.40% N by mass, and its molar mass is 102.2 g/mol.
To determine the empirical formula of cadaverine, we need to find the ratio of the number of atoms in the compound. We can assume a 100 g sample, which means we have 58.55 g of carbon (58.55% of 100 g), 13.81 g of hydrogen, and 27.40 g of nitrogen.
To find the moles of each element, we divide the mass by its molar mass:
Now, we divide each mole value by the smallest mole value (1.96) to get the simplest whole number ratio:
Since we can't have fractions in a molecular formula, we round each ratio to the nearest whole number:
Therefore, the empirical formula of cadaverine is C2H7N.
Learn more about Cadaverine here:https://brainly.com/question/32748619
#SPJ3
Final answer:
Cadaverine is a diamine with a strong odor, resulting from bacterial decarboxylation of lysine in decaying meat. It is composed of C, H, and N, with a foul smell characteristic of decomposing animal matter. Aromatic amines, unlike cadaverine, are toxic and used industrially.
Explanation:
Cadaverine is a foul-smelling substance that is produced by the action of bacteria on meat. It contains 58.55% carbon (C), 13.81% hydrogen (H), and 27.40% nitrogen (N) by mass, and has a molar mass of 102.2 g/mol. This compound, along with another diamine called putrescine, is a result of the decarboxylation of amino acids, ornithine and lysine. These processes are part of what gives decaying animal matter its characteristic unpleasant odor. Amines like cadaverine are formed during the breakdown of proteins and often have odors associated with decay or putrefaction.
In contrast, aromatic amines are generally toxic and can be absorbed through the skin, requiring careful handling. They are used in industry in products like dyes and drugs but can be potent carcinogens.
Check all items common to bases.
minerals
metal
gas
H+
OH-
nitrogen
OH- is common to bases.
Explanation:
The base is a is an ionic compounds which when placed in aqueous solution dissociates in to a cation and an anion OH-.
The presence of OH- in the solution shows that the solution is basic or alkaline.
From Bronsted and Lowry concept base is a molecule that accepts a proton for example in NaOH, Na is a proton donor and OH is the proton acceptor.
A base accepts hydrogen ion and the concentration of OH is always higher in base.
There is a presence of conjugate acid and conjugate base in the Bronsted and Lowry acid and base.
Conjugate acid is one which is formed when a base gained a proton.
Conjugate base is one which is formed when an acid looses a proton.
And from the Arrhenius base Theory, the base is one that dissociates in to water as OH-.
Answer:
metal and OH-
Explanation:
The volume of a gas at 99.6 kPa and 24°C is 4.23 L. What volume will it occupy at 93.3 kPa ?
Final answer:
To find the new volume of the gas when the pressure changes from 99.6 kPa to 93.3 kPa, one applies Boyle's Law, resulting in a new volume of 4.53 L.
Explanation:
The question involves using Boyle's Law, which states that for a given mass of ideal gas at constant temperature, the product of pressure and volume is constant. In the given example, the initial condition is a volume of 4.23 L of gas at a pressure of 99.6 kPa. When the pressure changes to 93.3 kPa, we want to find out what the new volume of the gas will be, assuming temperature and amount remain constant. We can use the equation:
P1 * V1 = P2 * V2
Where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume respectively. Plugging in the initial conditions and solving for V2 gives us the formula:
V2 = (P1 * V1) / P2
Inserting the values:
V2 = (99.6 kPa * 4.23 L) / 93.3 kPa = 4.53 L
So the new volume of the gas will be 4.53 L after the pressure has been adjusted to 93.3 kPa.
The ___ vapor pressure at high altitudes causes a liquid to boil at a ____ temperature.
The _HIGHER__ vapor pressure at high altitudes causes a liquid to boil at a _LOWER___ temperature.
Explanation:
Vapor pressure is the pressure applied by the molecule of a liquid at the surface of the liquid as it transitions into a gaseous phase. When the vapor pressure exceeds the atmospheric pressure, this is when the liquid begins to boil. Therefore when the atmospheric pressure is low, then the liquid will boil at lower temperatures, because the vapor pressure of the liquid will overcome the atmospheric pressure at lower temperatures.
Answer:
The reduced vapor pressure at high altitudes causes a liquid to boil at a lower temperature.
Explanation:
A liquid will change its form when its vapor pressure higher than the atmospheric pressure. At higher altitudes, the air pressure will be lower since there will be less air above your head compared to the sea level. This means the atmospheric pressure will be lower, and the vapor pressure needed for the liquid will be reduced.
The pressure is directly proportional to temperature. Since the vapor pressure required is lower, the liquid can start to boil at a lower temperatures.
What energy comes in different forms?
Thermal energy
Mechanical energy
Chemical energy
Answer:
electromagnetic
Explanation: