The Final temperature of the mixture is -10.54 °C.
Heat lost by copper = heat gained by the water
Formula:
CM(z-y) = cm(y-x)................. equation 1
Where:
C = Specific heat capacity of copperM = mass of coppery = Final temperature of the mixturez = Initial temperature of the copperc = specific heat capacity of waterm = mass of waterx = Initial temperature of waterMake y the subject of the equation:
y = (CMz-cmx)/(CM+cm)............. Equation 2From the question,
Given:
M = 155 g = 0.155 kgm = 250 g = 0.25 kgz = 150°Cx = 19.8°CC = 389 J/kg.Kc = 4182 J/kg.KSubstitute these values into equation 2
y = [(389×0.155×150)-(4182×0.25×19.8)]/[(389×0.155)+(4182×0.25)y = (9044.25-20700.9)/(60.295+1045.5)y = -11656.65/1105.795y = -10.54 °CHence, The Final temperature of the mixture is -10.54 °C
Learn more about temperature here: https://brainly.com/question/21874941
Isopentane is a compound containing a branched carbon chain. a newman projection is given for six conformations
Isopentane is a branched-chain alkane with unique properties compared to pentane and neopentane.
Isopentane is a branched-chain alkane with the molecular formula C5H12. It is one of the isomers of pentane, along with neopentane. These isomers have different properties, such as boiling points: pentane (36.1°C), isopentane (27.7°C), and neopentane (9.5°C).
The amount of energy required to heat water for a 10-minute shower (50 gallons) is 2.2125 kJ. How many calories is this?
Final answer:
The energy required to heat water for a 10-minute shower, which is 2.2125 kJ, is approximately 529 calories when converted from kilojoules to calories using the conversion factor 1 calorie = 4.184 joules.
Explanation:
The student asked how much energy in calories is required to heat water for a 10-minute shower, given that it takes 2.2125 kJ of energy to heat 50 gallons of water. To convert this energy from kilojoules (kJ) to calories, we use the conversion factor 1 calorie = 4.184 joules. Since 1 kJ = 1000 joules, the calculation is 2.2125 kJ × 1000 joules/kJ × (1 calorie/4.184 joules). Performing this calculation gives us approximately 529 calories.
To clarify the process:
Multiply the amount of energy in kJ by 1000 to convert it to joules.
Divide the result by 4.184 to convert joules to calories.
Therefore, the amount of energy required to heat water for a 10-minute shower in calories is approximately 529 calories.
Helppppppppppppppp helppppppppp
What does the hydrolysis of atp do in a ca2+ pump or na+/k+ pump?
How many grams of ko2 are needed to form 8.5 g of o2?
Final answer:
To produce 8.50 grams of O2, you need 25.18 grams of KO2, calculated by using stoichiometry based on the balanced equation 4 KO2 + 2 CO2 → 2 K2CO3 + 3 O2.
Explanation:
To determine the number of grams of KO2 needed to form 8.50 grams of O2, we must first write down the balanced chemical equation and then use stoichiometry to perform the calculations.
The balanced equation for the reaction is:
4 KO2(s) + 2 CO2(g) → 2 K2CO3(s) + 3 O2(g)
First, find the molar mass of O2 and KO2. The molar mass of O2 is approximately 32.00 g/mol, and for KO2, it is approximately 71.10 g/mol.
Then, determine how many moles of O2 are produced from the given mass:
8.50 g O2 × (1 mol O2 / 32.00 g O2) = 0.2656 mol O2Using the balanced equation, calculate the moles of KO2 needed to produce 0.2656 mol of O2:
(0.2656 mol O2) × (4 mol KO2 / 3 mol O2) = 0.3541 mol KO2Finally, convert moles of KO2 to grams:
(0.3541 mol KO2) × (71.10 g KO2 / 1 mol KO2) = 25.18 g KO2Therefore, 25.18 grams of KO2 are needed to form 8.50 grams of O2.
Nutritional tables give the potassium content of a standard apple (3 apples/lb) as 159 mg. how many grams of potassium are in 4.82 kg of apples?
From the parameters given:
For a standard apple, the potassium content = 159 mg
To determine the potassium content(in grams) in 4.82 kg of apples;
Then, we need to consider the conversion factors;
Recall that:
1 kg = 2.2 lbs
∴
4.82 kg will be =[tex]\mathbf{\dfrac{( 4.82 \ kg \times 2.2 \ lbs)}{1 \ \ kg}}[/tex]
4.82 kg will be = 10.604 lbs
However, Since there are three apples, then the potassium content in the apples will be:
= 3 apples/lb × 10.604 lbs
= 31.812 apples
Now, if the potassium content of a single standard apple = 159 mg
Thus, for 31.812 apples, we have the potassium content to be:
= 31.812 × 159 mg
= 5058.108 mg
We know that:
1 milligram(mg) = 0.001 gram(g)
5058.108 mg will be equal to:
[tex]\mathbf{= \dfrac{5058.108 \ mg \times 0.001 \ g}{1 mg}}[/tex]
= 5058.108 × 0.001 g
≅ 5.058 g
Therefore, we can conclude that the number of grams in 4.82 kg of apples is 5.058 g
Learn more about potassium here:
https://brainly.com/question/13321031?referrer=searchResults
Calculate the percent by mass of C in pentaerythritol (C(CH2OH)4)
Answer:
[tex]C= 44.12%[/tex] % of C
Explanation:
Hi, the empirical formula of the pentaerythritol is {tex]C_5H_{12}O_4[/tex]
The molecular weights are:
[tex]M_C=12 g/mol[/tex]
[tex]M_H=1 g/mol[/tex]
[tex]M_O=16 g/mol[/tex]
Due to the empirical formula in 1 mol of pentaerythritol you have 5 mol of C, 12 mol of H and 4 mol O
Taking a calculation base of 1 mol:
[tex]m_C=12 g/mol*5mol[/tex]
[tex]m_C=60 g[/tex]
[tex]m_H=1 g/mol*12mol[/tex]
[tex]m_H=12 g[/tex]
[tex]m_O=16 g/mol*4mol[/tex]
[tex]m_O=64 g[/tex]
The total weight will be:
[tex]m_{tot}=64 g +12 g +60 g= 136 gl[/tex]
The C%:
[tex]C= \frac{m_C}{m_{tot}}*100%[/tex]
[tex]C= \frac{60g}{136g}*100%[/tex]
[tex]C= 44.12%[/tex]
Conditions for an experimental chemistry reaction require a temperature of 300 K. The temperature in the lab is 55 F. Which of the following must you do to meet the requirements?
Answer:
decrease the room temperature by 26°F
F=95(K−273)+32 .
21 g each of Li (molar mass = 7 g/mol) and N2 (molar mass = 28 g/mol) are placed in a reaction vessel. What is the maximum mass of Li3N (molar mass = 35) that can be produced?
Given 21 grams each of Lithium (Li) and Nitrogen (N2), the maximum mass of Lithium Nitride (Li3N) that can be produced is 52.5 grams.
Explanation:The chemical reaction between Lithium (Li) and Nitrogen (N2) can be represented as:
6Li + N2 → 2Li3N
From this balanced chemical equation, it is clear that 6 moles of Li react with 1 mole of N2 to produce 2 moles of Li3N. Given that the molar mass of Li is 7 g/mol and that of N2 is 28 g/mol, if we have 21 g each of Li (3 moles) and N2 (0.75 moles), the limiting reactant is N2 because we have fewer moles of N2 compared to Li according to the stoichiometry of the reaction.
Because N2 is our limiting reactant, we can only produce a stoichiometrically equivalent amount of Li3N based on the moles of N2. Thus, for every mole of N2, we produce 2 moles of Li3N. Therefore, if we have 0.75 moles of N2, we could produce 1.5 moles of Li3N. Given that the molar mass of Li3N is 35 g/mol, the maximum mass of Li3N that can be produced is 52.5 g.
Learn more about Limiting Reactant here:https://brainly.com/question/33417913
#SPJ11
Approximately 1.0g of caffeine will dissolve in 28ml of methylene chloride and in 46ml of water. calculate the distribution coefficient of caffeine in this solvent system.
The distribution coefficient of caffeine in this solvent system is approximately 0.579.
Explanation:The distribution coefficient of caffeine in this solvent system can be calculated using the formula:
Distribution Coefficient = Mass of Caffeine in Methylene Chloride / Mass of Caffeine in Water
From the given information, we know that approximately 1.0g of caffeine dissolves in 28ml of methylene chloride and in 46ml of water. Therefore, the distribution coefficient can be calculated as:
Distribution Coefficient = 1.0g / 28ml / (1.0g / 46ml) ≈ 0.579
How calculate how many milliliters of glycerin (specific gravity=1.26) will have a mass of 0.75 lbs?
To calculate the volume in milliliters of glycerin with a mass of 0.75 lbs, first convert the mass to kilograms, then use the specific gravity of glycerin (1.26) to find its density and divide the mass by this density to get the volume, which is then converted from cubic meters to milliliters.
To calculate the volume of glycerin in milliliters with a mass of 0.75 lbs, we need to use the specific gravity and the relationship between mass, density, and volume. The specific gravity of glycerin is given as 1.26, which means glycerin is 1.26 times denser than water at the same temperature and pressure. The density of water is approximately 1 g/cm³ or 1000 kg/m³.
To find the density of glycerin, we multiply the specific gravity by the density of water: density of glycerin = 1.26 x 1000 kg/m³ = 1260 kg/m³.
Next, we need to convert 0.75 pounds to kilograms, knowing that 1 pound is equivalent to 0.453592 kilograms. Therefore, the mass of glycerin is 0.75 lbs x 0.453592 kg/lbs = 0.340194 kg.
To find the volume in cubic meters, we divide the mass by the density: volume of glycerin = 0.340194 kg / 1260 kg/m³ = 0.00027015 m³.
Finally, to convert cubic meters to milliliters, we use the conversion factor that 1 m³ is equal to 1,000,000 milliliters, resulting in a volume of glycerin of about: 0.00027015 m³ x 1,000,000 mL/m³ = 270.15 mL of glycerin.
How many fe atoms are contained in 787 g of fe?
Answer:
[tex]atomsFe=8.49x10^{24}atomsFe[/tex]
Explanation:
Hello,
To find the required atoms, we proceed to develop the following mole-mass-atom relationship:
[tex]atomsFe=787gFe*\frac{1molFe}{55.845gFe}*\frac{6.022x10^{23}atomsFe}{1molFe}\\atomsFe=8.49x10^{24}atomsFe[/tex]
Best regards.
What is the density of an object having a volume of 253 ml and a mass of 91.6 g?
An unknown element, x, reacts with rubidium to form the compound rb2x. in other compounds this element also can accommodate up to 12 electrons rather than the usual octet. what element could x be?
There are few elements that can form 12 electron rather than the usual 8. Therefore these are the possible answers:
Sulfur = 2Na + S --> Na2S
Selenium = 2Na + Se --> Na2Se
Tellurium = 2Na + Te --> Na2Te
The element in question is sulfur(S).
Rubidium belongs to group 1 in the periodic table. It is an alkali metal hence it has a valency of 1. An element that could form a compound of the formula Rb2X must be a group 16 element. The elements of group 16 has a valency of 2.
Among the options, the only element of group 16 listed is sulfur(S). Sulfur is capable of expanding its octet and accommodating up to 12 electrons. Hence, the element in question is sulfur(S).
Learn more: https://brainly.com/question/11587934
An unknown element, X, reacts with rubidium to form the compound Rb2X . In other compounds this element also can accommodate up to 12 electrons rather than the usual octet. What element could X be?
A. Mg
B. O
C. Cl
D. S
Jane is sliding down a slide. What kind of motion is she demonstrating?
Write a structural formula for 1-pentanol, the alcohol derived from pentane, by making a substitution on one of the carbon atoms.
Final answer:
The structural formula for 1-pentanol, an alcohol derived from pentane, is CH3(CH2)3CH2OH, with the OH group attached to the first carbon atom of the pentane chain.
Explanation:
To write the structural formula for 1-pentanol, start by considering the structure of pentane, C5H12. Since 1-pentanol is an alcohol derived by making a substitution on one of the carbon atoms of pentane, you replace a hydrogen on the first carbon with an OH (hydroxyl group). This yields the structural formula for 1-pentanol, which is CH3(CH2)3CH2OH, with the OH group attached to the first (terminal) carbon. 1-Pentanol is an alcohol with its hydroxyl group attached to the end carbon atom in the five-carbon chain. Therefore, the molecule is named as such, and the number 1 in 1-pentanol shows that the hydroxyl group is on the first carbon. The molecular ion mass (M+1) is 102, and this molecule would be a substituted alkane if additional substituents like chlorine were added.
What physical property makes wax good for making sculptures
Answer: Melting point.
Explanation:
The melting point of wax is very low which makes it suitable for making sculptures. It needs molding, cutting and melting of wax to make a sculpture.
such kind of modification in the wax is done by melting it at low temperature. More heat and effort is not required with wax as compared to other substances.
The wax cools down very easily after melting, it is hard when cools down and soft when heated to make the proper shape. All these properties makes the wax more suitable for making sculptures.
The speed of light is 3.00×108m/s. How long does it take for light to travel from Earth to the Moon and back again?
Which is made by weathering?
A.Sediments
B.Ash
C.Minerals
D.Magma
"The correct answer is A. Sediments.
Weathering is the process by which rocks are broken down into smaller particles and altered chemically by the action of water, wind, and temperature changes. This process occurs in situ, meaning it happens where the rock is located, without any transport of the material. The products of weathering include soil, ions in solution, and small particles known as sediments. These sediments can be transported by agents such as water, wind, ice, or gravity to other locations where they may eventually form sedimentary rocks.
Let's consider the other options:
B. Ash - Ash is typically the product of volcanic eruptions and is composed of fragmented rock and glass particles that are ejected into the atmosphere during an eruption. It is not formed by weathering.
C. Minerals - Minerals are naturally occurring inorganic solids with a definite chemical composition and crystal structure. They are the building blocks of rocks and can be altered by weathering, but they are not created by the weathering process itself.
D. Magma - Magma is molten rock that is found beneath the Earth's surface. It can contain crystals, dissolved gases, and sometimes even bits of solid rock. Magma is formed by the melting of existing rock within the Earth's mantle or crust, not by weathering.
Therefore, the most accurate answer to the question of which is made by weathering is A. Sediments."
A molecular biologist measures the mass of cofactor a in an average yeast cell. the mass is 41.5 pg . what is the total mass in micrograms of cofactor a in a yeast colony containing 105 cells? write your answer as a decimal.
Balance the chemical equation, with the states of matter, describing the complete combustion of propane gas (c3h8).
The balanced chemical equation for the complete combustion of propane (C3H8) is: C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g). This shows propane reacting with oxygen to yield carbon dioxide and water, an example of complete combustion.
Explanation:The complete combustion of propane (C3H8) involves the reaction between propane and oxygen (O2) to yield carbon dioxide (CO2) and water (H2O). The balanced equation for this chemical reaction, with states of matter, is: C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g). This equation shows that one propane molecule reacts with five oxygen molecules to produce three carbon dioxide molecules and four water molecules. This reaction is a common example of complete combustion, in which the fuel fully burns in the presence of oxygen to produce carbon dioxide and water. If there isn't enough oxygen for complete combustion, incomplete combustion occurs, generating carbon monoxide (an extremely poisonous gas) and/or soot (unburned carbon particles).
Learn more about Combustion of Propane here:https://brainly.com/question/12328568
#SPJ12
Iron has a density of 7.86 g/cm3 (1 cm3=1 mL). Calculate the volume (in dL) of a piece of iron having a mass of 3.67 kg . Note that the density is provided in different units of volume and mass than the desired units of volume (dL) and the given units of mass (kg). You will need to express the density in kg/dL (1 cm3 = 1 mL) before calculating the volume for the piece of iron
a patient is to receive 25 mg of methimazole, a drug used to treat hyperthyroid conditions. the drug is dissolved in solution containing 6.0 mg/mL
The volume of methimazole solution required to deliver a 25 mg dose of the drug, given a concentration of 6.0 mg/mL, is a little over 4 mL.
Explanation:The patient needs to receive 25 mg of methimazole that is available at a concentration of 6.0 mg/mL. To calculate the volume, we'll use the simple formula: volume = desired dose / concentration. Therefore, the volume = 25 mg / 6.0 mg/mL, which results in a little more than 4 mL, which is the amount of methimazole solution needed for the patient's dose.
Learn more about drug dosage calculation here:https://brainly.com/question/36537081
#SPJ11
how many significant figures are in measurement 0.00304kg
Which is the correct Lewis structure for carbononitridic chloride (CNCl)? A B C
Explanation:
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
In structure of carbononitridic chloride , chlorine atom is single bonded to carbon where as carbon is bonded by triple bond with nitrogen atom. It is a linear molecule.
Carbononitridic chloride (CNCl) = Cl-C≡N
The Lewis dot structure of carbononitridic chloride is given in an image.
Classify these compounds as strong electrolytes weak electrolytes or nonelectrolytes. fecl2 hf
FeCl2, or iron(II) chloride, is a strong electrolyte, while HF, or hydrofluoric acid, is a weak electrolyte.
Explanation:To classify the compounds FeCl2 and HF as strong electrolytes, weak electrolytes, or nonelectrolytes, we first need to understand what these terms mean. An electrolyte is a substance that produces an electrically conducting solution when dissolved in water based on its ability to dissociate into ions.
FeCl2, or iron(II) chloride, is a strong electrolyte. In solution, FeCl2 completely dissociates into iron(II) cations (Fe2+) and chloride anions (Cl-) sustaining an electric current.
HF, or hydrofluoric acid, is a weak electrolyte. This is because it partially dissociates into H+ ions and F- ions in solution, thus conducting electricity less than strong electrolytes.
Learn more about Electrolytes here:https//brainly.com/question/33930290
FeCl2 is a strong electrolyte because it dissociates completely in water, and HF is a weak electrolyte as it only partially dissociates in water.
Explanation:The classification of compounds as electrolytes or nonelectrolytes is based on their ability to conduct electricity when dissolved in water. This depends on whether they dissociate into ions in solution. For the compounds FeCl2 and HF:
FeCl2 (Iron II Chloride): This compound is ionic and when it dissolves in water, it dissociates completely into its constituent ions, Fe2+ and Cl-. This characteristic makes it a strong electrolyte.HF (Hydrofluoric Acid): While HF is an acid, it is a weak one. This means it dissociates only partially in water to form H+ and F- ions, so it is a weak electrolyte.Learn more about Electrolytes here:https://brainly.com/question/32888859
#SPJ3
How are deltas and rivers similar?
Answer:
The answer for this question would be B. Both feed into other bodies of water.
A 257-ml sample of a sugar solution containing 1.10 g of the sugar has an osmotic pressure of 31.5 mm hg at 39°c. what is the molar mass of the sugar
To find the molar mass of the sugar, rearrange the osmotic pressure formula II = MRT, solve for M (molarity), use the given osmotic pressure and temperature in Kelvin to calculate the molarity, and then use the molarity and given mass of the sugar to find the molar mass.
Explanation:To find the molar mass of the sugar, we need to rearrange the osmotic pressure formula (II = MRT) to solve for M (molarity). We can use the given osmotic pressure (31.5 mmHg) and temperature (39°C) in Kelvin (312 K) to calculate the molarity.
Then, we can use the molarity and the given mass of the sugar (1.10 g) to find the number of moles. Finally, dividing the mass by the number of moles will give us the molar mass of the sugar, which is approximately 176.1 g/mol.
Learn more about molar mass of sugar here:https://brainly.com/question/34318468
#SPJ12
Which compound matches the ir spectrum best?
The matching compound to an IR spectrum can be determined by comparing the light absorption behaviors of distinct compounds to what is suggested by the spectrum. These behaviors—whether red, orange, yellow, or blue-green—are resultant of specific ligands' influence on their color of coordination complexes.
Explanation:To determine which compound matches an IR spectrum best, we evaluate the influence of the specific ligands coordinated to the metal center. This influence is on the color of coordination complexes by causing changes in light absorption due to alterations in energy between d orbitals. For example, compounds with strong-field ligands typically present as yellow, orange or red as they absorb higher-energy violet or blue light.
However, compounds with weak-field ligands are often blue-green, blue or indigo as they absorb lower-energy yellow, orange or red light. That's why the iron(II) complex [Fe(H₂O)6]SO4 appears blue-green, while the low-spin iron(II) complex K4[Fe(CN)6] appears pale yellow.
With the understanding of these principles, it's possible that you could identify the compound that matches the IR spectrum best by comparing the light absorption behaviors and corresponding colours of the respective compounds against those suggested by the spectrum.
Learn more about IR Spectrum here:https://brainly.com/question/29753167
#SPJ6
An automobile gasoline tank holds 22 kg of gasoline. When the gasoline burns, 86 kg of oxygen is consumed and carbon dioxide and water are produced. What is the total combined mass of carbon dioxide and water produced?
The total combined mass of carbon dioxide and water produced from the combustion of 22 kg of gasoline is 198 kg.
Explanation:The total combined mass of carbon dioxide and water produced can be calculated by balancing the chemical equation of the combustion of gasoline and determining the molar ratios. From the given information, when 22 kg of gasoline burns, 86 kg of oxygen is consumed. Using the balanced equation, we can calculate the molar ratio between gasoline and carbon dioxide and water as follows:
2 mol of gasoline produces 8 mol of carbon dioxide and 10 mol of water.
Therefore, the total combined mass of carbon dioxide and water produced is 8/2 * 22 kg = 88 kg of carbon dioxide and 10/2 * 22 kg = 110 kg of water. So, the total combined mass of carbon dioxide and water produced is 88 + 110 = 198 kg.