A 2.00 g air‑inflated balloon is given an excess negative charge, q 1 = − 3.75 × 10 − 8 C, by rubbing it with a blanket. It is found that a charged rod can be held above the balloon at a distance of d = 6.00 cm to make the balloon float. Assume the balloon and rod to be point charges. The Coulomb force constant is 1 / ( 4 π ϵ 0 ) = 8.99 × 10 9 N ⋅ m 2 / C 2 and the acceleration due to gravity is g = 9.81 m / s 2 .

Answers

Answer 1

Answer:

(+2.093 × 10⁻⁷) C

Explanation:

Coulomb's law gives the force of attraction between two charges and it is given by

F = kq₁q₂/r²

where q₁ = charge on one of the two particles under consideration = charge on the balloon = - 3.75 × 10⁻⁸ C

q₂ = charge on the other body = charge on the rod = ?

k = Coulomb's constant = 1/(4 π ϵ₀) = 8.99 × 10⁹ N⋅m²/C²

r = distance between the two charges = d = 6.00 cm = 0.06 m

But for this question, the force of attraction between the charges was enough to lift the balloon and match its weight, Hence,

F = (kq₁q₂/d²) = - mg (negative because it's an attractive force)

m = mass of balloon = 2.00 g = 0.002 kg

g = acceleration due to gravity = 9.8 m/s²

(8.99 × 10⁹ × (-3.75 × 10⁻⁸) × q₂)/(0.06²) = 0.002 × 9.8

q₂ = (-0.002 × 9.8 × 0.06²)/(8.99 × 10⁹ × (-3.75 × 10⁻⁸)

q₂ = + 2.093 × 10⁻⁷ C


Related Questions

An electric motor is plugged into a standard wall socket and is running at normal speed. Suddenly, some dirt prevents the shaft of the motor from turning quite so rapidly. What happens to the back emf of the motor, and what happens to the current that the motor draws from the wall socket?


a.) The back emf decreases, and the current drawn from the socket decreases.
b.) The back emf increases, and the current drawn from the socket decreases.
c.) The back emf decreases, and the current drawn from the socket increases.
d.) The back emf increases, and the current drawn from the socket increases.

Answers

Final answer:

The back emf of the motor decreases due to reduced speed caused by dirt in the shaft, which, in turn, causes the current drawn from the wall socket to increase.

Explanation:

When dirt prevents the shaft of an electric motor from turning rapidly, the back emf produced by the motor decreases. Since the back emf is proportional to the motor's angular velocity, any decrease in speed results in a decrease in back emf. Because the back emf opposes the applied voltage from the wall socket, a decrease in back emf implies that the voltage across the motor's coil will increase, causing the motor to draw a larger current from the socket. Therefore, the current that the motor draws from the wall socket will increase. The correct answer to the question is (c) The back emf decreases, and the current drawn from the socket increases.

A transverse sine wave with an amplitude of 2.50 mm and a wavelength of 1.80 m travels from left to right along a long, horizontal stretched string with a speed of 36.0 m/s. Take the origin at the left end of the undisturbed string. At time t = 0, the left end of the string has its maximum upward displacement.


(a) What are the frequency and angular frequency of the wave?

(b) What is the wave number of the wave?

Answers

Answer:

(a)

[tex]f=20Hz\\And \\w=125.7s^{-1}[/tex]

(b)

[tex]K=3.490m^{-1}[/tex]

Explanation:

We know that the speed of any periodic wave is given by:

v=f×λ

The wave number k is given by:

K=2π/λ

Given data

Amplitude A=2.50mm

Wavelength λ=1.80m

Speed v=36 m/s

For Part (a)

For the wave frequency we plug our values for v and λ.So we get:

v=f×λ

[tex]36.0m/s=(1.80m)f\\f=\frac{36.0m/s}{1.80m}\\ f=20Hz\\[/tex]

And the angular speed we plug our value for f so we get:

[tex]w=2\pi f\\w=2\pi (20)\\w=125.7s^{-1}[/tex]

For Part (b)

For wave number we plug the value for λ.So we get

K=2π/λ

[tex]K=\frac{2\pi }{1.80m}\\ K=3.490m^{-1}[/tex]

The answers for this question are

a.) frequency of the wave is 20 Hz.

b.) angular frequency of the wave is [tex]125.71428\ s^{-1}[/tex]

c.) wave number of the wave is [tex]k=3.4920\ m^{-1}[/tex].

Given to us:

Amplitude A= 2.50 mm,

Wavelength λ= 1.80 m,

Velocity V= 36.0 m/sec,

a.) To find out frequency and angular frequency of the wave,we know

[tex]frequency=\dfrac{Velocity}{Wavelength}[/tex]

[tex]f=\dfrac{V}{\lambda}[/tex]

Putting the numerical value,

[tex]f=\dfrac{36}{1.80}\\\\f= 20\ Hz[/tex]

Therefore, the frequency of this wave is 20 Hz.

Also, for angular frequency

[tex]f=2\pi \omega[/tex]

Putting the numerical value,

[tex]\omega=2\pi f \\\\\omega=2\times\pi \times 20\\\\\omega= 125.71428\ s^{-1}[/tex]

Therefore, the angular frequency of this wave is [tex]125.71428\ s^{-1}[/tex].

b.) To find out the wave number of the wave (k),

The wave number for an EM field is equal to 2π divided by the wavelength(λ) in meters.

[tex]k=\dfrac{2\pi}{\lambda}[/tex]

Putting the numerical value,

[tex]k=\dfrac{2\pi}{\lambda}\\\\k=\dfrac{2\pi}{1.80}\\\\k=3.4920\ m^{-1}[/tex]

Therefore, the wave number of the wave is [tex]k=3.4920\ m^{-1}[/tex].

Hence, for this wave

a.) frequency of the wave is 20 Hz.

b.) angular frequency of the wave is [tex]125.71428\ s^{-1}[/tex]

c.) wave number of the wave is [tex]k=3.4920\ m^{-1}[/tex].

To know more visit:

https://brainly.com/question/3813804

A cube has one corner at the origin and the opposite cornerat the point (L,L,L). The sides of the cube are parallel to thecoordinate planes. The electric field in and around the cube isgiven by E=(a+bx)x+cy.Part A Find the total electric flux phi E through the surface of the cube. Express your answer in terms of a,b,c and L. Phi E=Part B This part will be visible after youcomplete previous item(s). Part C What is the net charge q inside the cube? Express your answer in terms of a,b,c ,L,and epsilon. q=

Answers

Answer:

Explanation:

in this case, flux and area vectors are parallel . therefore, flux is just the dot product of electric field and area vector.

(flux=EAcos0 =EA)

flux through the face x face

Physics homework question answer, step 1, image 1

the flux through -x face

Physics homework question answer, step 1, image1

Step 2

the flux through y face,

Physics homework question answer, step 2, image 2

the flux through -y face,

Physics homework question answer, step 2, image 2

the flux through the z faces are zero,

therefore, the net flux is,

Physics homework question answer, step 2, image 3

...

Final answer:

The total electric flux IS ΦE = aL2 + (a + bL)L2 + cL3 net charge is q = ε0 ( aL2 + (a + bL)L2 + cL3 )

Explanation:

The question asks to find the total electric flux ΦE through the surface of a cube with an electric field given by E = (a + bx)x + cy, and to determine the net charge q inside the cube.

Part A: Total Electric Flux through the Cube's Surface

To determine the electric flux through the cube, we need to use Gauss's Law, which relates the electric flux through a closed surface to the charge enclosed by the surface.

The electric flux ΦE through a surface is defined by the integral of the electric field E dotted with the differential area dA over the entire surface. Since the sides of the cube are parallel to the coordinate planes, the electric field components perpendicular to the x, y, and z faces will contribute to the flux.

In this case, only the x-component of the electric field (a + bx)x contributes to the flux through the surfaces perpendicular to the x-axis, which are at x = 0 and x = L.

The y-component cy of the electric field contributes to the flux through the surfaces perpendicular to the y-axis, which are at y = 0 and y = L. There is no z-component to the electric field, so the surfaces perpendicular to the z-axis will have no flux.

The total electric flux through the cube is thus:

ΦE = ∫( (a + bx) x + cy ) · dA

For the two faces perpendicular to the x-axis:

ΦE, x=0 = ∫( a x ) · dA = aL2 (at x = 0)

ΦE, x=L = ∫( (a + bL)x ) · dA = (a + bL)L2 (at x = L)

For the two faces perpendicular to the y-axis:

ΦE, y=0 = 0 (since cy is 0 at y = 0)

ΦE, y=L = ∫( cy ) · dA = cL3 (at y = L)

Summing these up:

ΦE = aL2 + (a + bL)L2 + cL3

Part C: Net Charge Inside the Cube

The net charge q inside the cube can be found using Gauss's Law, which states "the total electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity of free space (epsilon_0)."

q = ΦE ε0

Substituting the expression for ΦE we have:

q = ε0 ( aL2 + (a + bL)L2 + cL3 )

A bullet is fired with a horizontal velocity of 1500 ft/s through a 6-lb block A and becomes embedded in a 4.95-lb block B. Knowing that blocks A and B start moving with velocities of 5 ft/s and 9 ft/s, respectively, determine (a) the weight of the bullet, (b) its velocity as it travels from block A to block B.

Answers

Answer:

weight of the bullet is 0.0500 lb

velocity as it travels from block A to block B is 900 ft/s

Explanation:

given data

horizontal velocity = 1500 ft/s

mass block A = 6-lb

mass block B = 4.95 lb

blocks A velocity = 5 ft/s

blocks B velocity = 9 ft/s

solution

we apply here law of conservation of momentum that is

m × v(o) + m1 × (0) + m2 × (0) = m × v(2) + m1 × v1 + m2 × v2     ................1

put here value and we get m

m = [tex]\frac{m1 \times v1 +m2 \times v2}{v(o) - v2}[/tex]   ..............2

m = [tex]\frac{6 \times 5 + 4.95 \times 9}{1500 - 9}[/tex]  

m = 0.0500 lb

and

when here bullet is pass through the A block then moment is conserve that is

m × v(o) + m × v1 + m1 × v1   ............3

v1 = [tex]\frac{m\times v(o)- m1\times v1}{m}[/tex]    

v1 = [tex]\frac{0.0500\times 1500 - 61\times 5}{0.05}[/tex]  

v1 = 900 ft/s

The dimension of a room is 10 feet high, 40 feet long and 30 feet wide. If ¼ point of pyridine is allowed to volatilize in this room at NTP with nor ventilation, what is the concentration in mg/m3 and ppm for pyridine in this room? Pyridine s.g. = 0.98

Answers

Answer:

Concentration in mg/m^3 = 3845.39mg/m^3

in PPM =  3.84539 ppm

Explanation:

From the dimensions, we compute the volume (V)

V = 10 x 40 x 30 = 12000ft^3

Volatilize volume = 1/4 *12000 = 3000ft^3 at NTP

Volume of pyridine in the room = ( 12000 - 3000) = 9000ft^3

converting to meters = 9000 * (0.3048)^3m^3

= 254. 85m^3

Computing concentration(C) =  mass/s.g/volume

S.g converted to mg per meter cube = 0.98x1000= 0.98 * 10^3g/m^3 = 0.98 * 10^6mg/m^3

Hence concentration =  0.98 * 10^6/254.85 = 3845.39 mg/m^3

Parts per million denotes low concentration of a solution

1ppm = 1mg per liter , and 1 liter = 0.001m^3

Hence, this  =  3845.39/1000 = 3.84539 PPM

A thin aluminum rod lies along the x-axis and has current of I = 16.0 A running through it in the +x-direction. The rod is in the presence of a uniform magnetic field, perpendicular to the current. There is a magnetic force per unit length on the rod of 0.113 N/m in the −y-direction.

(a) What is the magnitude of the magnetic field (in mT) in the region through which the current passes?
(b) What is the direction of the magnetic field in the region through which the current passes?

Answers

Answer:

a) The magnitude of the magnetic field = 7.1 mT

b) The direction of the magnetic field is the +z direction.

Explanation:

The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by

F = (B)(I)(L) sin θ

F/L = (B)(I) sin θ

For this question,

(F/L) = 0.113 N/m

B = ?

I = 16.0 A

θ = 90°

0.113 = B × 16 × sin 90°

B = 0.113/16 = 0.0071 T = 7.1 mT

b) The direction of the magnetic field will be found using the right hand rule.

The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).

A charge Q is transfered from an initially uncharged plastic ball to an identical ball 12 cm away. The force of attraction is then 17 mN. How many electrons were transfered from one ball to the other

Answers

Answer:

Explanation:

The ball from which electrons are transferred will acquire Q charge and the ball receiving electrons will acquire - Q charge . force of attraction between them

= k Q² / d²

9 x 10⁹ x Q² / .12² = 17 X 10⁻³

Q² = .0272 X 10⁻¹²

Q = .1650 X 10⁻⁶ C

No of electrons = .1650 x 10⁻⁶ / 1.6 x 10⁻¹⁹

= .103125 x 10¹³

1.03125 x 10¹²

At a carnival, you can try to ring a bell by striking a target with a 7.76-kg hammer. In response, a 0.372-kg metal piece is sent upward toward the bell, which is 4.87 m above. Suppose that 29.7 percent of the hammer's kinetic energy is used to do the work of sending the metal piece upward. How fast must the hammer be moving when it strikes the target so that the bell just barely rings?

Answers

Answer:

3.93 m/s

Explanation:

Let the kinetic energy of hammer be 'K' and speed of hitting the target be 'v'.

Given:

Mass of the hammer (M) = 7.76 kg

Mass of the metal piece (m) = 0.372 kg

Kinetic energy of the hammer used by the metal piece = 29.7% of 'K' = 0.297K

Vertical height traveled by the metal piece (h) = 4.87 m

From conservation of energy, the kinetic energy used by the metal piece is transformed to the gravitational potential energy when it reaches the height of the bell.

Gravitational potential energy of the piece is given as:

[tex]U=mgh\\\\U=0.372\times 9.8\times 4.87=17.754\ J[/tex]

Now, as per question:

[tex]0.297K=17.754\ J\\\\K=\frac{17.754}{0.297}\\\\K=59.78\ J[/tex]

Therefore, the kinetic energy of the hammer is 59.78 J.

We know that,

Kinetic energy = [tex]\frac{1}{2}mv^2[/tex]

So, [tex]K=\frac{1}{2}mv^2[/tex]

Expressing in terms of 'v', we get:

[tex]mv^2=2K\\\\v^2=\frac{2K}{m}\\\\v=\sqrt{\frac{2K}{m}}[/tex]

Plug in the given values and solve for 'v'. This gives,

[tex]v=\sqrt{\frac{2\times 59.78}{7.76}}\\\\v=3.93\ m/s[/tex]

Therefore, the hammer must move with a speed of 3.93 m/s when it strikes the target so that the bell just barely rings.

The particle starts from rest at t=0. What is the magnitude p of the momentum of the particle at time t? Assume that t>0. Express your answer in terms of any or all of m, F, and t.

Answers

Answer:

Ft

Explanation:

We are given that

Initial velocity=u=0

We have to find the magnitude of p of the momentum of the particle at time t.

Let mass of particle=m

Applied force=F

Acceleration, [tex]a=\frac{F}{m}[/tex]

Final velocity , [tex]v=a+ut[/tex]

Substitute the values

[tex]v=0+\frac{F}{m}t=\frac{F}{m}t[/tex]

We know that

Momentum, p=mv

Using the formula

[tex]p=m\times \frac{F}{m}t=Ft[/tex]

The magnitude of the momentum of the particle after time, t is Ft = mv.

The given parameters:

initial velocity of the particle, u = 0

The magnitude of the momentum of the particle after time, t is calculated as follows;

[tex]P =mv[/tex]

The force applied to the particle is calculated as;

[tex]F = ma = \frac{mv}{t} \\\\Ft = mv[/tex]

Thus, the magnitude of the momentum of the particle after time, t is Ft = mv.

Learn more here:https://brainly.com/question/23927723

A circular coil with 169 turns has a radius of 2.6 cm. (a) What current through the coil results in a magnetic dipole moment of 3.4 A·m2? I= A (b) What is the maximum torque that the coil will experience in a uniform field of strength 0.03 T? τmax= Nm (c) If the angle between μ and B is 44.9∘, what is the magnitude of the torque on the coil? τ= Nm (d) What is the magnetic potential energy of coil for this orientation?

Answers

Answer with Explanation:

We are given that

Number of turns=n=169

Radius of coil=r=2.6 cm=[tex]2.6\times 10^{-2} m[/tex]

[tex]1 cm=10^{-2}m[/tex]

Area of circular coil=[tex]\pi r^2[/tex]

Where [tex]\pi=3.14[/tex]

Using the formula

Area of circular coil=[tex]3.14\times (2.6\times 10^{-2})^2=21.2\times 10^{-4}m^2[/tex]

a.Magnetic dipole  moment=[tex]\mu=3.4 Am^2[/tex]

[tex]I=\frac{\mu}{nA}[/tex]

Using the formula

[tex]I=\frac{3.4}{169\times 21.2\times 10^{-4}}[/tex]

[tex]I=9.5 A[/tex]

b.Magnetic field,  B=0.03 T

[tex]\tau_{max}=\mu B[/tex]

Substitute the value

[tex]\tau_{max}=3.4\times \times 0.03=0.102 Nm[/tex]

c.[tex]\theta=44.9^{\circ}[/tex]

[tex]\tau=\tau_{max}sin\theta[/tex]

Substitute the values

[tex]\tau=0.102sin44.9=0.07 Nm[/tex]

When there is a large difference in two resistor’s sizes, what useful approximations can be used when considering their series and parallel combinations? (This is a handy thing to know in circuit design!)

Answers

Answer:

Series circuit approximation = R1 >> R2 then R2 ≈ 0

Parallel circuit approximation = R1 << R2 then R2 ≈ 0

Explanation:

in a series circuit, if there is a large difference between two resistors then we can omit the resistor which has low resistance because the higher value resistor dominates.

R1 >> R2 then R2 ≈ 0

in a parallel circuit, if there is a large difference between two resistors then we can omit the resistor which has high resistance because the lower value resistor dominates.

R1 << R2 then R2 ≈ 0

A 0.9 µF capacitor is charged to a potential difference of 10.0 V. The wires connecting the capacitor to the battery are then disconnected from the battery and connected across a second, initially uncharged, capacitor. The potential difference across the 0.9 µF capacitor then drops to 2 V. What is the capacitance of the second capacitor?

Answers

Answer:

3.6μF

Explanation:

The charge on the capacitor is defined by the formula

q = CV

because the charge will be conserved

q₁ = C₁V₂

q₂ = C₂V₂ where C₂ V₂ represent the charge on the newly connected capacitor  and the voltage drop across the two capacitor will be the same

q = q₁ + q₂ = C₁V₂ + C₂V₂

CV = CV₂ + C₂V₂

CV - CV₂ = C₂V₂

C ( V - V₂) = C₂V₂

C ( V/ V₂ - V₂ /V₂) = C₂

C₂ = 0.9 ( 10 /2) - 1) = 0.9( 5 - 1) = 3.6μF

The deflection plates in an oscilloscope are 10 cm by 2 cm with a gap distance of 1 mm. A 100 volt potential difference is suddenly applied to the initially uncharged plates through a 1025 ohm resistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 55 volts?

Answers

Explanation:

Given data:

Area A = 10 cm×2 cm = 20×10⁻⁴ m²

Distance d between the plates = 1 mm = 1×10⁻³m

Voltage of the battery is emf = 100 V

Resistance = 1025 ohm

Solution:

In RC circuit, the voltage between the plates is related to time t. Initially the voltage is equal to that of battery V₀ = emf = 100V. But After time t the resistance and capacitor changes it and the final voltage is V that is given by

[tex]V = V_{0}(1-e^{\frac{-t}{RC} } )\\\frac{V}{V_{0} } = 1-e(^{\frac{-t}{RC} }) \\e^{\frac{-t}{RC} } = 1- \frac{V}{V_{0} }[/tex]

Taking natural log on both sides,

[tex]e^{\frac{-t}{RC} } = 1- \frac{V}{V_{0} } \\\frac{-t}{RC} = ln(1-\frac{V}{V_{0} } )\\t = -RCln(1 - \frac{V}{V_{0} })[/tex]

[tex]t = -RC ln (1-\frac{V}{V_{0} })[/tex]        (1)

Now we can calculate the capacitance by using the area of the plates.

C = ε₀A/d

  = [tex]\frac{(8.85*10^{-12))} (20*10^{-4}) }{1*10^{-3} }[/tex]

  = 18×10⁻¹²F

Now we can get the time when the voltage drop from 100 to 55 V by putting the values of C, V₀, V and R in the equation (1)

[tex]t = -RC ln (1-\frac{V}{V_{0} })[/tex]

 = -(1025Ω)(18×10⁻¹² F) ln( 1 - 55/100)

 = 15×10⁻⁹s

= 15 ns

A point charge of -3.0X10-5 C is placed at the origin of coordinates in vacuum. Find the electric field at the point x= 5.0 m on the x axis. Determine the acceleration of a proton (q=+e, m=1.67X10-27 kg) immersed in an electric field of strength 0.50 kN/C in vacuum. How many times greater is this acceleration than that due to gravity?

Answers

a) -10,800 N/C

b) [tex]4.79\cdot 10^{10}m/s^2[/tex]

c) [tex]4.88\cdot 10^9[/tex] times g

Explanation:

a)

The magnitude of the electric field produced by a single-point charge is given by

[tex]E=\frac{kQ}{r^2}[/tex]

where

k is the Coulomb's constant

Q is the charge producing the  field

r is the distance at which the field is calculated

In this problem:

[tex]Q=-3.0\cdot 10^{-5}C[/tex] is the c harge producing the field

[tex]r=5.0 m[/tex] is the distance at which we want to calculate the field

Substituting,

[tex]E=\frac{(9.0\cdot 10^9)(-3.0\cdot 10^{-5})}{(5.0)^2}=-10,800 N/C[/tex]

where the negative sign indicates that the direction of the field is towards the charge producing the field (for a negative charge, the electric field is inward, towards the charge)

b)

The force experienced by a charged particle in an electric field is given by

[tex]F=qE[/tex]

where

q is the magnitude of the charge

E is the electric field

Moreover, the force on an object can be written as:

[tex]F=ma[/tex]

where

m is the mass

a is the acceleration

Combining the two equations,

[tex]ma=qE\\a=\frac{qE}{m}[/tex]

In this problem:

[tex]q=1.6\cdot 10^{-19}C[/tex] is the charge of the proton

[tex]E=0.50 kN/C=500 N/C[/tex] is the strength of the electric field

[tex]m=1.67\cdot 10^{-27} kg[/tex] is the mass of the proton

Substituting, we find the acceleration of the proton:

[tex]a=\frac{(1.6\cdot 10^{-19})(500)}{(1.67\cdot 10^{-27})}=4.79\cdot 10^{10}m/s^2[/tex]

c)

The acceleration due to gravity is the acceleration at which every object near the Earth's surface falls down, in absence of air resistance, and it is given by

[tex]g=9.81 m/s^2[/tex]

On the other hand, the acceleration of the proton in this problem is:

[tex]a=4.79\cdot 10^{10} m/s^2[/tex]

To find how many times greater is this acceleration than that due to gravity, we can divide the acceleration of the proton by the value of g. Doing so, we find:

[tex]\frac{a}{g}=\frac{4.79\cdot 10^{10}}{9.81}=4.88\cdot 10^9[/tex]

So, it is [tex]4.88\cdot 10^9[/tex] times greater than g.

Final answer:

The electric field at the given point is -1.08×10⁳ N/C, which points towards the origin. The acceleration of a proton in a 0.50 kN/C electric field is 4.79×10ⁱ³ m/s². This acceleration is approximately 4.88×10ⁱ¹ times greater than the acceleration due to gravity.

Explanation:

To calculate the electric field at a point due to a point charge, we use Coulomb's law and the expression for the electric field, E = kQ/r², where k is Coulomb's constant (8.99×10⁹ N⋅m²/C²), Q is the charge, and r is the distance from the charge. Placing a charge of -3.0×10⁻⁵ C at the origin, the electric field at the point x= 5.0 m on the x-axis is calculated as follows:

E =  kQ/r²
=  (8.99×10⁹)(-3.0×10⁻⁵) / (5.0)²
=  -1.08×10⁳ N/C

The electric field points towards the negative charge, which is towards the origin.

To determine the acceleration of a proton in an electric field, we use the formula F = qE, where F is the force, q is the charge of the proton (1.60×10⁻⁵ C), and E is the electric field strength. The acceleration a is then found using Newton's second law, F = ma:

F = qE
= (1.60×10⁻⁵)(0.50×10⁳)
= 8.00×10⁻⁴ N

a = F/m
= 8.00×10⁻⁴ / 1.67×10⁻⁲⁷
=  4.79×10ⁱ³ m/s²

To find how many times greater this is compared to the acceleration due to gravity, we simply divide the proton's acceleration by the acceleration due to gravity (9.81 m/s²).

Number of times greater = a / g
=  4.79×10ⁱ³ / 9.81
=
≈ 4.88×10ⁱ¹ times

What is the magnitude of the acceleration of a speck of clay on the edge of a potter's wheel turning at 46 rpmrpm (revolutions per minute) if the wheel's diameter is 32 cmcm ?

Answers

Acceleration of a speck is 0.77 m/s²

Explanation:

Given of the solution-

Diameter (We can represent as d) = 32 cm

radius, (We can represent as r )= 32/2 = 16 cm = 0.16 m

Angular acceleration,(We can represent as  α ) = 46 rpm

[tex]\alpha = 46 * \frac{2\pi }{60}[/tex]

Acceleration, a = ?

We know that the formula for the acceleration is

[tex]a = r * \alpha[/tex]

[tex]a = 0.16 * 46 * \frac{2\pi }{60}\\ \\a = 0.16 * 46 * \frac{2 * 3.14}{60}[/tex]

[tex]a = 0.77m/s^2[/tex]

Therefore, acceleration of a speck is 0.77 m/s²

A white billiard ball with mass mw = 1.43 kg is moving directly to the right with a speed of v = 3.39 m/s and collides elastically with a black billiard ball with the same mass mb = 1.43 kg that is initially at rest. The two collide elastically and the white ball ends up moving at an angle above the horizontal of θw = 38° and the black ball ends up moving at an angle below the horizontal of θb = 52°. 1)What is the final speed of the white ball? m/s 2)What is the final speed of the black ball? m/s 3)What is the magnitude of the final total momentum of the system? kg-m/s 4)What is the final total energy of the system?

Answers

Answer: a) VW = 1.28m/s

b) Vb = 3.86m/s

c) p = 5.82kgm/s

d) E = 11.84J

Explanation: To solve this question, we make use of explosion formula in linear momentum concept.

Please find the attached file for the solution

The Acorn Insurance Company charges $3.50 for each unit of coverage under a block of 1-year term life insurance policies. The annual premium amount for a $50,000 policy in this block would be equal to ____.

Answers

Answer:

$175

Explanation:

Insurance premium is expressed as a rate $1000

($3.50 per $1000)

Therefore;

Annual premium= $50000x$3.50/$1000

= $175

Final answer:

The annual premium for a $50,000 policy at the rate of $3.50 per unit of coverage from the Acorn Insurance Company would be $175.00.

Explanation:

The Acorn Insurance Company charges $3.50 for each unit of coverage under a 1-year term life insurance policy. To calculate the annual premium for a $50,000 policy, we'll need to divide the total coverage amount by the unit price and then multiply by the cost per unit. Here's the math:

Total Coverage Needed: $50,000

Cost Per Unit of Coverage: $3.50

Number of Units: $50,000 / $1,000 = 50

Annual Premium: 50 units * $3.50 = $175.00

So, the annual premium amount for a $50,000 policy in this block would be $175.00.

The block has a weight of 75 lblb and rests on the floor for which μkμk = 0.4. The motor draws in the cable at a constant rate of 6 ft/sft/s. Neglect the mass of the cable and pulleys.

Answers

The given question is incomplete. The complete question is as follows.

The block has a weight of 75 lb and rests on the floor for which [tex]\mu k[/tex] = 0.4. The motor draws in the cable at a constant rate of 6 ft/sft/s. Neglect the mass of the cable and pulleys.

Determine the output of the motor at the instant [tex]\theta = 30^{o}[/tex].

Explanation:

We will consider that equilibrium condition in vertical direction is as follows.

           [tex]\sum F_{y} = 0[/tex]

         N - W = 0

           N = W

or,      N = 75 lb

Again, equilibrium condition in the vertical direction is  as follows.

        [tex]\sum F_{x} = 0[/tex]

       [tex]T_{2} - F_{k}[/tex] = 0

         [tex]T_{2} = \mu_{k} N[/tex]

                  = [tex]0.4 \times 75 lb[/tex]

                  = 30 lb

Now, the equilibrium equation in the horizontal direction is as follows.

         [tex]\sum F_{x} = 0[/tex]

       [tex]T Cos (30^{o}) + T Cos (30^{o}) = T_{2}[/tex]

          [tex]2T Cos (30^{o}) = T_{2}[/tex]

    or,             T = [tex]\frac{T_{2}}{2 Cos (30^{o})}[/tex]

                        = [tex]\frac{30}{2 Cos (30^{o})}[/tex]

                        = [tex]\frac{30}{1.732}[/tex]

                        = 17.32 lb

Now, we will calculate the output power of the motor as follows.

             P = Tv

                = [tex]17.32 lb \times 6[/tex]

                = [tex]103.92 \times \frac{1}{550} \times \frac{hp}{ft/s}[/tex]

                = 0.189 hp

or,             = 0.2 hp

Thus, we can conclude that output of the given motor is 0.2 hp.

Answer:

The out put power is 0.188 hp.

Explanation:

Given that,

Weight = 75 lb

Coefficient of friction = 0.4

Rate = 6 ft/s

Suppose, Determine the output of the motor at the instant θ = 30°.

For block,

We need to calculate the force in vertical direction

Using balance equilibrium equation in vertical

[tex]\sum{F_{y}}=0[/tex]

[tex]N-W=0[/tex]

[tex]N=W[/tex]

Put the value into the formula

[tex]N=75\ lb[/tex]

Using balance equilibrium equation in horizontal

[tex]\sum{F_{x}}=0[/tex]

[tex]T_{2}-f_{k}=0[/tex]

[tex]T_{2}=\mu_{k}N[/tex]

Put the value into the formula

[tex]T_{2}=0.4\times75[/tex]

[tex]T_{2}=30\ lb[/tex]

For pulley,

We need to calculate the force

Using balance equilibrium equation in horizontal

[tex]\sum{F_{x}}=0[/tex]

[tex]T\cos\theta+T\cos\theta=T_{2}[/tex]

[tex]2T\cos30=T_{2}[/tex]

[tex]T=\dfrac{T_{2}}{2\cos30}[/tex]

Put the value into the formula

[tex]T=\dfrac{30}{2\times\cos30}[/tex]

[tex]T=17.32\ lb[/tex]

We need to calculate the out put power

Using formula of power

[tex]P=Tv[/tex]

Put the value into the formula

[tex]P=17.32\times6[/tex]

[tex]P=103.92\ lb.ft/s[/tex]

[tex]P=0.188\ hp[/tex]

Hence, The out put power is 0.188 hp.

An object with total mass mtotal = 15.8 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.5 kg moves up and to the left at an angle of θ1 = 18° above the –x axis with a speed of v1 = 27.5 m/s. A second piece with mass m2 = 5.4 kg moves down and to the right an angle of θ2 = 23° to the right of the -y axis at a speed of v2 = 21.4 m/s. 1)What is the magnitude of the final momentum of the system (all three pieces)?

Answers

Answer:

Explanation:

total mass, M = 15.8 kg

initial velocity, u = 0 m/s

m1 = 4.5 kg

m2 = 5.4 kg

v1 = 27.5 m/s at an angle 18°

v2 = 21.4 m/s at an angle 23°

As there is no external force acts on the system, so the moemntum of the system is conserved.

Momentum before collision = momentum after collision

as the momentum before collision is zero, so the momentum after collision is also zero.

A comet orbits a star in a strongly elliptical orbit. The comet and star are far from other massive objects. As the comet travels away from the star, how does the kinetic energy and potential energy of the system change?

Answers

Answer:

the kinetic energy decreases and the potential energy Increases.

Explanation:

as the comet travels away from the star it gains an energy which it posses because of its position or state.once the comet moves away form the star the kinetic decreases until its lost all together to where the potential energy starts increasing.

Answer:

The potential energy increase and the kinetic energy decrease.

A lead block drops its temperature by 5.90 degrees celsius when 427 J of heat are removed from it. what is the mass of the block?(unit=kg)

Answers

Mass of the block is 0.557 kg

Solution:

The quantity of heat (q)  liberated during any process is equal to the product of the mass of the block (m), specific heat (C) and the change in temperature (ΔT). Specific heat of lead is 130 J/kg °C.

We have to rearrange the equation to find the mass of the block of lead as,

[tex]\begin{array}{l}\boldsymbol{q}=\boldsymbol{m} \times \boldsymbol{C} \times \boldsymbol{\Delta} \mathbf{T}\\ \\\boldsymbol{m}=\frac{\mathbf{q}}{\boldsymbol{c} \times \mathbf{\Delta} \mathbf{T}}\\ \\\mathbf{m}=\frac{427 \mathbf{J}}{13 \mathbf{0}_{\mathbf{4} *}^{\prime} \mathbf{r} \times \mathbf{s} \mathbf{9} \mathbf{0}^{*} \mathbf{c}}=\mathbf{0} . \mathbf{5} \mathbf{5} \mathbf{7} \mathbf{k} \mathbf{g}\end{array}[/tex]

Thus the mass (m) = 0.577 kg

Answer:

the correct answer is 0.57

Explanation:

A bulb pile is driven to the ground with a 2.5 ton hammer. The drop height is 22 ft and the volume in last batch driven is 4 cu ft. Establish the safe load if the number of blows to drive the last batch is 36, volume of base and plug is 27 cu ft, and the soil K value is 28.

Answers

Answer:

159.1 ton

Explanation:

The solution is shown in the attached file

Answer:

The safe load is 159 ton

Explanation:

The safe load is equal to:

[tex]L=\frac{WHBV^{2/3} }{K}[/tex]

Where:

W = weight of hammer = 2.5 ton

H = drop height = 22 ft

B = number of blows used to drive the last batch = 36/4 = 9 ft³

K = dimensionless constant = 28

V = uncompacted volume = 27 ft³

Replacing values:

[tex]L=\frac{2.5*22*9*(27^{2/3}) }{28} =159ton[/tex]

A 55-kg box rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.30, and the coefficient of kinetic friction is 0.20. What horizontal force must be applied to the box to cause it to start sliding along the surface

Answers

Answer:

The horizontal force that must be applied to the box to cause it to start sliding along the surface is 162N

Explanation:

To start sliding the box on the surface it must overcome its static frictional force  under equilibrium condition

The net force on the box is

F - fs = 0

F = fs = us N = us mg

Force = ( 0.3) x ( 55 kg) x ( 9.8 m/s^2) = 161.7 approximately 162 N

Horizontal force is defined as the forces that equal and opposite in the direction. The horizontal resultant force is always zero.

Given that:

Mass of box = 55 Kg

Coeeficient of Static friction = 0.30

Coefficient of kinetic friction = 0.20

The box if have to slide, then it would have to overcome the static force, such that:

F - Fs = 0

F = Fs

The force will be:

F = [tex]\rm \mu \times mass \times g[/tex]

F = [tex]0.3 \times 55 \times 9.8[/tex]

F = 161.7 Newton

Thus, the force required to slide the box is 161.7 Newton.

To know more about force, refer to the following link:

https://brainly.com/question/4456579

Two identical wires A and B are subject to tension. The tension in wire A is 3 times larger than that in wire B. Find the ratio of the frequencies of the first harmonic in these two wires, fA1 / fB1.

Answers

Answer:

1.732

Explanation:

Let

Tension in wire B=T

Tension in wire A=3 T

We have to find the ratio of the frequencies of the first harmonic in these two wires.

When two wires are identical then the length of both wires are same.

Suppose, the length of each wire=l

Frequency=[tex]\frac{1}{2l}\sqrt{\frac{T}{\mu}}[/tex]

Where [tex]\mu=[/tex]Mass per unit length

Mass per unit length of both wires are same because the two wires are identical.

[tex]\mu_A=\mu_B[/tex]

[tex]\frac{f_A}{f_B}=\frac{\frac{1}{2l}\sqrt{\frac{T_A}{\mu_A}}}{\frac{1}{2l}\sqrt{\frac{T_B}{\mu_B}}}[/tex]

[tex]\frac{f_A}{f_B}=\frac{\frac{1}{2l}\sqrt{\frac{T_A}{\mu_A}}}{\frac{1}{2l}\sqrt{\frac{T_B}{\mu_A}}}=\sqrt{\frac{T_A}{T_B}}=\sqrt{\frac{3T}{T}}[/tex]

[tex]\frac{f_A}{f_B}=\sqrt 3=1.732[/tex]

The ratio of the frequencies of the first harmonic in these two wires is [tex]\sqrt{3}[/tex].

The given parameters;

tension in wire A = Ttension in wire B = 3T

The frequency of first harmonic of each wire is calculated as follows;

[tex]F_ A = \frac{1}{2l} \sqrt{\frac{3T}{\mu} } \\\\F_B = \frac{1}{2l} \sqrt{\frac{T}{\mu} }[/tex]

where;

l is the length of the wiresT is the tension on the wireμ is the mass per unit length

The ratio of the two frequencies is calculated as follows;

[tex]\frac{F_A}{F_B} = \frac{\frac{1}{2l} \sqrt{\frac{3T}{\mu} } }{\frac{1}{2l} \sqrt{\frac{T}{\mu} } } \\\\\frac{F_A}{F_B} = \sqrt{\frac{3T}{T} } \\\\\frac{F_A}{F_B} = \sqrt{3}[/tex]

Thus, the ratio of the frequencies of the first harmonic in these two wires is [tex]\sqrt{3}[/tex].

Learn more here:https://brainly.com/question/14149129

A 10 kg turkey, He kicks the 0.5 kg ball with a force of 50N for 0.2 seconds and the ball flies straight away horizontally from turkey.?
What is the velocity of the ball after the kick?

What force did the turkey feel?

Why doesn’t the turkey go flying backward since the ball flies forward? Is momentum conserved?

Answers

Answer:

a. 20m/s

b.50N

c. Turkey has a larger mass than the ball. Neglible final acceleration and therefore remains stationery.

Explanation:

a. Given the force as 50N, times as 0.2seconds and the weight of the ball as 0.5 kg, it's final velocity can be calculated as:

[tex]F\bigtriangleup t=m\bigtriangleup v\\\\50N\times 0.2s=0.5kg\times \bigtriangleup v\\\\\bigtriangleup v=2(50N\times0.2)\\\\=20m/s[/tex]

Hence, the velocity of the ball after the kick is 20m/s

b.The force felt by the turkey:

#Applying Newton's 3rd Law of motion, opposite and equal reaction:

-The turkey felt a force of 50N but in the opposite direction to the same force felt by the ball.

c. Using the law of momentum conservation:

-Due to ther external forces exerted on the turkey, it remains stationery.

-The turkey has a larger mass than the ball. It will therefore have a negligible acceleration if any and thus remains stationery.

-Momentum is not conserved due to these external forces.

Final answer:

The velocity of the ball after the kick is 200 m/s. The turkey feels a force of 50N. The turkey doesn't go flying backward because of its greater mass compared to the ball.

Explanation:

The velocity of the ball after the kick can be calculated using the equation:

velocity = force / mass * time

Substituting the values, we get:

velocity = 50N / 0.5kg * 0.2s = 200 m/s

The force that the turkey feels can be determined using Newton's third law, which states that for every action, there is an equal and opposite reaction. So, the force the turkey feels will be the same as the force of the kick, which is 50N.

The turkey doesn't go flying backward because the turkey has a greater mass than the ball. According to Newton's second law, the acceleration of an object is inversely proportional to its mass. Since the turkey has a greater mass, it experiences less acceleration compared to the ball. Conservation of momentum is upheld in this situation, as the momentum of the turkey and ball together remains the same before and after the kick.

You shoot a 50.3-g pebble straight up with a catapult whose spring constant is 320.0 N/m. The catapult is initially stretched by 0.190 m. How high above the starting point does the pebble fly? Ignore air resistance.

Answers

Answer:

The pebble reaches a height of 11.716 m above the starting point.

Explanation:

Given:

Mass of pebble (m) = 50.3 g = 0.0503 kg [1 g = 0.001 kg]

Spring constant (k) = 320.0 N/m

Elongation of catapult (x) = 0.190 m

Height of fly (h) = ?

Air resistance is ignored. So, conservation of energy holds true.

The energy stored in the catapult on stretching it is elastic potential energy. This elastic potential energy is transferred to the pebble in the form of gravitational potential energy. Therefore,

Elastic potential energy = Gravitational potential energy

[tex]\frac{1}{2}kx^2=mgh\\\\h=\frac{kx^2}{2mg}[/tex]

Plug in the given values and solve for 'h'. This gives,

[tex]h=\frac{(320.0\ N/m)(0.190\ m)^2}{2(0.0503\ kg)(9.8\ m/s^2)}\\\\h=\frac{11.552\ Nm}{0.986\ N}\\\\h=11.716\ m[/tex]

Therefore, the pebble reaches a height of 11.716 m above the starting point.

The wheel of a stationary exercise bicycle at your gym makes one rotation in 0.670 s. Consider two points on this wheel: Point P is 10.0 cm from the rotation axis, and point Q is 20.0 cm from the rotation axis. Find the speed of point P on the spinning wheel.

Answers

Answer:

0.938 m/s.

Explanation:

Given:

ω = 1 rev in 0.67 s

In rad/s,

1 rev = 2pi rad

ω = 2pi ÷ 0.67

= 9.38 rad/s

Rp = 10 cm

= 0.1 m

V = ω × r

= 9.38 × 0.1

= 0.938 m/s.

The potential energy for a certain mass moving in one dimension is given by U(x)=(2.0J/m3)x3−(15J/m2)x2+(36J/m)x−23JU(x)=(2.0J/m3)x3−(15J/m2)x2+(36J/m)x−23JU(x) = (2.0 {\rm J/m}^{3})x^{3}- (15 {\rm J/m}^{2})x^{2}+ (36 {\rm J/m})x - 23 {\rm J}. Find the location(s) where the force on the mass is zero.

Answers

Answer:x=2 and x=3

Explanation:

Given

Potential Energy for a certain mass is

[tex]U(x)=2x^3-15x^2+36x-23[/tex]

and we know force is given by

[tex]F=-\frac{\mathrm{d} U}{\mathrm{d} x}[/tex]

[tex]F=-(2\times 3x^2-15\times 2x+36)[/tex]

For Force to be zero F=0

[tex]\Rightarrow 6x^2-30x+36=0[/tex]

[tex]\Rightarrow x^2-5x+6=0[/tex]

[tex]\Rightarrow x^2-2x-3x+6=0[/tex]

[tex]\Rightarrow (x-2)(x-3)=0[/tex]

Therefore at x=2 and x=3 Force on particle is zero.

At a waterpark, sleds with riders are sent along a slippery, horizontal surface by the release of a large, compressed spring. The spring with a force constant 37.0 N/cm and negligible mass rests on the frictionless horizontal surface. One end is in contact with a stationary wall. A sled and rider with total mass 66.0 kg are pushed against the other end, compressing the spring 0.370 m. The sled is then released with zero initial velocity.
What is the sled's speed when the spring is still compressed 0.180 m?

Answers

Answer:

2.2 m/s

Explanation:

solution:

To calculate change in stored energy at desired extension

ΔU = 1/2*k*(δx)^2

     = 1/2*3700*(0.37^2-0.180^2)

     = 201 N.m

use work energy theorem

ΔU = ΔK = 1/2*m*v^2 = 201

              = 2.2 m/s

note:

calculation maybe wrong but method is correct.

Explanation:

Below is an attachment containing the solution.

Ball B is suspended from a cord of length l attached to cart A, which can roll freely on a frictionless, horizontal track. The ball and the cart have the same mass m. If the cart is given an initial horizontal velocity v0 while the ball is at rest, describe the subsequent motion of the system, specifying the velocities of A and B for the following successive values of the angle θ (assume positive counterclockwise) that the cord will form with the vertical:
(a) θ = θmax
(b) θ = 0
(c) θ = θmin

Answers

Final answer:

The motion involves energy conversion between kinetic and potential energy, with ball B reaching maximum potential energy at θmax and θmin, and maximum kinetic energy at θ = 0. Cart A's velocity will be adjusted according to the change in motion of ball B, based on the conservation of momentum.

Explanation:

The question relates to the physics concept known as conservation of momentum and energy in the context of pendular motion and collisions within an isolated system. When cart A is given an initial velocity and ball B is at rest, the force that accelerates ball B will be the component of the tension in the string that acts horizontally, as there's no friction resistance on the track. During the motion, the total energy of ball B will be conserved, converting between potential energy when at its highest at θmax and θmin, and kinetic energy when passing through the lowest point at θ = 0. As the system consists of pendular motion, for a given displacement, the velocity of the pendulum and cart at various angles can be determined by using energy conservation.


 (a) At θ = θmax, ball B is momentarily at rest, as it has reached its maximum height and thus its velocity is zero. All its energy is potential.
 (b) At θ = 0, ball B passes through its lowest point, having maximum kinetic energy, and thus maximum velocity.
 (c) At θ = θmin, similar to the case at θmax, ball B is momentarily at rest at its minimum height (which should be symmetric to the maximum height if air resistance is negligible), with all its energy being potential.

Given that cart A and ball B have the same mass, the velocities can be tracked by considering the movement as a combination of the cart rolling and the pendulum swinging, respecting the conservation of angular momentum around the axis from which the ball B is suspended.

Other Questions
Determine the change in entropy for 2.7 moles of an ideal gas originally placed in a container with a volume of 4.0 L when the container was expanded to a final volume of 6.0 L at constant temperature. A solution with the indicator would turn from yellow to blue when which combination of factors exists? The difference between a manifest function and a latent function is that a manifest function has an __________ beneficial consequence and a latent function has an __________ consequence. Which of these could represent the second step of inquiry?Monica predicts that the warm setting on the washing machinewill get clothes the cleanest.OB. Monica washes three separate loads of very dirty laundry: one onthe cold setting, one on the warm setting, and one on the hotsetting.OC. Monica wonders which temperature setting on the washingmachine gets clothes the cleanest.OD. Monica writes down what three loads of laundry look like beforeand after she washes them on the cold, warm, or hot setting. What was the Education level serial killers Albert fish? How can you specify a page has the highest priority?You can specify a page has the highest priority by setting the priority tag to ____________? Brain and Zach went to village grille for lunch. Brian's lunch cost $4 less than 3 times Zach's. The total cost for lunch was $25.How much did each boy spend on lunch? A factory sells backpacks for $35 each. The cost to make 1 backpack is $15. In addition to the cost of making backpacks, the factory has operating expenses of $11,000 per week. The factory's goal is to make a profit of at least $7,800 per week. Write and solve an inequality that represents the number of backpacks, x, that need to be sold? * Meselson and Stahl designed an experiment that would allow them to discern whether DNA replication occurs in a dispersive, semiconservative, or conservative manner. They started with E. coli that had been growing for many generations in medium containing 15N. They then transferred the bacteria into medium containing only 14N, and allowed the bacteria to undergo two rounds of DNA replication. After each round of replication, the scientists performed density-gradient centrifugation of the DNA. The scientists reasoned that each of the three models would predict different DNA banding patterns after the two rounds of replication. Can you identify the banding patterns predicted by each model after the first round of replication How do the number of chromosomes in cells that go through meiosis and mitosis compare? A. Cells that go through meiosis have half as many chromosomes as cells that go through mitosis. B. Cells that go through meiosis have one-fourth as many chromosomes as cells that go through mitosis. C. Cells that go through meiosis have twice as many chromosomes as cells that go through mitosis. D. Cells that go through meiosis have four times as many chromosomes as cells that go through mitosis. Margaret, a researcher, wants to conduct a field experiment to determine the effects of a shopping mall's ambience on the purchasing behavior of consumers. However, she has to deal with other influencing factors such as noise, crowd, and space distribution. She wants to avoid them by using randomization. In this scenario, noise, crowd, and space are ________ variables. 3 For the compensation D(s) = 25 s + 1 s + 15 use Eulers forward rectangular method to determine the difference equations for a digital implementation with a sample rate of 80Hz. Repeat the calculations using the backward rectangular method and compare the difference equation coefficients. Prudence, indeed, will dictate that Governments long established should not be changed for light and transient causes; and accordingly all experience hath shewn, that mankind are more disposed to suffer, while evils are sufferable, than to right themselves by abolishing the forms to which they are accustomed.These lines from the Declaration of Independence are an example of the use of _______________. ethos logos theme purpose the zero sum fallacy refers to a. You gaining only if someone else loses b. The allocation of the pieces of the total economic pie- if you eat the piece, I cannot consume it c. Ignores the possibility of the total pie growing itself d. All of the above HELP PLEASE 98 pointsGiven: BD is an altitude of ABC .Prove: sinAa=sinCcTriangle A B C with an altitude B D where D is on side A C. side A C is also labeled as small b. Side A B is also labeled as small c. Side B C is also labeled as small a. Altitude B D is labeled as small h.Select from the drop-down menus to correctly complete the proof.StatementReason BD is an altitude of ABC .Given ABD and CBD are right triangles.Definition of right trianglesinA=hc and sinC=hacsinA=h and asinC=hcsinA=asinCcsinAac=asinCacDivision Property of EqualitysinAa=sinCcSimplify. Which of the following statements is true concerning the distribution of safe payments? The distribution of safe payments assumes that any capital deficit balances will prove to be a total loss to the partnership. Safe payments are equal to the recorded capital balances of partners with positive capital balances. The distribution of safe payments may only be made after all liabilities have been paid. In computing safe payments, partners with positive capital balances are assumed to absorb an equal share of any deficit balance(s). There are no safe payments until the liquidation is complete. A policy in which all exit doors for a building stay unlocked during a fire is an example of what type of policy? If f(x) = 2x - 4 and g(x) = x^2+3, find each value.19. (f - g)(x)20. (f g)(x) You work for a marketing firm that has just landed a contract with Run-of-the-Mills to help them promote three of their products: penguin patties, flopsicles, and kipples. All of these products have been on the market for some time, but, to entice better sales, Run-of-the-Mills wants to try a new advertisement that will market two of the products that consumers will likely consume together. As a former economics student, you know that complements are typically consumed together while substitutes can take the place of other goods.Run-of-the-Mills provides your marketing firm with the following data: When the price of penguin patties increases by 5%, the quantity of flopsicles sold decreases by 4% and the quantity of kipples sold increases by 5%. Your job is to use the cross-price elasticity between penguin patties and the other goods to determine which goods your marketing firm should advertise together.Complete the first column of the following table by computing the cross-price elasticity between penguin patties and flopsicles, and then between penguin patties and kipples. In the second column, determine if penguin patties are a complement to or a substitute for each of the goods listed. Finally, complete the final column by indicating which good you should recommend marketing with penguin patties.Relative to Penguin Patties Relative to Penguin Patties Recommend Marketing- with Penguin PattiesCross-Price Elasticity- Complement or Substitute of Demand Flopsicles Kipples Digital subscriber lines: are very-high-speed data lines typically leased from long-distance telephone companies. are assigned to every computer on the Internet. operate over existing telephone lines to carry voice, data, and video. have up to twenty-four 64-Kbps channels. operate over coaxial cable lines to deliver Internet access.