Answer:
The molar mass of the solid is 511.3 g/mol
Explanation:
Step 1: Data given
Mass of the sample = 0.588 grams
Mass of benzene = 11.5 grams
The solution freezes at 5.02 °C
The freezing point of benzene is 5.51 °C
The freezing point depression constant, kf = 4.90 °C/m
Step 2: Determine the temperature change
Δt = 5.51 - 5.02 = 0.49°C
Step 3: Determine number of moles
Δt = i*Kf*m
⇒ with i = the number of dissolved particles the solute produces = 1
⇒ with Kf = the molal freezing point depression constant Kf = 4.90 °C*Kg/mol
⇒ with m = the molality of the solute
0.49 °C = (1) (4.90 °C kg/mol) (x / 0.01150 kg)
x = 0.00115 mol
Step 4: Calculate molar mass
0.588 grams / 0.00115 mol = 511.3 g/mol
The molar mass of the solid is 511.3 g/mol
Place the following in order of decreasing X-A-X bond angle, where A represents the central atom and X represents the outer atoms in each molecule.CS2 CF4 SCl2CS2 > SCl2 > CF4CF4 > SCl2 > CS2CF4 > CS2 > SCl2CS2 > CF4 > SCl2SCl2 > CF4 > CS2Step by Step
Answer:
[tex]CS_{2}[/tex] > [tex]CF_{4}[/tex] > [tex]SCl_{2}[/tex]
Explanation:
The X-A-X bond angle means the angle between the surrounding 'X' atoms and the central 'A' atom. The compound [tex]CS_{2}[/tex] has two bond pairs and it is linear in shape. Its bond angle is 180 degrees. The compound [tex]CF_{4}[/tex] has four bond pairs and it is tetrahedral in shape. Its bond angle is 109.5 degrees. The compound [tex]SCl_{2}[/tex] has a bond angle of approximately 109.5 degrees. Therefore the decreasing order of bond angle is:
[tex]CS_{2}[/tex] > [tex]CF_{4}[/tex] > [tex]SCl_{2}[/tex]
The correct order of decreasing X-A-X bond angle is CS2 > CF4 >SCl2.
What is bond angle?The term bond angle refers to the dihedral angle that exists between two atoms that are bonded to the same central atom. Usually, the central atom is the least electronegative atom of the three.
Looking at the compounds involved, we will see that the correct order of decreasing X-A-X bond angle, where A represents the central atom and X represents the outer atoms in each molecule is CS2 > CF4 >SCl2.
Learn more about bond angle: https://brainly.com/question/17960050
The human body obtains 1062 kJ from a candy bar.If this energy were used to vaporize water at 100 ∘C, how much water in liters could be vaporized? (Assume that the density of water is 1.0 g/mL.) The heat of vaporization of water at 100 ∘C is 40.7 kJ/mole.
Answer:
The Answer Of this question is 0.4052 L ...
Select the set of quantum numbers that represents each electron in a ground‑state Be atom. n = 2 , ???? = 0 , m ???? = 0 , m s = − 1 2 n = 1 , ???? = 0 , m ???? = 0 , m s = + 1 2 n = 2 , ???? = 0 , m ???? = 0 , m s = + 1 2 n = 2 , ???? = 1 , m ???? = 0 , m s = − 1 2 n = 1 , ???? = 0 , m ???? = − 1 , m s = + 1 2 n = 1 , ???? = 0 , m ???? = 0 , m s = − 1 2 n = 2 , ???? = 0 , m ???? = 0 , m s = − 1 n = 2 , ???? = 1 , m ???? = 1 , m s = + 1 2
Answer:
n: 1, ℓ: 0, ml: 0, ms:+1/2
n: 1, ℓ: 0, ml: 0, ms:-1/2
n: 2, ℓ: 0, ml: 0, ms:+1/2
n: 2, ℓ: 0, ml: 0, ms:-1/2
Explanation:
Beryllium has 4 electrons and its electron configuration is 1s² 2s².
The principal quantum number (n) describes the level of energy. Then, the first two electrons have n = 1, and the second 2 electrons have n = 2.
The azimuthal number (ℓ) describes the subshell of energy. All the 4 electrons are in s subshells, which correspond to ℓ = 0.
The magnetic quantum number (ml) describes the orbital of the subshell. The s subshell has only 1 s orbital, so the only possible value for ml is 0.
The spin quantum number (ms) describes the spin of the electron and can take 2 values: +1/2 or -1/2.
Considering these rules, the quantum numbers for these 4 electrons are:
n: 1, ℓ: 0, ml: 0, ms:+1/2
n: 1, ℓ: 0, ml: 0, ms:-1/2
n: 2, ℓ: 0, ml: 0, ms:+1/2
n: 2, ℓ: 0, ml: 0, ms:-1/2
Of the atoms listed below, which one will have at least one electron in its d orbital?
A. Mg
B. K
C. S
D. Cr
E. none of the above
Answer:
D. Cr
Explanation:
In order to determine which atom has at least one electron in its d orbital, we have to write their theoretical electron configurations.
₁₂Mg 1s² 2s² 2p⁶ 3s²₁₉K 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹₁₆S 1s² 2s² 2p⁶ 3s² 3p⁴₂₄Cr 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁴Cr has 4 electrons in d orbitals. Cr belongs to the d-block in the periodic table.
What mass of water can be obtained from 4.0 g of H2 and 16 g of O2?2 H2 + O2 ---> 2 H2O18 g36 g54 g9 g
Answer:
18 g is the mass produced by 4 g of H₂ and 16 g of O₂
Explanation:
The reaction is:
2H₂ + O₂ → 2H₂O
So, let's find out the limiting reactant as we have both data from the reactants.
Mass / Molar mass = moles
4 g/ 2g/m = 2 moles H₂
16g / 32 g/m = 0.5 moles O₂
2 moles of hydrogen react with 1 mol of oxygen, but I have 0.5, so the O₂ is the limiting.
1 mol of O₂ produces 2 mol of water.
0.5 mol of O₂ produce (0.5 .2)/1 = 1 mol of water.
1 mol of water weighs 18 grams.
Answer:
18 grams of [tex]H_2O[/tex]
Explanation:
The balanced equation of the reaction is:
[tex]H_2+\frac{1}{2}O_2 -->H_2O[/tex]
From the balanced equation we can say 1 mole of H2 reacts with 0.5 moles of O2 to give one mole of H2O.
Number of moles of H2 = [tex]\frac{Given\ mass}{Molar\ mass}=\frac{4}{2}=2\ moles[/tex]
Number of moles of O2 = [tex]\frac{Given\ mass}{Molar\ mass}=\frac{16}{32}=0.5\ moles[/tex]
We have 2 moles H2 and 0.5 moles of O2.
Not all H2 reacts because the amount of O2 is limited.
Since only 0.5 moles of O2 is available only 1 mole of H2 reacts according to the balanced equation.
Hence 1 mole of H2O is formed which is 18 grams.
The following (unbalanced) reaction is one of the steps to producing acid rain [as H2SO4(aq)] from sulfur-containing coal. In a study of this reaction, a flask contains an equilibrium concentration of the three substances SO2(g), O2(g) and SO3(g) held at a constant temperature.
SO2 (g) + O2 (g) <-----> SO3 (g)
The concentrations at equilibrium are found to be: [SO2] = 3.61 x 10-3M [O2] = 6.11 x 10-4 M [SO3] = 1.01 x 10-2 M
(a) Write the Equilibrium Constant expression, Kc for this specific reaction.
(b) Calculate the value of Kc for this temperature.
(c) Would you classify this as a product-favored reaction?
Answer:
a) kc= [SO3 ]/([SO2 ][O2 ])
b) kc= 2.27*10⁶ M⁻¹
v) the reaction is product-favored
Explanation:
for the reaction, the equilibrium constant is
SO2 (g) + O2 (g) <-----> SO3 (g)
he equilibrum constant is
kc= [SO3 ]/([SO2 ]*[O2 ])
replacing values
kc= [SO3 ]/([SO2 ]*[O2 ]) = 1.01*10⁻² M/(3.61*10⁻³M*6.11 x 10⁻⁴ M) = 2.27*10⁶ M⁻¹
since kc>>1 the reaction is product-favored
Suppose caffeine has a partition coefficient of 2.5 between dichloromethane and water (2.5/1 = dichloromethane/water). You are given a solution of 10 grams of caffeine dissolved in 100 mL water. You extract your caffeine solution 1 x 100 mL dichloromethane, and evaporate your dichloromethane layer. How much caffeine would you expect to isolate?A) 8.0 grams B) 7.5 grams C) 7.1 grams D) 6.5 grams E) 2.9 grams
Answer: Option (C) is the correct answer.
Explanation:
It is given that partition coefficient between dichloromethane and water is 2.5. Let us assume that "x" grams of caffeine is present in 100 ml.
Hence, find the value of x as follows.
2.5 = [tex]\frac{\frac{x}{100}}{\frac{(10 - x)}{100}}[/tex]
x = 25 - 2.5x
x = 7.14
or, x = 7.1
Therefore, we can conclude that caffeine extracted is 7.1 grams.
alculate the percent by mass (percent composition) of hydrogen in methane (CH4). Round your answer to the nearest whole number.
Answer:
25
Explanation:
In one mole of methane [tex](CH_{4})[/tex] there are 4 moles of hydrogen and one mole of carbon atom.
Mass of 1 mole of hydrogen atom = 1 g
Mass of 4 moles of hydrogen atom = 4 g
Mass of 1 mole of carbon atom = 12 g
Mass of 1 mole of methane = 12+4 = 16 g
Mass percent of hydrogen in methane = [tex]\frac{mass\ of\ 4\ moles\ of\ hydrogen\ atom}{mass\ of\ 1\ mole\ of\ methane}[/tex]
[tex]=\frac{4}{16}\times100=25[/tex]
Answer:25%
Explanation:
The total molecular mass of methane (CH4) = 12+4 =16
Hydrogen has a total mass of 4 out of the 16. Now to calculate the percentage of hydrogen there, we have (4/16) x 100 = 25
After a polypeptide chain has been synthesized, certain amino acids in the peptide may become modified. For each modified amino acid, identify the standard amino acid from which it is derived. Enter the unabbreviated name of the standard amino acid. The amino acid structure shows the fully ionized form. The side chain is C H 2, C H 2, C H (O H), C H 2, N H 3 (plus). standard amino acid: Identify the modification that yields the first amino acid depicted.
Answer:
The name of the amino acid is lysine.
The number five carbon in lysine is the carbon that is hydroxylated. The modification you ask is when adding hydroxyl group (C-OH bonds). These links are made by an enzyme called hydroxylase, vitamin C acting as a cofactor. This reaction is one of the most fundamental post-translational modifications.
Explanation:
Hydroxyproline is derived from the standard amino acid proline through the addition of a hydroxyl group, and it plays a role in the structure of collagen.
Explanation:The modified amino acid depicted in the question is hydroxyproline, which is derived from the standard amino acid proline.
During the modification process, proline is hydroxylated by adding a hydroxyl group (-OH) to the side chain. This results in the formation of hydroxyproline. Hydroxyproline plays an important role in the structure and stability of collagen, a protein found in connective tissues.
In summary, hydroxyproline is derived from proline through the addition of a hydroxyl group, and it is involved in the structure of collagen.
Learn more about Modified amino acids here:https://brainly.com/question/34263709
#SPJ3
When can a hypothesis be elevated to the status of a theory?
Answer:
A hypothesis can be described as a tentative statement which can be proved either right or wrong through scientific experiments. If a hypothesis is tested again and again and every time the experiments give the same results, then the hypothesis can take the form of a theory. However, a theory is subjected to change if new researches are made which can annul it. For a theory to be formed, there should be enough explanation behind the phenomenon along with the experiments.
Choose a depiction of a gas sample containing equal molar amounts of xenon and argon as described by kinetic molecular theory. Red dots are used to represent xenon atoms and blue dots to represent argon atoms. Each atom is drawn with a "tail" that represents its velocity relative to the others in the mixture.
Answer:
On the attached picture.
Explanation:
Hello,
At first, it is important to remember that kinetic molecular theory help us understand how the molecules of a gas behave in terms of motion. In such a way, the relative velocity of a gas molecule has the following relationship with the gas' molar mass:
[tex]V[/tex]∝[tex]\frac{1}{\sqrt{M} }[/tex]
That is, an inversely proportional relationship which allows us to infer that the bigger the molecule the slower it. In this manner, as argon is smaller than xenon, it will move faster.
Now, as the gases are in equal molar amounts and considering that argon moves faster, on the attached picture you will find the suitable depiction of the gas sample, since red dots (argon) have a larger tail than the blue dots (xenon).
Best regards.
The kinetic molecular theory explains gas behavior, showing that at a given temperature, heavier molecules like xenon move slower than lighter molecules like argon, which can be depicted with varying tail lengths in visual models.
Explanation:Understanding Gases through Kinetic Molecular TheoryThe kinetic molecular theory of gases provides an explanation for the properties of gases by modeling them as small, hard spheres with insignificant volume, in constant motion, and undergoing perfectly elastic collisions. According to this theory, the average kinetic energy (KEavg) of gas molecules is the same for all gases at a given temperature, regardless of the molecular mass. However, because the kinetic energy depends only on temperature, lighter molecules will have higher speeds compared to heavier molecules at the same temperature.
Given a gas sample containing equal molar amounts of xenon and argon, depicted by kinetic molecular theory, we would see red dots (xenon) and blue dots (argon) with tails representing their velocities. As the diagrams from the theory suggest, we would expect that, at the same temperature, xenon atoms (being heavier) would have shorter tails (indicating lower speeds) than argon atoms (which are lighter and thus would have longer tails for higher speeds).
This behavior of the molecules can be seen in the average root mean square speed (Urms) trend, where heavier noble gases like xenon show a distribution of speeds peaking at lower values, whereas lighter ones like argon peak at higher speeds. This concept is crucial in the depiction of gas samples in kinetic molecular theory and can be visualized through illustrations that incorporate this difference in molecular speed based on the mass of the gas particles.
At 10 K Cp,m(Hg(s)) = 4.64 J K−1 mol−1. Between 10 K and the melting point of Hg(s), 234.3 K, heat capacity measurements indicate that the entropy increases by 57.74 J K−1 mol−1. The standard enthalpy of fusion of Hg(s) is 2322 J mol−1 at 234.3 K. Between the melting point and 298.0 K, heat capacity measurements indicate that the entropy increases by 6.85 J K−1 mol−1. Determine the Third-Law standard molar entropy of Hg(l) at 298 K.
Answer:
S°m,298K = 85.184 J/Kmol
Explanation:
∴ T = 10 K ⇒ Cp,m(Hg(s)) = 4.64 J/Kmol
∴ 10 K to 234.3 K ⇒ ΔS = 57.74 J/Kmol
∴ T = 234.3 K ⇒ ΔHf = 2322 J/mol
∴ 234.3 K to 298.0 K ⇒ ΔS = 6.85 J/Kmol
⇒ S°m,298K = S°m,0K + ∫CpdT/T(10K) + ΔS(10-234.3) + ΔHf/T(234.3K) + ΔS(234.3-298)
⇒ S°m,298K = 0 + 10.684 J/Kmol + 57.74 J/Kmol + 9.9104 J/Kmol + 6.85 J/kmol
⇒ S°m,298K = 85.184 J/Kmol
To find the Third-Law standard molar entropy of Hg(l) at 298 K, we sum up the entropy changes between 10K and 234.3 K, the entropy change due to fusion, and then the entropy change between the melting point and 298K. The sum gives us a final value of 74.51 J K−1 mol−1.
Explanation:The Third-Law standard molar entropy of Hg(l) at 298 K can be calculated by summing up the entropy changes that occur from 10K to 298K.
First calculate the entropy up to the melting point from 10 K which can be determined using the equation ΔS = ∫(Cp,mdT)/T.
This integral can be approximated as a rectangle from 10K to 234.3 K, hence ΔS₁ = (234.3-10)(4.64 J K−1 mol−1)/10 = 57.74 J K−1 mol−1.
Next, calculate the entropy change associated with the fusion process using the equation, ΔS = ΔH/T, giving ΔS₂ = 2322 J mol−1 / 234.3 K = 9.92 J K−1 mol−1.
Finally, add the entropy increase from the melting point to 298.0 K, which is given as 6.85 J K−1 mol−1.
Summing these values gives the Third-Law standard molar entropy of Hg(l) at 298 K: 57.74 J K−1 mol−1 + 9.92 J K−1 mol−1 + 6.85 J K−1 mol−1 = 74.51 J K−1 mol−1.
Learn more about Third-Law Standard Molar Entropy here:https://brainly.com/question/31964560
#SPJ11
During a sunset, molecules interact with light and scatter all but which colors?
A.green
B.red
C.blue
D.purple
Answer:
B.red
Explanation:
Electromagnetic spectrum is range of the frequencies and their respective wavelengths of the various type of the electromagnetic radiation.
In order of the decreasing wavelength the spectrum are:
Red , Orange, Yellow, Green, Blue, Indigo, Violet
Increasing wavelength is the opposite trend. Thus, The longest visible wavelength is red and the shortest is violet.
Also, Violet light gets scattered the most while the red light gets scattered the least.
During the time of the sunset, the Earth is rotating away from the Sun. Thus, most of the light colors scatters in the ways and the color that least scatter which is red reaches the Earth.
That's why, at the time of sunrise and sunset, the sky looks red.
A chemist must prepare 400 mL of 1.00M of aqueous potassium iodide working solution. He'll do this by pouring out 1.82 mol/L some aqueous potassium iodide stock solution into a graduated cylinder and diluting it with distilled water. Calculate the volume in of the potassium iodide stock solution that the chemist should pour out. Round your answer to significant digits.
Answer:
220mL
Explanation:
The dilution formular was applied to obtain the volume of stock solution required to prepare the desired concentration of solution in the desired volume. Details are found in the image attached.
What element is being oxidized in the following redox reaction?
MnO4 (aq) + H2C2O4(aq) → Mn2+(aq) + CO2(g)
Answer:
C is the element thats has been oxidized.
Explanation:
MnO₄⁻ (aq) + H₂C₂O₄ (aq) → Mn²⁺ (aq) + CO₂(g)
This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.
In the oxalic acid, this are the oxidation states:
H: +1
C: +3
O: -2
In the product side, in CO₂ the oxidation states are:
C: +4
O: -2
Carbon from the oxalate has increased the oxidation state, so it has been oxidized.
Dimethyl sulfoxide is an important polar aprotic solvent that can dissolve both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. Because it penetrates the skin very readily, it is sometimes used as a vehicle for topical application of pharmaceuticals.
Draw the structure of dimethyl sulfoxide. Include any nonbonding electrons on sulfur, and minimize formal charges by allowing sulfur to expand its octet.
Answer:
The structure is shown below.
Explanation:
To draw a structure first we need to know its molecular formula, which is C2H6SO for dimethyl sulfoxide. The central atom is sulfur, which is bonded to an oxygen and with two methyl groups (CH3).
Sulfur has 6 electrons in its valence shell, as so oxygen. To complete the octet of oxygen, 2 electrons will be shared by sulfur with it. So, it remains 4 electrons at the central atom. Carbon has 4 electrons in its valence shell, so it needs more 4 to be stable, and is already sharing 3 electrons with the hydrogens, thus, sulfur will share one electron with each one of them.
So, it will remain 2 nonbonding electrons in the central atom. According to the VSPER theory, to minimize formal charges, the structure would be a trigonal pyramid, but, the double bonding with oxygen has a large volume, then the geometry will be trigonal, as shown below.
A solid sample of Rb2SO3 weighing 6.24 g reacts with 1.38 L gaseous HBr, measured at 75°C and 0.953 atm pressure. The solid RbBr, extracted from the reaction mixture and purified, has a mass of 7.32 g.
(a) What is the limiting reactant?
(b) What is the theoretical yield of RbBr, assuming com- plete reaction?
(c) What is the actual percentage yield of product?
Answer:
(a) HBr;
(b) 7.61 g;
(c) 96.2 %
Explanation:
Firstly, write the balanced chemical equation:
[tex]Rb_2SO_3 (aq) + 2 HBr (aq)\rightarrow 2 RbBr (aq) + SO_2 (g) + H_2O (l)[/tex]
(a) Find moles of each reactant dividing the mass by the molar mass of rubidium sulfite, then applying the ideal gas law for HBr:
[tex]n_{Rb_2SO_3}=\frac{6.24 g}{251.00 g/mol} = 0.02486 mol[/tex]
[tex]pV_{HBr}=n_{HBr}RT[/tex]
[tex]\therefore n_{HBr} = \frac{pV_{HBr}}{RT} = \frac{0.953 atm\cdot 1.38 L}{0.08206 \frac{L atm}{mol K}\cdot 348.15 K} = 0.04603 mol[/tex]
Find the limiting reactant by dividing each moles by the stoichiometric coefficients and comparing the two numbers:
[tex]eq._{Rb_2SO_3} = \frac{0.02486 mol}{1} = 0.02486 mol[/tex]
[tex]eq._{HBr} = \frac{0.04603 mol}{2} = 0.02302 mol[/tex]
That said, the equivalent of HBr is lower, so it's the limiting reactant.
(b) According to the balanced equation, the moles of HBr are equal to the moles of RbBr, so moles of RbBr theoretically are equal to:
[tex]n_{RbBr} = 0.04603 mol[/tex]
Using the molar mass of RbBr, convert this into mass:
[tex]m_{RbBr} = 0.04603 mol\cdot 165.372 g/mol = 7.61 g[/tex]
(c) To find the percent yield, divide the actual mass produced by the theoretical mass calculated in (b) and multiply by 100 %:
[tex]\%_{yield} =\frac{7.32 g}{7.61 g}\cdot 100\% = 96.2 \%[/tex]
We discussed the different types of intermolecular forces in this lesson. Which type would you expect to find in CO2?
Answer:
Dispersion forces.
Explanation:
CO2 contains dispersion forces, and covalent bonds. It is a linear molecule, and the bond angle of O-C-O is 180 degree. O is more electronegative than C, the C-O contains polar bond with the having negative end pointing towards the O.
CO contains two C-O bonds. They cancel each other out because of the dipoles point in opposite directions. Although, CO2 contains polar bonds, it is known as a nonpolar molecule. So, the only intramolecular forces which CO2 having are London dispersion forces.
Two changes are described below. a. Ice melts to form water. b. Sugar cubes dissolve in hot coffee. Which statement is true about the two changes?a. Both are chemical changes because there is a change in the composition of ice and sugar.b. Both are physical changes because there is a change in the physical states of ice and sugar.c. A is a physical change due to a change of state, but B is a chemical change because new molecules are formed.d. A is a chemical change due to a change of state, but B is a physical change because new molecules are formed.
Answer: Option (b) is the correct answer.
Explanation:
A change that does not lead to any difference in chemical composition of a substance is known as a physical change.
For example, shape, size, mass, volume, density, boiling point, etc of a substance are all physical properties.
As ice melts to form water shows that only the state of matter is changing. Hence, it is a physical change. Similarly, sugar cubes dissolve in hot coffee is also a physical change as no new compound has formed.
On the other hand, changes that lead to bring change in chemical composition of a substance is known as a chemical change.
For example, exploding dynamite, rotting cheese etc are all chemical changes.
Thus, we can conclude that both are physical changes because there is a change in the physical states of ice and sugar.
How many grams of coffee must evaporate from 350 g of coffee in a 100-g glass cup to cool the coffee and the cup from 95.0°C to 45.0°C ? Assume the coffee has the same thermal properties as water and that the average heat of vaporization is 2340 kJ/kg (560 kcal/g). Neglect heat losses through processes other than evaporation, as well as the change in mass of the coffee as it cools. Do the latter two assumptions cause your answer to be higher or lower than the true answe
Answer:
31.3 g
The answer is higher than the true answer.
Explanation:
By neglecting the heat lost by other processes, the energy conservation states that:
Qcooling + Qevaporate = 0
The cooling process happens without phase change, so the heat can be calculated by:
Qcooling = m*c*ΔT
Where m is the mass, c is the heat capacity (cwater = 4184 J/kg.K), and ΔT is the temperature variation (final - initial).
The evaporate process happen without changing of temperature (pure substance), and the heat can be calculated by:
Qevaporate = m*L
Where m is the mass evaporated and L is the heat of evaporation (2340000 J/kg).
0.350*4184*(45 - 95) + m*2340000 = 0
2340000m = 73220
m = 0.0313 kg
m = 31.3 g
Because of the assumptions made, the real mass is not that was calculated. There'll be changing mass when the coffee is cooling, and there'll be heat loses by other processes because the system is not isolated. Also, the substance is not pure. So, there'll be more factors at the energy equation, thus, the answer is higher than the true answer.
To cool 350 g of coffee in a 100-g glass cup from 95.0°C to 45.0°C, 33.2 grams of coffee must evaporate.
To solve this problem, we first need to calculate the total heat that needs to be removed from the coffee and the cup.
Steps to Calculate:
Calculate the heat loss needed to cool the coffee:Thus, 33.2 grams of coffee must evaporate to cool the coffee and the cup from 95.0°C to 45.0°C. Neglecting other heat losses means this answer is slightly larger than the true answer.
Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN3) into solid sodium and gaseous dinitrogen. Suppose 22.0 L of dinitrogen gas are produced by this reaction, at a temperature of 11.0 C and pressure of exactly 1 atm. Calculate the mass of sodium azide that must have reacted.
Answer:
39g
Explanation:
Details of the solution is shown below. From the information provided regarding the N2 produced, we could calculate the amount of N2 produced and use that to find the mass of sodium azide reacted.
The balanced chemical equation for the decomposition of solid sodium azide (NaN3) is 2 NaN3(s) = 2 Na(s) + 3 N2(g). Using the ideal gas law, we can calculate the number of moles of dinitrogen gas produced, which is 1.07 mol. From the balanced equation, we find that 1 mole of NaN3 decomposes to produce 3 moles of N2. Therefore, the mass of sodium azide that reacted is 23.40 g.
The balanced chemical equation for the decomposition of solid sodium azide (NaN3) into solid sodium and gaseous dinitrogen is:
2 NaN3(s) → 2 Na(s) + 3 N2(g)
Given that 22.0 L of dinitrogen gas are produced by this reaction at a temperature of 11.0°C and a pressure of exactly 1 atm, we can use the ideal gas law to calculate the number of moles of dinitrogen gas produced:
n = PV / RT = (1 atm)(22.0 L) / (0.0821 atm·L/mol·K)(11.0°C + 273.15 K) = 1.07 mol
From the balanced chemical equation, we can see that 1 mole of NaN3 decomposes to produce 3 moles of N2. Therefore, the number of moles of NaN3 that reacted is 1.07 / 3 = 0.36 mol.
To calculate the mass of sodium azide that must have reacted, we can use the molar mass of NaN3 which is 65.01 g/mol:
mass = moles × molar mass = 0.36 mol × 65.01 g/mol = 23.40 g
Learn more about Decomposition of Sodium Azide here:https://brainly.com/question/21264860
#SPJ6
Purification of copper can be achieved by electrorefining copper from an impure copper anode onto a pure copper cathode in an electrolytic cell. How many hours will it take to plate 15.0 kg of copper onto the cathode if the current passed through the cell is held constant at 34.5 A ? Assume the copper in the electrolytic solution is present as Cu 2 + .
Final answer:
To electroplate 15.0 kg of copper onto the cathode using 34.5 A, first calculate the moles of copper needed then convert this to the required charge using Faraday's constant. Finally, divide the total charge by the current to find the time in seconds and convert to hours, resulting in approximately 367 hours.
Explanation:
To calculate the time required to electroplate 15.0 kg of copper using a current of 34.5 A, we need to use Faraday's laws of electrolysis. First, we need to determine the number of moles of copper to be plated. The molar mass of copper is approximately 63.55 g/mol, so:
15,000 g / 63.55 g/mol = 236.025 mol Cu
Since each copper ion (Cu2+) requires two electrons to be reduced to copper metal, the number of moles of electrons needed is twice the number of moles of copper:
2 × 236.025 mol = 472.05 mol e-
Each mole of electrons corresponds to a charge of 96,485 coulombs (Faraday's constant), so:
472.05 mol e- × 96,485 C/mol = 45,562,240.25 C
Now, we can calculate the time required to deliver this charge at a rate of 34.5 A (since 1 A = 1 C/s), using:
Time (s) = Total Charge (C) / Current (A)
Time (s) = 45,562,240.25 C / 34.5 A = 1,320,643 s
Converting seconds to hours:
1,320,643 s / (60 s/min) / (60 min/h) ≈ 367 h
Therefore, it will take approximately 367 hours to electroplate 15.0 kg of copper onto the cathode with a constant current of 34.5 A.
Exactly 1.0 lb Hydrone, an alloy of sodium with lead, yields (at 0.0°C and 1.00 atm) 2.6 ft3 of hydrogen when it is treated with water. All the sodium reacts according to the following reaction: 2 Na 1 2 H O() 8n 2 NaOH(aq) 1 H (g) in alloy 2 2 and the lead does not react with water. Compute the per- centage by mass of sodium in the alloy.
Answer:
The percentage by mass of sodium in the alloy is 33.29%.
Explanation:
Volume of hydrogen gas = [tex]V = 2.6 ft^3=73.6237 L[/tex]
[tex]1 ft^3=28.3168 L[/tex]
Pressure of hydrogen gas = P = 1 atm
Temperature of the gas = T = 0.0°C =273.15 K
Moles of hydrogen gas = n
[tex]PV=nRT[/tex] (Ideal gas)
[tex]n=\frac{PV}{RT}=\frac{1atm \times 73.6237 L}{0.0821 atm L/mol K\times 273.15 K}[/tex]
n = 3.2830 mole
Moles of hydrogen gas = 3.280 mole
[tex]2 Na(s) +2H_2O(l)\rightarrow 2NaOH(aq)+ H_2 (g)[/tex]
According to reaction 1 mole of hydrogen is obtained from 2 moles of sodium.
Then 3.280 moles of hydrogen gas will be obtained from :
[tex]\frac{2}{1}\times 3.280 mol=6.566 mol[/tex]
Mass of 6.566 moles of sodium =
6.566 mol × 23 g/mol = 151.02 g
Mass of hydrone = 1.0 lb = 453.592 g
The percentage by mass of sodium in the alloy:
[tex]\frac{151.02 g}{ 453.592 g}\times 100=33.29\%[/tex]
Research and draw (on paper) the isomers of another coordination compound that has octahedral geometry.
Answer:
Sulfur hexafluoride SF6
Explanation:
In chemistry, the shape of the compounds in which six ligands (atoms, molecules or ions) are arranged around a central atom or ion, defining the vertices of an octahedron, is called octahedral molecular geometry or Oh. It is a very common structure, and it is very studied for its importance in the coordination chemistry of transition metals. From it, other important molecular geometries are derived by continuous deformation, such as the elongated octahedron, the flat octahedron, the square-based pyramid and the flat square. Indirectly, it is also related to tetrahedral molecular geometry.
The concept of octahedral coordination geometry was developed by Alfred Werner to explain the stoichiometry and isomeries in the coordination compounds. An example of a strictly octahedral compound is SF6 sulfur hexafluoride, but chemists use the term in a lax form, so that it is applied to compounds that are not mathematically octahedra, such as cobalt hexaamine (III).
Isomers are molecules that have the same molecular formula but different structure. It is classified as structural isomers and stereoisomers. Structural isomers differ in the way of joining their atoms and are classified into chain, position and function isomers.
When of alanine are dissolved in of a certain mystery liquid , the freezing point of the solution is lower than the freezing point of pure . On the other hand, when of iron(III) nitrate are dissolved in the same mass of , the freezing point of the solution is lower than the freezing point of pure . Calculate the van't Hoff factor for iron(III) nitrate in . Be sure your answer has a unit symbol, if necessary, and round your answer to significant digits.
Answer:
i = 3,5
Explanation:
There are missing the following values:
132 g Alanine
1150g of X
4,4°C the first freezing point dercreasing
132g of Iron(III) nitrate
5,6°C the second freezing point decreasing.
The freezing point depression is a colligative property that describes the decrease of the freezing point of a solvent on the addition of a non-volatile solute.
The formula is:
ΔT = i kf mb
Where ΔT is freezing point decreasing, i is Van't Hoff factor, kf, is cryoscopic constant and mb is molality of solution.
For alanine Van't Hoff factor is 1 (Ratio between particles in dissolution and before dissolution), molality is:
132g×(1mol/89,09g) = 1,48mol / 1,150kg = 1,29 mol/kg
Replacing:
4,4K = 1 kf 1,29mol/kg
kf = 3,41 K·kg/mol
Now, for Iron(III) nitrate molality is:
132g×(1mol/241,86g) = 0,546mol / 1,150kg = 0,475 mol/kg
Replacing:
5,6K = i×3,41 K·kg/mol×0,475 mol/kg
i = 3,5
I hope it helps!
The Ostwald process is used commercially to produce nitric acid, which is, in turn, used in many modern chemical processes. In the first step of the Ostwald process, ammonia is reacted with oxygen gas to produce nitric oxide and water. What is the maximum mass of H 2 O H2O that can be produced by combining 52.3 g 52.3 g of each reactant? 4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Answer:
35.3124 g is the maximum mass of [tex]H_2O[/tex] that can be produced.
Explanation:
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
For [tex]NH_3[/tex] :-
Mass of [tex]NH_3[/tex] = 52.3 g
Molar mass of [tex]NH_3[/tex] = 17.031 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]Moles= \frac{52.3\ g}{17.031\ g/mol}[/tex]
[tex]Moles\ of\ NH_3= 3.0709\ mol[/tex]
For [tex]O_2[/tex] :-
Given mass of [tex]O_2[/tex]= 52.3 g
Molar mass of [tex]O_2[/tex] = 31.9898 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]Moles= \frac{52.3\ g}{31.9898\ g/mol}[/tex]
[tex]Moles\ of\ O_2=1.6349\ mol[/tex]
According to the given reaction:
[tex]4NH_3+5O_2\rightarrow 4NO_4+6H_2O[/tex]
4 moles of [tex]NH_3[/tex] reacts with 5 moles of [tex]O_2[/tex]
1 mole of [tex]NH_3[/tex] reacts with 5/4 moles of [tex]O_2[/tex]
Also,
3.0709 moles of [tex]NH_3[/tex] reacts with [tex]\frac{5}{4}\times 3.0709[/tex] moles of [tex]O_2[/tex]
Moles of [tex]O_2[/tex] = 3.8386 moles
Available moles of [tex]O_2[/tex] = 1.6349 moles
Limiting reagent is the one which is present in small amount. Thus, [tex]O_2[/tex] is limiting reagent.
The formation of the product is governed by the limiting reagent. So,
5 moles of [tex]O_2[/tex] on reaction forms 6 moles of [tex]H_2O[/tex]
1 mole of [tex]O_2[/tex] on reaction forms 6/5 moles of [tex]H_2O[/tex]
Thus,
1.6349 mole of [tex]O_2[/tex] on reaction forms [tex]\frac{6}{5}\times 1.6349[/tex] moles of [tex]H_2O[/tex]
Moles of [tex]H_2O[/tex] = 1.9618 moles
Molar mass of [tex]H_2O[/tex] = 18 g/mol
Mass of sodium sulfate = Moles × Molar mass = 1.9618 × 18 g = 35.3124 g
35.3124 g is the maximum mass of [tex]H_2O[/tex] that can be produced.
Answer:
35.3 g
Explanation:
From the balanced equation given we can say:
4 moles of NH3 reacts with 5 moles of O2 to give 6 moles of H2O.
4*17 g of NH3 reacts with 5*32 g of O2 to give 6*18 g of H2O.
68 g of NH3 reacts with 160 g of O2 to give 108 g of H2O.
Here the limiting reagent is O2 and excess reagent is NH3.
52.3 g of O2 will react with [tex]\frac{68}{160}\times52.3=22.23\ g\ of\ NH_{3}[/tex] to give :
[tex]\frac{108}{160}*52.3=35.3\ g\ of\ H_{2}O[/tex]
Hence the maximum mass of H2O that can be produced by 52.3 g of reactants is 35.3 g.
Compute the radius r of an impurity atom that will just fit into an FCC octahedral site in terms of the atomic radius R of the host atom, and compute the radius r of an impurity atom that will just fit into an BCC tetrahedral site in terms of the atomic radius R.
Answer:
FCC: r = 0.414R
BCC: r = 0.291R
Explanation:
For an FCC unit cell, the interstitial site is located at the middle of the edge. An atom that can occupy the interstitial site will have a diameter of 2*r. And we know that:
2*r = a - 2*R equation (1.0)
a = [tex]2*\sqrt{2}*R[/tex]
Therefore, substituting the expression for 'a' in equation (1.0)
2*r = [tex]2*\sqrt{2}*R[/tex] - 2*R
r = R*([tex]2\sqrt{2} - 2[/tex])/2 = 0.414R
For a BCC unit cell, there is a right-angle triangle formed by 3 arrows. Using the triangle, we have:
[tex]\frac{a^{2} }{2} +\frac{a^{2} }{4} = (R+r)^{2}[/tex] equation (2.0)
a = [tex]\frac{4R}{\sqrt{3} }[/tex]
replacing the expression for a in equation (2.0), we have:
[tex]\frac{4R^{2} }{2\sqrt{3} } + \frac{4R^{2} }{4\sqrt{3} } = R^{2} + 2Rr + r^{2}[/tex]
Further simplification and rearrangement, the expression above is simplified to:
[tex]r^{2} + 2Rr - 0.667R^{2} = 0[/tex]
Solving the above quadratic equation, we have:
[tex]r = \frac{-2R - 2.582R}{2}or\frac{-2R + 2.582R}{2}[/tex]
r = - 2.291R or 0.291 R
Since the value of r can only be positive, the correct answer is r = 0.291R
To find the radius of an impurity atom in a FCC octahedral site, use the length of the face diagonal and the atomic radius of the host atom. For a BCC tetrahedral site, consider the relationship between the cation and anion radii.
Explanation:In an FCC structure, the radius of an impurity atom that will just fit into an octahedral site can be calculated using the length of the face diagonal and the atomic radius of the host atom. The length of the diagonal is equal to four times the host atom radius, so we can use this information to find the radius of the impurity atom.
For a BCC structure, the radius of an impurity atom that will just fit into a tetrahedral site can be calculated by considering the relationship between the cation and anion radii. The cation radius is typically a certain percentage of the anion radius, and this information can be used to determine the radius of the impurity atom.
Learn more about Calculating impurity atom radii in FCC and BCC structures here:https://brainly.com/question/35351972
#SPJ12
After the stannous chloride solution has been prepared, a few pieces of tin metal, Sn, are dropped into the bottle, to prevent oxidation by air.
Determine the standard cell potential for the following reaction: Sn(s)+Sn4+(aq)→2Sn2+(aq)
Express your answer with the appropriate units.
Answer:
E° = 0.29 V
Explanation:
Let's consider the following redox reaction.
Sn(s) + Sn⁴⁺(aq) → 2 Sn²⁺(aq)
We can identify both half-reactions:
Reduction (cathode): Sn⁴⁺(aq) + 2 e⁻ → Sn²⁺(aq) E°red = 0.15 V
Oxidation (anode): Sn(s) → Sn²⁺(aq) + 2 e⁻ Ered = -0.14 V
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an = 0.15 V - (-0.14 V) = 0.29 V
For the decomposition of hydrogen peroxide in dilute sodium hydroxide at 20 °C 2 H2O2(aq)2 H2O(l) + O2(g) the following data have been obtained: [H2O2], M 8.92×10-2 4.72×10-2 2.50×10-2 1.32×10-2 time, min 0 9.63 19.3 28.9 The average rate of disappearance of H2O2 over the time period from t = 0 min to t = 9.63 min is -4.36x10^-3 M min-1.
Answer:
K= 0.06611
Explanation: The rate of reaction is defined as the change in concentration of any of reactant or products per unit time. From the given reaction, the rate of reaction may be equal to the rate of disappearance of reactant which is equal to the rate of appearance of products.
The average rate of disappearance of H2O2 over the time period from t=0 min at 8.92×10^-2 to t=9.63min at 4.72×10^-2 is given as -4.36×10^-3Mmin-1.
We can say:
•The initial concentration [H2O2]o is 8.92×10^-2M
•The concentration at time t. [H2O2]t is 4.72×10^-2
•The time (t) is 9.63 min
The expression of rate constant for a first order reaction is shown as
K=2.303/t log[H2O2]o/ [H2O2]t
Substitute the values of t, [H2O2]o and [H2O2]t in the equation of rate constant.
K=2.303/9.63 log [8.92×10^-2]/ [4.72×10^-2]
K= 0.2391 (log 8.92×10^-2 - log 4.72×10^-2)
K= 0.2391 [-1.0496-(-1.3261)]
K= 0.2391 (-1.0496+1.3261)
K= 0.2391 (0.2765)
K= 0.06611
Since the value of k is almost constant, the decomposition of H2O2 is a first order reaction.
Follow the Carbon in Citric Acid Cycle: 1. How many cycles does it take to convert Acetyl CoA to CO2
Each round of Citric Acid Cycle produce 2 molecules of carbon dioxide. So one cycle of TCA cycle is enough to convert Acetyl CoA to carbon dioxide.
Explanation:Citric Acid Cycle or Kreb's Cycle or the TCA cycle is the 1st dedicated step towards the aerobic respiration. The end product of glycolysis is Pyruvate which is a three carbon compound. It's acted upon by Pyruvate Decarboxylase to produce a 2 carbon compound Acetyl CoA and a molecule of carbon dioxide. This Acetyl CoA now reacts with oxaloacetate to produce Citric Acid which is the 1st step of Citric Acid Cycle. This now produce several intermediates and a lot of reduced electron carriers along with 2 molecules of carbon dioxide and ends up being oxaloacetate again. So one cycle of Citric Acid Cycle is necessary to convert Acetyl CoA to CO2.