6/15=2/c need to solve

Answers

Answer 1
The answer would be c = 5.

2/5 = 2/c

2/5c = 2

2c/5 = 2

2c = 2 * 5

2c = 10

c = 10/2

c = 5.

Hope this helps and happy studying :).
Answer 2
6 over 15 (2 over c) ➡0

2 over c (⬅simplify )

6 over 15 - 2 over c ➡0

2 over 5 (⬅simplify)

2 over 5- 2 over c ➡0

2 (c) - 10

2 (c- 5) over 5c ➡0

2 ➡ 0

c - 5 ➡0

Therefore, the value of "c" is: 5 :)

Related Questions

The nutritional chart on the side of a box of a cereal states that there are 93 calories in a three fourths 3/4 cup serving. How many calories are in 7 cups of the​ cereal?

Answers

150 calories in 7 cups of cereal if this isn't right then in did my math wrong.

The combined land area of countries A and B is 172,973 square kilometers. Country is larger by 373 square kilometers. Determine the land area of each country.

Answers

Which country is larger? To find out, subtract 373 from 172,973 then divide by 2
Final answer:

By setting up and solving a system of two equations based on the problem, we find that the larger country is 86,673 square kilometers in area and the smaller is 86,300 square kilometers.

Explanation:

This problem can be solved by using a system of two equations in two variables. Let's denote areas of two countries as x (for the bigger country) and y (for the smaller country).

The information from the problem provides us with two equations:
1) x + y = 172,973 (since combined area of two countries is 172,973 square kilometers),
2) x - y = 373 (since Country A is larger by 373 square kilometers).

Solving these equations will give the areas of the individual countries. Countries' areas can be found by adding the two equations together to eliminate y, you get 2x = 173,346, so x = 86,673 square kilometers.

Then, you can substitute x into the first equation: 86,673 + y = 172,973, from which y = 172,973 - 86,673 = 86,300 square kilometers.

So, the larger country's area is 86,673 square kilometers and the smaller country's area is 86,300 square kilometers.

Learn more about System of Equations here:

https://brainly.com/question/21620502

#SPJ12

A lion's heart beats 12 times in 16 seconds. How many heartbeats will it have in 60 seconds? A) 3.2 heartbeats B) 36 heartbeats C) 45 heartbeats D) 60 heartbeats

Answers

12/16= 3/4 x/60=3/4 Cross multiply. 4x=180 Divide by 4 x=45
12 times in 16 seconds 24 times in 32 seconds 36 times in 48 seconds 48 times in 64 seconds Your answer is 45 heartbeats.

find tan x/2, given that tan x=3 and x terminates in pi < x < ((3)pi/2)

Answers

[tex]tan \frac{x}{2} =\pm \sqrt{\frac{1-cos x}{1+cos x}}[/tex]
Find cos using trig identities:
[tex]sec x = \frac{1}{cos x} \\ tan^2 x = sec^2 x -1[/tex]
Therefore
[tex]cos x = \frac{1}{sec x} =\pm \frac{1}{\sqrt{tan^2 x +1}}[/tex]
Sub in tan x = 3, (Note that x is in 3rd quadrant, cos x < 0)
[tex]cos x =- \frac{1}{\sqrt{3^2 +1}} = -\frac{1}{\sqrt{10}}[/tex]
Finally, sub into Half-angle formula:(Note x/2 is in 2nd quadrant, tan x<0)[tex]tan \frac{x}{2} = -\sqrt{\frac{1+\frac{1}{\sqrt{10}}}{1-\frac{1}{\sqrt{10}}}} = - \sqrt{\frac{\sqrt{10} +1}{\sqrt{10}-1}}[/tex]

Final answer:

To find tan x/2, given that tan x=3 and x terminates in π < x < (3π/2), we can use the half-angle formula for tangent. The value of tan (x/2) is ±1/√2.

Explanation:

To find tan x/2, given that tan x=3 and x terminates in π < x < (3π/2), we can use the half-angle formula for tangent. The half-angle formula for tangent is tan(x/2) = ±√((1-cosx) / (1+cosx)). Since tan x=3, we need to find the value of cos x first.

Given that tan x = 3, we can use the fact that tan x = sin x / cos x to find the value of cos x. Rearranging the equation, we have cos x = sin x / tan x = 1 / 3. Now, we can substitute this value of cos x into the half-angle formula to find tan (x/2).

tan (x/2) = ±√((1-cos x) / (1+cos x))
tan (x/2) = ±√((1-1/3) / (1+1/3))
tan (x/2) = ±√((2/3) / (4/3))
tan (x/2) = ±√(2/4)
tan (x/2) = ±√(1/2)
tan (x/2) = ±1/√2

Learn more about Half-angle formula for tangent here:

https://brainly.com/question/34575146

#SPJ3

if a person puts 1 cent in a piggy bank in the first day, 2 cents on the second day, 3 cents on the third day, and so on, how much money will be in the bank after 50 days?

Answers

The answer would be: $8.20
  well  all of tose added together get you to 1245 cents

A new type of pump can drain a certain pool in
8
hours. An older pump can drain the pool in
12
hours. How long will it take both pumps working together to drain the pool?

Answers

4 to 6 hours add me im bored
Rate = 1/time
New pump pumps at a rate of 1/8 pool per hour
Old pump at 1/12 pool per hour

Working together you ADD the rates
----> 1/8 + 1/12 = 3/24 + 2/24 = 5/24

That means, Time = 24/5 hours = 4.8 hours

convert the given time period to years, assuming a 360-day year. 10 months= now many years

Answers

10 / 360 = 1/46 of a year
10 Months = 10/12 of a year. = 0.833333

describe what would happen if you change the number of balls on the display, how would that change the number of balls on 6 display

Answers

Final answer:

If we modify the number of balls on a display it would alter the number of balls on the other displays based on an underlying mathematical rule or pattern.

Explanation:

The number of balls on the display could potentially represent a mathematical relationship or pattern. If we increase or decrease the number of balls on one display, it would change the number of balls on the other displays in a way that reflects this pattern.

For example, let's assume that the pattern is such that each display has twice the number of balls as the one before it. So if the first display has 1 ball, the second has 2, the third has 4, and so on. If you change the number of balls on the first display to 2, then the number of balls on the 6th display would increase according to the rule, and would become 2^6=64 instead of 1^6=32.

However, the relationship or pattern between the displays would need to be known in order to accurately predict how changing the number of balls on one display would affect the others.

Learn more about Mathematical Relationship here:

https://brainly.com/question/30284058

#SPJ12

Caleb works on commission as a car salesman. Today he sold a car that cost $12,000 and received a $240 commission. What percent of his sale is Caleb's commission?

Answers

240/12000=.02
.02*100=2% commision

2.5 meters cloth is $28.30the cost of 18 meters?

Answers

$495.28 I think I'm not sure if I'm right.
2.5 meters equals 28.30 and you need 18 meters. First you need to divide 18 by 2.5 to understand the extra length you need to pay for. 18 divided by 2.5 equals 7.2. Now that you have that you multiply 28.30 by 7.2 because you are trying to figure out the amount it will cost. 28.30 times 7.2 equals $203.76.

Sixteen students in the school band play clarinet. Clarinet players make up 20% of the band. Use a bar model to find the number of students in the school band

Answers

The answer is 80 because 20% of 80 is 16 :)
80: 20%=16
40%=32
60%=48
80%=64
100%=80
80 students

you have to answer 3 essay questions for an exam. there are 6 essays to check choose from. how many different groups of 3 essays could you possibly choose?

Answers

according to the fundemintal counting princable the answer is 18. 

How do I solve this problem 16x^2 + 1 =8x Using this quadractic x=-b+ square root b-4ac /2a

show work so I can better see

Answers

16x² + 1 = 8x   First, make this a quadratic equation. Subtract 8x from both sides
16x² -8x + 1 = 0   Now, since ax² + bx + c = 0 is quadratic equation form,  a = 16, b                             = -8, and c = 1. Plug those into the quadratic formula.
x = [tex] \frac{-b \pm \sqrt{b^2 - 4ac} }{2a} [/tex]   Plug in your numbers
x = [tex] \frac{-(-8) \pm \sqrt{(-8)^2 - 4(16)(1)} }{2(16)} [/tex]   Simplify the double negative (- (-8))
x = [tex] \frac{8 \pm \sqrt{(-8)^2 - 4(16)(1)} }{2(16)} [/tex]   Simplify (-8)²
x = [tex] \frac{8 \pm \sqrt{64 - 4(16)(1)} }{2(16)} [/tex]   Simplify 4(16)(1)
x = [tex] \frac{8 \pm \sqrt{64 - 64} }{2(16)} [/tex]   Subtract 64 from 64
x = [tex] \frac{8 \pm \sqrt{0} }{2(16)} [/tex]   Mutiply 2 and 16
x = [tex] \frac{8 \pm \sqrt{0} }{32} [/tex]   Get rid of the [tex] \sqrt{0} [/tex]
x = [tex] \frac{8}{32} [/tex]   Simplify
x = [tex] \frac{1}{4} [/tex]


minus 8x both sides
16x^2-8x+1=0
for
ax^2+bx+c=0
x=[tex] \frac{-b+/- \sqrt{b^2-4ac} }{2a} [/tex]
a=16
b=-8
c=1
x=[tex] \frac{-(-8)+/- \sqrt{(-8)^2-4(16)(1)} }{2(16)} [/tex]
x=[tex] \frac{8+/- \sqrt{64-64} }{32} [/tex]
x=[tex] \frac{8+/- \sqrt{0} }{32} [/tex]
x=[tex] \frac{8+/-0 }{32} [/tex]
x=[tex] \frac{8}{32} [/tex]
x=[tex] \frac{4}{16} [/tex]
x=[tex] \frac{2}{8} [/tex]
x=[tex] \frac{1}{4} [/tex]

For what amount Chris can be paid in one of two ways. Plan A is a salary of​$430Per​ month, plus a commission of8​%of sales. Plan B is a salary of​$607per​month, plus a commission of5​%of sales. For what amount of sales is Chris better off selecting plan​ A?

Answers

First make equations for both.

PLAN A
 y = 0.08x + 430

PLAN B
 y = 0.05x + 607

We need to solve for x to see at which point both plans are the same. We know that when x = 0, that Plan B is better. This means from 0 to x, plan B is better.

0.05x + 607 = 0.08x + 403
0.03x = 204
x = 6800

So this means that when the pay is more than $6800 then Plan A is better

A marketing firm randomly sends a mass promotional mailing to 21 %of the households in a new market area. From experience the firm knows that the probability of response to a mailing is 0.14 Number .What is the probability that a household receives the mailing and responds?

Answers

Let X be the number of households. 

so they sent the promotional material to 21% which means 0.21X number of households get the material. 

out of the 0.21x households only 0.14 respond which is 

0.14(0.21x) = 0.0294x or 2.94%

2.94% is the probability that a household receives and responds. 

Show the tens fact you used. Write the difference.
16-9=
10-___=_____

Answers

16-9=7 and 10-9=2 and that's the answer

Without random assignment, which of the following can happen?

1.
Naturally occurring confounding variables can result in an apparent relationship between the explanatory and response variables.

2.
The results may not be able to be extended to a larger population.

3.
Many people in the study will drop out because they aren’t happy with the treatment they were assigned to. This will cause bias in the results.

4.
None of the above

Answers

The correct answer for the given question above would be the second option, option 2. Without random assignment, what might happen is that, the results may not be able to be extended to a larger population. Proper assignment is necessary in order to trace up the progress and the development of the task. Hope this is the answer that you are looking for.

An insurance office has 65 employees. If 39 of the employees have cellular​ phones, what portion of the employees do not have cellular​ phones?

Answers

65-39=26 so 26 employess dont have cellular phones. So 26/65 or in simplified form 2/5
26 is the correct answer 

Hey guys, I need help with this word problem. I don't just want the answer. I would like the steps please!

The average annual cinema admission price y​ (in dollars) from 2003 through 2012 is given by y=0.28x+5.92. In this​ equation, x represents the number of years after 2003.
a. Complete the table.
x: 2, 5, 8
y:
b. Find the year in which the average cinema admission price was approximately ​$7.88. ​(Hint:Find x when y=7.88 and round to the nearest whole​ number.)
c. Use the given equation to predict when the cinema admission price might be ​$10.04. ​(Use the hint for part​ b.)

Answers

So, you take the equation for y given, y=0.28x+5.92. Then you substitute the values for x in, like so: 
y=0.28(2)+5.92=6.42
y=0.28(5)+5.92=7.17
y=0.28(8)+5.92=7.92
So There's your table. Next:
7.88=0.28x+5.92
x=7, so the year when admission was approximately $7.88 is year 7. 
Next, 
10.04=0.28x+5.92
x=14.7142857143, which rounds to year 15. 
I hope this helps!

Final answer:

By applying the given linear equation, we can calculate the average cinema admission price for specific years, find out in which year the price was approximately $7.88, and predict when it might reach $10.04.

Explanation:

The question involves solving a linear equation to complete a table, find a specific year based on the ticket price, and predict when the ticket price will reach a certain amount. To complete these steps, we apply the equation y=0.28x+5.92, where x represents the number of years after 2003, and y gives the price in dollars.

For a, plug in the values of x (2, 5, 8) into the equation to find y.

For b, set y=7.88 and solve for x (years after 2003) by rearranging the equation.

For c, with a target price of $10.04, use the equation again to solve for x.

When x=2, y=6.48.

When x=5, y=7.32.

When x=8, y=8.16.

For a ticket price of $7.88, solve for x: x =  (7.88 - 5.92) / 0.28 = 7 years after 2003, which is 2010.

To predict when the ticket price reaches $10.04, solve for x: x =  (10.04 - 5.92) / 0.28 = 14.71, rounding to 15 years after 2003, which is 2018.

Find the area of the indicated region. We suggest you graph the curves to check whether one is above the other or whether they cross, and that you use technology to check your answer. HINT [See Example 2.]
Between y = x and y = x2 for x in [−2, 1]

Answers

x2?
take the integral and evaluate at -2 and 1

the area of the region between the curves [tex]\(y = x\) and \(y = x^2\) for \(x\) in \([-2, 1]\) is \( \frac{29}{6} \)[/tex] square units.

To find the area of the region between the curves [tex]\(y = x\) and \(y = x^2\)[/tex]for x in the interval [-2, 1], we need to set up the integral and integrate with respect to x.

First, let's graph the curves [tex]\(y = x\) and \(y = x^2\) over the interval \([-2, 1]\)[/tex] to visualize the region.

Now, let's find the points of intersection between the curves [tex]\(y = x\) and \(y = x^2\).[/tex]

Setting [tex]\(y = x\) equal to \(y = x^2\)[/tex], we get:

[tex]\[ x = x^2 \][/tex]

[tex]\[ x - x^2 = 0 \][/tex]

[tex]\[ x(1 - x) = 0 \][/tex]

This equation gives us two solutions: x = 0 and x = 1. So, the curves intersect at x = 0 and x = 1.

Now, to find the area of the region between the curves, we integrate the difference of the curves from [tex]\(x = -2\) to \(x = 0\), and from \(x = 0\) to \(x = 1\)[/tex], and then add the absolute value of these results:

[tex]\[ \text{Area} = \int_{-2}^{0} (x - x^2) \, dx + \int_{0}^{1} (x^2 - x) \, dx \][/tex]

Let's solve these integrals separately:

1. [tex]\[ \int_{-2}^{0} (x - x^2) \, dx \][/tex]

[tex]\[ = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_{-2}^{0} \][/tex]

[tex]\[ = \left[ \left(\frac{0^2}{2} - \frac{0^3}{3}\right) - \left(\frac{(-2)^2}{2} - \frac{(-2)^3}{3}\right) \right] \][/tex]

[tex]\[ = \left[ 0 - \left(\frac{4}{2} - \frac{-8}{3}\right) \right] \][/tex]

[tex]\[ = \left[ 0 - \left(2 + \frac{8}{3}\right) \right] \][/tex]

[tex]\[ = -2 - \frac{8}{3} \][/tex]

[tex]\[ = -\frac{6}{3} - \frac{8}{3} \][/tex]

[tex]\[ = -\frac{14}{3} \][/tex]

2. [tex]\[ \int_{0}^{1} (x^2 - x) \, dx \][/tex]

[tex]\[ = \left[ \frac{x^3}{3} - \frac{x^2}{2} \right]_{0}^{1} \][/tex]

[tex]\[ = \left[ \left(\frac{1^3}{3} - \frac{1^2}{2}\right) - \left(\frac{0^3}{3} - \frac{0^2}{2}\right) \right] \][/tex]

[tex]\[ = \left[ \left(\frac{1}{3} - \frac{1}{2}\right) - (0 - 0) \right] \][/tex]

[tex]\[ = \left( \frac{1}{3} - \frac{1}{2} \right) \][/tex]

[tex]\[ = \frac{1}{3} - \frac{1}{2} \][/tex]

[tex]\[ = \frac{2}{6} - \frac{3}{6} \][/tex]

[tex]\[ = -\frac{1}{6} \][/tex]

Now, we add the absolute values of these results:

[tex]\[ \text{Area} = \left| -\frac{14}{3} \right| + \left| -\frac{1}{6} \right| \]\\[/tex]

[tex]\[ \text{Area} = \frac{14}{3} + \frac{1}{6} \]\\[/tex]

[tex]\[ \text{Area} = \frac{28}{6} + \frac{1}{6} \]\\[/tex]

[tex]\[ \text{Area} = \frac{29}{6} \][/tex]

Therefore, the area of the region between the curves [tex]\(y = x\) and \(y = x^2\) for \(x\) in \([-2, 1]\) is \( \frac{29}{6} \)[/tex] square units.

The probable question maybe:

What is the area of the region between the curves [tex]\(y = x\) and \(y = x^2\)[/tex]for x in the interval [-2, 1]?

Find the amount of tax rate. Round to the nearest hundredth of a percent Cost of item $102 selling price 113.08

Answers

The tax would be $11.08 out of $102.
If I round the two numbers and then divided them by each other I would get
.11 cents tax per $1
The tax would be $11.08 out of $102.

Over the weekend, Statton and Tyler drove to Montana to go hunting. Now they're preparing to go hunting. Tyler needs gas for his jeep, which gets 22 miles gallon for gas mileage. When he stops at the gas station, he already has 5 gallons of gas in his tank, he buys more gas for $1.25 per gallon. If Tyler spends $22 on gas, what is the total distance the boys could travel?

Answers

Answer:

497.2 miles

Step-by-step explanation:

Great question, it is always good to ask away and get rid of any doubts that you may be having.

To begin solving this problem we first need to calculate how much gas Tyler has in his jeep after stopping at the gas station. We calculate this by multiplying the total bill by the price per gallon of gas, and then we add the amount that was left in the tank.

[tex](22/1.25)+5 = 22.6gallons[/tex]

After stopping at the gas station Tyler has 22.6 gallons of gas in his jeep. Since he gets 22 miles per gallon we multiply this by the amount of gallons in his car to calculate the distance they can travel.

[tex]\frac{22.miles}{gallon} * 22.6gallons = 497.2miles[/tex]

Tyler and his friends can travel 497.2 miles with the amount of gas they have.

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

In a poll of travelers, 85% said that traveling by air makes them nervous, and 450 travelers said that it does not make them nervous. How many travelers were polled?

Answers

the answer is 1,338 were polled
100% - 85% = 15%

So 15% said that it does NOT make them nervous.
We know this equals 450 people.

---> 15% of X = 450
---> 0.15X = 450
---> X = 450/0.15
---> X = 3000

Therefore a total of 3000 people were polled

Evaluate the indefinite integral as an infinite series ∫sinx /2x dx

Answers

Answer:

[tex]\displaystyle \int {\frac{sin(x)}{2x}} \, dx = \frac{1}{2}\sum^{\infty}_{n = 0} \frac{(-1)^nx^{2n + 1}}{(2n + 1)^2(2n)!}} + C[/tex]

General Formulas and Concepts:

Calculus

Integration

Integrals[Indefinite Integrals] Integration Constant C

Sequences

Series

Taylor Polynomials

MacLaurin Polynomials

Power Series

Power Series of Elementary FunctionsTaylor Series:                                                                                                 [tex]\displaystyle P(x) = \sum^{\infty}_{n = 0} \frac{f^n(c)}{n!}(x - c)^n[/tex]

Integration of Power Series:

 [tex]\displaystyle f(x) = \sum^{\infty}_{n = 0} a_n(x - c)^n[/tex]  [tex]\displaystyle \int {f(x)} \, dx = \sum^{\infty}_{n = 0} \frac{a_n(x - c)^{n + 1}}{n + 1} + C_1[/tex]

Step-by-step explanation:

*Note:  

You could derive the Taylor Series for sin(x) using Taylor polynomials differentiation but usually you have to memorize it.

We are given the integral and are trying to find the infinite series of it:

[tex]\displaystyle \int {\frac{sin(x)}{2x}} \, dx[/tex]

We know that the power series for sin(x) is:

[tex]\displaystyle sin(x) = \sum^{\infty}_{n = 0} \frac{(-1)^nx^{2n + 1}}{(2n + 1)!}[/tex]

To find the power series for  [tex]\displaystyle \frac{sin(x)}{2x}[/tex], divide the power series by 2x:

[tex]\displaystyle \frac{sin(x)}{2x} = \sum^{\infty}_{n = 0} \bigg[ \frac{(-1)^nx^{2n + 1}}{(2n + 1)!} \cdot \frac{1}{2x} \bigg][/tex]

Simplifying it, we have:

[tex]\displaystyle \frac{sin(x)}{2x} = \sum^{\infty}_{n = 0} \frac{(-1)^nx^{2n}}{2(2n + 1)!}[/tex]

Rewrite the original integral:

[tex]\displaystyle \int {\frac{sin(x)}{2x}} \, dx = \int {\sum^{\infty}_{n = 0} \frac{(-1)^nx^{2n}}{2(2n + 1)!}} \, dx[/tex]

Integrate the power series:

[tex]\displaystyle \int {\frac{sin(x)}{2x}} \, dx = \sum^{\infty}_{n = 0} \frac{(-1)^nx^{2n + 1}}{2(2n + 1)(2n + 1)!}} + C[/tex]

Simplify the result:

[tex]\displaystyle \int {\frac{sin(x)}{2x}} \, dx = \frac{1}{2}\sum^{\infty}_{n = 0} \frac{(-1)^nx^{2n + 1}}{(2n + 1)^2(2n)!}} + C[/tex]

And we have our final answer.

Topic: AP Calculus BC (Calculus I + II)  

Unit: Power Series

Ariadne shadow is 15 feet long and Dixons shadow is 18feet long. If Ariadne is 5 feet tall how tall is dixon?

Answers

Use a proportion.

                 Shadow Length                  Real Height
Ariadne                15 ft                              5 ft
Dixon                   18 ft                                x

15 is to 5 as 18 is to x

15/5 = 18/x

Solve for x.
Final answer:

Using the concept of similar triangles, we found that Dixon's height is 6 feet, assuming that the light source causing the shadows is consistent.

Explanation:

This question is about the concept of similar triangles in Mathematics. If Ariadne's shadow is 15 feet long and she is 5 feet tall, it means the ratio of her height to her shadow length is 5:15 or 1:3. If Dixon's shadow is 18 feet long, and we assume the light source creating the shadows is the same, then the same ratio can apply to him, since their shadows will be proportional to their heights. Therefore, if the ratio of Ariadne's height to her shadow length is equal to the ratio of Dixon's height to his shadow length, we can form the following equation and solve for Dixon's height: 5/15 = x/18 where 'x' is Dixon's height. Solving this equation, we find that Dixon's height is 6 feet.

Learn more about Similar Triangles here:

https://brainly.com/question/34830045

#SPJ12

Write
36/20
as a percentage.

Answers

36/20 is 180% 

I hope this helps!

Hey there. You can easily turn a fraction into a percentage by dividing the numerator by the denominator or top by bottom. After you've done that, multiply the result by 100. So 36/20 as a percentage is 180%. It exceeds a 100% because the numerator is greater than the denominator.

f=1/2kp, solve for k

Answers

F = 1/2kp....multiply both sides by 2, eliminating the 1/2
2F = kp...now divide both sides by p
(2F/p) = k

The equivalent value of the expression k = ( 2F/p )

What is an Equation?

Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.

It demonstrates the equality of the relationship between the expressions printed on the left and right sides.

Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.

Given data ,

Let the equation be represented as A

Now , the value of A is

Substituting the values in the equation , we get

F = ( 1/2 ) kp

On simplifying , we get

Multiply by 2 on both sides , we get

2F = kp

Divide by p on both sides , we get

k = 2F/p

Hence , the expression is k = 2F/p

To learn more about equations click :

https://brainly.com/question/19297665

#SPJ2

9 of the 12 babies were born Tuesday were boys.In simplest form,what fraction of babies born on Tuesday were boys

Answers

3/4 boys were born on Tuesday welcome!!! 

Wesly is 5 feet 3 inches tall. If one inch equals 2.54 centimeters, what is wesly's height in centimeters

Answers

Answer:

152.4 cm

Step-by-step explanation:

Wesly is 5 feet and 3 inches tall. Since there are 12 inches in one foot, 5 feet has 60 inches. This means Wesly is 63 inches tall. If one inch is 2.54 cm then 60(2.54) is Wesly's height in centimeters. 60(2.54) = 152.4

Two dice are rolled one after another. Construct a sample space and determine the probability that the sum of the dots on the dice total a number greater than 4 if the second die is a 3.

Answers

Final answer:

To find the probability of the sum of two dice being greater than 4 given the second die is a 3, first identify the sample space for the first die as {1, 2, 3, 4, 5, 6}. Then, calculate the favorable outcomes where the first die, added to 3, results in a number greater than 4, which are {2, 3, 4, 5, 6}. The probability is 5/6, rounded to approximately 0.8333.

Explanation:

Sample Space and Probability Calculation

When two dice are rolled one after another, and the second die results in a 3, we consider the outcomes of the first die only. As the first die is also a fair, six-sided die with faces numbered from 1 to 6, the sample space for the first die is S = {1, 2, 3, 4, 5, 6}.

The question asks for the probability of the sum being greater than 4 given that the second die is a 3. This means we are looking for the sum to be 5 or more. We can calculate the possible outcomes where the first die, when added to 3, results in a total greater than 4.

If the first die shows 1, the sum is 4 (not greater than 4).If the first die shows 2, the sum is 5 (which is greater than 4).If the first die shows 3, 4, 5, or 6, the sum is 6, 7, 8, or 9, respectively (all greater than 4).

Therefore, the outcomes in the sample space that result in a sum greater than 4 are {2, 3, 4, 5, 6}. The probability of this event, given the second die is a 3, is the number of favorable outcomes divided by the total number of possible outcomes of the first die. There are 5 favorable outcomes and 6 possible outcomes, so the probability is 5/6 or approximately 0.8333 when rounded to four decimal places.

Final answer:

To construct the sample space, we need to consider all possible outcomes of rolling two dice. The probability of the sum of the dots on the dice being greater than 4 given that the second die is a 3 is 5/36.

Explanation:

To construct the sample space, we need to consider all possible outcomes of rolling two dice. Since each die has six sides numbered 1 to 6, the sample space will consist of 36 outcomes. We can represent the outcomes as pairs of numbers, where the first number represents the result of the first die and the second number represents the result of the second die. For example, (1, 1) represents both dice landing on 1, (1, 2) represents the first die landing on 1 and the second die landing on 2, and so on.

To determine the probability of the sum of the dots on the dice being greater than 4 given that the second die is a 3, we need to identify the outcomes where the second die is 3 and the sum is greater than 4. These outcomes are (2, 3), (3, 3), (4, 3), (5, 3), and (6, 3). There are a total of 5 outcomes that satisfy these conditions. Since the sample space has 36 outcomes, the probability is 5/36. To find the probability that the sum of the dots on two dice is greater than 4 given the second die is a 3, we list the possible outcomes for the first die as {1, 2, 3, 4, 5, 6}. The favorable outcomes are those that, when added to 3, result in a number greater than 4: {2, 3, 4, 5, 6}. This results in a probability of 5/6.

Other Questions
Find all solutions in the interval [0, 2).7 tan^3x - 21 tan x = 0A) pi/3, 2pi/3, 4pi/3, 5pi/3B) 0, pi/5, , 6pi/5C) 0, pi/3, 2pi/3, , 4pi/3, 5pi/3D) 0, pi/3, , 4pi/3 Which excerpt from Silent Spring best appeals to readers pathos?So it had been from the days many years ago when the first settlers raised their houses, sank their wells, and built their barns.The town lay in the midst of a checkerboard of prosperous farms, with fields of grain and hillsides of orchards where, in spring, white clouds of bloom drifted above the green fields. In autumn, oak and maple and birch set up a blaze of color that flamed and flickered across a backdrop of pines.The countryside was, in fact, famous for the abundance and variety of its bird life, and when the flood of migrants was pouring through in spring and fall people traveled from great distances to observe them.Yet every one of these disasters has actually happened somewhere, and many real communities have already suffered a substantial number of them. A grim specter has crept upon us almost unnoticed, and this imagined tragedy may easily become a stark reality we all shall know. What are the four reasons why cells divide which of the following composers is credited with helping to establish the genres of symphony and string quartet?A) Franz Joseph HaydnB) Wolfgang Amadeus Mozart C) Gioachino Rossini D) Ludwig van Beethoven use benchmarks to estimate 2.81+3.73 Every individual can interpret emotions accurately. Please select the best answer from the choices provided. T F Describe two reasons to use the Internet responsibly. Explain what might happen if the Internet use policies were broken at your school. The maximum value of f(x) = 2x^3 - 18x^2 + 48x - 1 on the interval [0, 3] is (4 points)-1393571 Explain how you can use the basic moves of algebra to transform the equation 5x-3y=12 into 0=12-5x+3y Where is oxygen content in a river or stream likely to be highest? Nathan cut 3 pieces of rope. Each was between 1.1 m and 1.2 m. Write down how long each piece might be. 1/3 woodwind,1/6 percussion,1/2 brass. The Reagan School Marching Band has three percussion musicians.How many musicians altogether are in the band? By the fifteenth century, where were most African slaves in Europe found?EUROPE IN THE RENAISSANCE AND REFORMATIONa. The Holy Roman Empireb. Athensc. The French countrysided. Spain and Portugal What were some influences on self government select all that applyA. Commentaries on the laws of EnglandB.the Colombian exchange C.english bill of rightsD.poor Richards almanac A student faculty government committee of 4 people is to be formed from 20 student volunteers and 5 faculty volunteers. Find the probability that the committee will consist of the following, assuming the selection is made at random: a. two students and two faculty members and b. one faculty member and three students. ...? What percent of cells are in prophase What form of a quadratic function would be graphed if the vertex at the same point as the y-intercept? What purpose do the obelisk of senusret and the other obelisks serve Which of the following foods would most be considered a protein.BreadRiceVegetablesSteak How would your beliefs affect what others believe? Steam Workshop Downloader