Answer:
One solution: y = -1
Step-by-step explanation:
Perform the indicated multiplications:
5y + 5 - y = 3y - 3 + 7, or
4y + 5 = 3y + 4, or
y = -1 This equation has ONE solution: y = -1
Find the exact value of the following expression (without using a calculator): tan(Sin^-1 x/2)
ANSWER
[tex]\tan(\sin^{ - 1}( \frac{x}{2} )) = \frac{x}{ \sqrt{4 - {x}^{2} } } \: \:where \: \: x \ne \pm2[/tex]
EXPLANATION
We want to find the exact value of
[tex] \tan( \sin^{ - 1}( \frac{x}{2} ) ) [/tex]
Let
[tex]y = \sin^{ - 1}( \frac{x}{2} )[/tex]
This implies that
[tex] \sin(y) = \frac{x}{2} [/tex]
This implies that,
The opposite is x units and the hypotenuse is 2 units.
The adjacent side is found using Pythagoras Theorem.
[tex] {a}^{2} + {x}^{2} = {2}^{2} [/tex]
[tex]{a}^{2} + {x}^{2} = 4[/tex]
[tex]{a}^{2} = 4 - {x}^{2}[/tex]
[tex]a= \sqrt{4 - {x}^{2}} [/tex]
This implies that,
[tex] \tan(y) = \frac{opposite}{adjacent} [/tex]
[tex]\tan(y) = \frac{x}{ \sqrt{4 - {x}^{2} } } [/tex]
But
[tex]y = \sin^{ - 1}( \frac{x}{2} )[/tex]
This implies that,
[tex]\tan(\sin^{ - 1}( \frac{x}{2} )) = \frac{x}{ \sqrt{4 - {x}^{2} } } \: \:where \: \: x \ne \pm2[/tex]
Help Picture below ..........
Answer:
A
Step-by-step explanation:
Multiply them according to the problem.
[tex]6x+2y=6 \\ \\ -3(6x+2y)=(6)*-3 \\ \\ -18x-6y=-18 \\ \\ \\ 7x+3y=9 \\ \\ 2(7x+3y)=(9)*2 \\ \\ 14x+6y=18[/tex]
As you can see, the only terms in the two equations that can cancel out are [tex]-6y[/tex] and [tex]6y[/tex].
Simplify the expressions.
i32 =
i25 =
i86 =
i51 =
Simplify the expression using the definition of an imaginary number i = sqrt -1
i32 = 1
i25 = i
i86 = -1
i51 = -i
Answer:
Sample answer for Edmentum
Like and Rate!
Step-by-step explanation:
An office has 80 employees and 24 of the employeeshoes are managers. What percent of the employees are mamagers
Please ignore the x above,,
Answer: 30%
Step-by-step explanation:
Given: the number of employees in the office = 80
The number of employees are managers = 24
Then, the percent of employees are manger is given by :-
[tex]\dfrac{\text{Number of mangers}}{\text{Total employees}}\times100\\\\=\dfrac{24}{80}\times100\\\\=30\%[/tex]
Hence, the percent of the employees are managers = 30%
A sweater was on sale at 40% off the regular price. Ella saved 20$ by buying the sweater on sale. What was the regular price of the sweater?
Answer:
the answer is $50 for the full price of the sweater
Step-by-step explanation:
if you know $20 is 40% what is 20% it is $10 and then multiple it by 5 because 20 times 5 is 100 and you get 50
Answer:
$50
Step-by-step explanation:
Sale on sweater = 40% .
Money saved = $20 .
Let original price be x then ,
=> 40% of x = $20
=> 40x/100 = $20
=> x = $20 *100/40
=> x = $ 50
Please help I'll give brainliest >.<
Janeka found the area of a circular side table with a diameter of 20 inches. Explain the error(s) that she made. Include the correct answer in your response.
A = π r²
A = π (20 in)²
A = 400 π in
Janeka forgot to divide by 2 to get the radius and then square and multiply by pi.
since the diameter is 20 the radius would be 10. so i the equation you would replace the 20 with 10 bc she but the diameter in instead of the radius which r=radius
Find the derivative of f(x) = 4 divided by x at x = 2.
The answer is:
[tex]f'(2)=-1[/tex]
Why?To solve this problem, first we need to derivate the given function, and then, evaluate the derivated function with x equal to 2.
The given function is:
[tex]f(x)=\frac{4}{x}[/tex]
It's a quotient, so, we need to use the following formula to derivate it:
[tex]f'(x)=\frac{d}{dx}(\frac{u}{v}) =\frac{v*u'-u*v'}{v^{2} }[/tex]
Then, of the given function we have that:
[tex]u=4\\v=x[/tex]
So, derivating we have:
[tex]f'(x)=\frac{d}{dx}(\frac{4}{x}) =\frac{x*(4)'-4*(x)'}{x^{2} }[/tex]
[tex]f'(x)=\frac{d}{dx}(\frac{4}{x}) =\frac{x*0-4*1}{x^{2} }[/tex]
[tex]f'(x)=\frac{d}{dx}(\frac{4}{x}) =\frac{0-4}{x^{2} }[/tex]
[tex]f'(x)=\frac{d}{dx}(\frac{4}{x}) =\frac{-4}{x^{2} }[/tex]
Hence,
[tex]f'(x)=\frac{d}{dx}(\frac{4}{x}) =\frac{-4}{x^{2} }[/tex]
Now, evaluating with x equal to 2, we have:
[tex]f'(2)=\frac{-4}{(2)^{2} }[/tex]
[tex]f'(2)=\frac{-4}{4}[/tex]
[tex]f'(2)=-1[/tex]
Therefore, the answer is:
[tex]f'(2)=-1[/tex]
Have a nice day!
ANSWER
[tex]f'(2) = -1[/tex]
EXPLANATION
The given function is
[tex]f(x) = \frac{4}{x} [/tex]
Recall that:
[tex] \frac{c}{ {a}^{ m} } = c {a}^{ - m} [/tex]
We rewrite the given function using this rule to obtain,
[tex]f(x) = 4 {x}^{ - 1} [/tex]
Recall again that,
If
[tex]f(x)= a {x}^{n} [/tex]
then
[tex]f'(x)=n a {x}^{n - 1} [/tex]
We differentiate using the power rule to obtain,
[tex]f'(x) = - 1 \times 4 {x}^{ - 1 - 1} [/tex]
[tex]f'(x) = - 4 {x}^{ - 2} [/tex]
We rewrite as positive index to obtain,
[tex]f'(x) = - \frac{4}{ {x}^{2} } [/tex]
We plug in x=2 to obtain,
[tex]f'(2) = - \frac{4}{ { (2)}^{2} } = - \frac{4}{4} = - 1[/tex]
A ferris wheel has 15 seat buckets. What is the angle measurement between each bucket?
A.
15°
B.
24°
C.
45°
D.
65°
Answer:
B
Step-by-step explanation:
In one complete rotation the wheel rotates 360°
Assuming the seats are equally spaced around the wheel then the
angle between each seat = [tex]\frac{360}{15}[/tex] = 24°
The angle measurement between each bucket is 24 degrees if the Ferris wheel has 15 seat buckets option (B) 24° is correct.
What is an angle?When two lines or rays converge at the same point, the measurement between them is called a "Angle."
We have:
A Ferris wheel has 15 seat buckets.
The total angle of the wheel is 360 degrees, which is a complete revolution of the wheel.
The angle measurement between each bucket is:
= 360/15
= 24 degree
Thus, the angle measurement between each bucket is 24 degrees if the Ferris wheel has 15 seat buckets option (B) 24° is correct.
Learn more about the angle here:
brainly.com/question/7116550
#SPJ2
In trei rezervoare sunt 1672 l de benzina dacã in primele doua rezervoare sunt 123100 cl iar in ultimele doua sunt 15 hl sa se afle câ?i l sunt in fiecare rezervor
the answer is
615500
hope this helps
ΔUVW, the measure of ∠W=90°, the measure of ∠U=65°, and VW = 77 feet. Find the length of WU to the nearest tenth of a foot.
Answer:
35.9 ft
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you that ...
Tan = Opposite/Adjacent
tan(U) = VW/WU
tan(65°) = (77 ft)/WU
WU = 77 ft/tan(65°) ≈ 35.9 ft
Please help with this sequence question
Answer:
1,048,576
Step-by-step explanation:
We can tell that this is a geometric sequence because each new term is a multiple of the previous term. The common ratio is -2.
The pertinent formula is a(n) = -2 · (-2)^(n-1).
Thus, the 20th term of this sequence is a(20) = -2 · (-2)^(20-1), or
a(20) = -2 · (-2)^19, or 2^20, which comes out to 1,048,576 (same as the fourth possible answer).
what is the difference of 9x / 3x + 5 and 2 / 3x + 5
ANSWER
[tex]\frac{9x - 2}{3x + 5} [/tex]
EXPLANATION
We want to find the difference;
[tex] \frac{9x}{3x + 5} - \frac{2}{3x { + 5}} [/tex]
This are like fractions or equivalent fractions.
We keep one of the denominators and subtract the numerators.
The difference is:
[tex]\frac{9x - 2}{3x + 5} [/tex]
Note that, we cannot simplify this further.
So we live the difference as it is.
Answer:
The correct answer is,
(9x - 2)/(3x + 5)
Step-by-step explanation:
It is given two expression with variable x
9x/(3x + 5) and 2/(3x + 5)
To find the difference
Here the denominators of two expression are same, so we can write,
9x/(3x + 5) - 2/(3x + 5) = (9x - 2)/(3x + 5)
Therefore the correct answer is
(9x - 2)/(3x + 5)
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
Does each situation describe a survey, an experiment, or an observational study?
Select Survey, Experiment, or Observational Study for each situation.
Answer:
1. observational study
2.survay
3.experiment
Step-by-step explanation:
Two angles are vertical angles. One is labeled 2x. The other angle is labeled (x+30). Find the value of x.
2x=x+30
-x -x
x=30
The value of x is 30
Sean used the $1,200 he got from his graduation party to open a savings account. If the account earns 1% interest each month and he makes no additional deposits, how much money will be in the account in 5 years?
Answer:
[tex]\$1,920[/tex]
Step-by-step explanation:
we know that
The simple interest formula is equal to
[tex]A=P(1+rt)[/tex]
where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest
t is Number of Time Periods
in this problem we have
[tex]t=5*12=60\ months\\ P=\$1,200\\r=0.01[/tex]
substitute in the formula above
[tex]A=\$1,200(1+0.01*60)[/tex]
[tex]A=\$1,200(1.6)=\$1,920[/tex]
Given that sinΘ = 1/2 and that Θ lies in quadrant II, determine the value of cosΘ.
In quadrant II, if sinΘ = 1/2, the value of cosΘ is -√(3/4).
Explanation:In quadrant II, sine is positive and cosine is negative. Since sinΘ = 1/2, we can use the Pythagorean identity to find the value of cosΘ:
sin²Θ + cos²Θ = 1
Plugging in the value of sinΘ and solving for cosΘ, we get:
(1/2)² + cos²Θ = 1
1/4 + cos²Θ = 1
cos²Θ = 3/4
Taking the square root, we get:
cosΘ = ±√(3/4)
Since Θ lies in quadrant II where cosine is negative, the value of cosΘ is:
cosΘ = -√(3/4)
Learn more about Trigonometry here:https://brainly.com/question/31896723
#SPJ3
Three students, Angie, Bradley, and Carnell, are being selected for three student council offices: president, vice president, and treasurer. In each arrangement below, the first initial of each person’s name represents that person’s position, with president listed first, vice president second, and treasurer third. Which shows the possible outcomes for the event?
Answer:
ABC, ACB, BCA, BAC, CAB, CBA
Answer:
We have 3 students and 3 positions.
Angie (A), Bradley (B) and Carnell (C)
The total number of combinations can be calculated as:
For the president option we have 3 options:
For the vice president, we have 2 options because we already took one of the students for the president's place.
For the treasurer, we only have one option, so the number of combinations is:
3*2*1 = 6 we have 6 possible combinations; those are:
[tex]\left[\begin{array}{ccc}pres&vice&treas\\A&B&C\\A&C&B\\B&A&C\\B&C&A\\C&A&B\\C&B&A\end{array}\right][/tex]
When a snake hatched 4 years ago, it was only 5 inches long. Suppose it is now 3 foot 9 inches long. Given that the annual percentage rate has been constant, what is the annual rate of growth for the snake?
Answer: 10 inches per year.
If the snake is now 3 foot 9 inches, we can add up how many inches that is by converting feet to inches. 1 foot=12 inches, so 3 feet is 36 inches. We then add the 9 inches.
36+9= 45
Since the snake had already accomplished being 5 inches at birth, we can subtract 5 from 45.
This gives us 40.
Since the snake was born 4 years ago we divide 40 by 4.
40÷4= 10
Answer:
73.21% annual percentage rate.
Step-by-step explanation:
3 foot 9 inches = 45 inches
45 = 5(1 + r)4
9 = (1 + r)4
91/4 = 1 + r
r = 0.73205
therefore,
r = 73.21%
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
The weights of bags of ready-to-eat salad are normally distributed with a mean of 290 grams and a standard deviation of 10 grams.
What percent of the bags weigh less than 280 grams?
Answer: b) 16%
Step-by-step explanation:
The mean is 290 so on a normal bell curve that would be a z-score of 0.
The standard deviation is 10 so 290 - 10 = 280 is a z-score of -1.
A z-score from the left to -1 is 15.9%
Charles has 24 marbles.He has 6 more yellow marbles than blue marbles. Which equation represents this situation?
Answer:
2x+6=24
Step-by-step explanation:
A number whose square roots are integers or quotients of integers.
perfect square
solution
cube root
sublime
none of the above
Answer:
The answer is perfect square.
Step-by-step explanation:
A number whose square roots are integers or quotients of integers - perfect square.
The square of a number is a number multiplied by itself. Like 2 x 2 , 5 x 5 etc.
The perfect squares are the squares of the whole numbers like : 1, 4, 9, 16, 25, 36, and so on.
Identify the type of pyramid shown.
A. Supremum
B. Pharaoh's tomb
C. Zenith
D. Pentagonal pyramid
Answer:
Step-by-step explanation:
pentagonal
Pentagonal pyramid is the type of pyramid.
What is a pentagonal pyramid?A pentagonal pyramid in geometry is a pyramid with a pentagonal base and five triangular sides that intersect at a point. It has two sides, much like every pyramid. The lateral faces of the regular pentagonal pyramid are equilateral triangles, while the base is a regular pentagon.
To know more about pentagonal pyramids refer to :
https://brainly.com/question/14536426
#SPJ2
A taut clothesline extends between the points (–4.2, –6.4, 4.5) and (7.1, 2.2, 5.8), where the coordinates are in units of feet. What is the length of the clothesline?
Answer:
17.54 ft
Step-by-step explanation:
Moving along the line from (–4.2, –6.4, 4.5) to (7.1, 2.2, 5.8), x increases by 11.3, y by 8.6 and z by 10.3.
Applying the Pythagorean Theorem twice, we get
(length of clothesline) = √( 11.3² + 8.6² + 10.3²), or 17.54 ft.
You are planning to invest $500 at 12% compounded annually. How much money would you have after 10,20 and 30 years?
Problem
If you deposit $500 into an account paying 12% annual interest compounded yearly , how much money will be in the account after 10 years?
Result
The amount is $1552.92 and the interest is $1052.92.
Problem
If you deposit $500 into an account paying 12% annual interest compounded yearly , how much money will be in the account after 20 years?
Result
The amount is $4823.15 and the interest is $4323.15.
Problem
If you deposit $500 into an account paying 12% annual interest compounded yearly , how much money will be in the account after 30 years?
Result
The amount is $14979.96 and the interest is $14479.96.
Final answer:
The investment grows to $1,555.88 in 10 years, $4,822.49 in 20 years, and $14,974.46 in 30 years.
Explanation:
To calculate the future value of an investment with compound interest, you can use the formula A = P(1 + r/n)[tex]^{(nt)}[/tex], where:
P is the principal amount (the initial amount of money)
r is the annual interest rate (decimal)
n is the number of times that interest is compounded per year
t is the time the money is invested for, in years
For your case, where you invest $500 at 12% compounded annually, this becomes:
A = 500(1 + 0.12/1)[tex]^{(1t)}[/tex]
Calculating for 10, 20, and 30 years:
A = 500(1 + 0.12)¹⁰ = $1,555.88 after 10 years
A = 500(1 + 0.12)²⁰ = $4,822.49 after 20 years
A = 500(1 + 0.12)³⁰ = $14,974.46 after 30 years
There are 8 people on the debate team. In how many ways can the coach choose 4 members to send to competition?
he can either send one half or the other half.
Answer:
70
Step-by-step explanation:
Given : There are 8 people on the debate team.
To Find: In how many ways can the coach choose 4 members to send to competition?
Solution:
We will use combination over here
Formula : [tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]
Now There are 8 people on the debate team and the coach have to choose 4
So, n = 8
r = 4
So, number of ways of choosing 4 people out of 8 = [tex]^8C_4[/tex]
= [tex]\frac{8!}{4!(8-4)!}[/tex]
= [tex]\frac{8!}{4!4!}[/tex]
= [tex]70[/tex]
Hence there are 70 ways of choosing 4 members out of 8 to send to competition
Determine the length (to 1 decimal place) of the arc that subtends an angle of 2.8 radians at the centre of a circle with radius 12 cm.
13.3 cm
33.6 cm
148.0 cm
16.8 cm
Answer:
33.6 cm
Step-by-step explanation:
We can use the formula for arc length to solve this.
[tex]s=r\theta[/tex]
Where
s is the arc length
r is the radius
[tex]\theta[/tex] is the angle subtended by the arc (in radians)
The problem gives us theta = 2.8 radians and radius of the circle as 12 cm. We plug these into the formula and figure out the arc length (to 1 decimal place):
[tex]s=r\theta\\s=(12)(2.8)\\s=33.6[/tex]
2nd answer choice is right.
A pharmaceutical company sells bottles of 500 calcium tablets in two dosages: 250 milligram and 500 milligram. Last month, the company sold 2,200 bottles of 250-milligram tablets and 1,800 bottles of 500-milligram tablets. The total sales revenue was $39,200. The sales team has targeted sales of $44,000 for this month, to be achieved by selling of 2,200 bottles of each dosage.
Assuming that the prices of the 250-milligram and 500-milligram bottles remain the same, the price of a 250-milligram bottle is $
and the price of a 500-milligram bottle is $
Answer:
the price of a 250-milligram bottle is $8
he price of a 500-milligram bottle is $12
Step-by-step explanation:
Let,
x = price of a 250 mg dosage
y = price of a 500 mg dosage
Last month, the company sold 2,200 bottles of 250-milligram tablets and 1,800 bottles of 500-milligram tablets. The total sales revenue was $39,200
2200*x + 1800*y = 39200
The sales team has targeted sales of $44,000 for this month, to be achieved by selling of 2,200 bottles of each dosage.
2200*x + 2200*y = 44000
The system of equations result
2200*x + 1800*y = 39200
2200*x + 2200*y = 44000
We can easily solve it by graphing both equations, please see attached image
The answer is
x = $8
y = $12
Which function could be shown in the graph below?
A. [tex]f(x) = -3x^4+x^2-5[/tex]
B. [tex]f(x) = x^4-5x^2+4[/tex]
C. [tex]f(x) = 4x^3-12x^2-x+15[/tex]
D. [tex]f(x) = x^5-3x^2+2x[/tex]
Answer:
B. [tex]f(x) = x^4-5x^2+4[/tex]
Step-by-step explanation:
The graph of the given function falls at the left side and rises on the right,
This means that the degree of the function represented by the graph must be even and the leading coefficient must be positive.
The y-intercept of the graph is also 4.
Using the end behavior and the y-intercept the function represented in the graph should be [tex]f(x) = x^4-5x^2+4[/tex]
The correct choice is B.
Answer:
B
Step-by-step explanation:
I need to find the arc of GFE, next, I need to find the circumference AND area with a radius of 5 mm. Then the final questions ask to Write the equation of a circle with a center at (-1,2) and a diameter of 12.
I will be very thankful for your help, this is a required assignment of mine and I have been struggling to get it done. Thank you :)
Arc GHE is 40 + 80 or 120 so arc GFE is 360 (total measurement in a circle) - 120 which is 240. The circumference of a circle is 2*pi*r so in this case it will be 2*pi*5 or 10pi (you can also write it as approximately 31.4). The area of a circle is pi*r² so it'll be pi*5² or 25pi (you can write it as approximately 78.5 also). The equation of a circle is (x-h)² + (y-k)² = r² where (h,k) is the center of the circle and r is the radius. Input your values. The equation of this circle is (x+1)² + (y-2)² = 6² (The radis is 6 because the diameter is 12)
I hope this helps!
A full circle is 360 degrees.
You are given the angles for GH, HE and FE, subtract those from 360 to find the angle for FG:
360 - 110 - 80 - 40 = 130 degrees.
Now for the arc GFE add FG and FE:
Arc GFE = 130 + 110 = 240 degrees.
Circumference = 2 x PI x r
Using 3.14 for PI:
Circumference = 2 x 3.14 x 5 = 31.4 mm or 10PI
Area = PI x r^2 = 3.14 x 25 = 78.5 mm^2 or 25PI mm^2
Equation of a circle with center at (-1,2) and diameter of 12:
The equation is written as (x-x1)^2 + (y-y1)^2 = r^2
x1 and y1 are the values of the center (-1,2) and r is the radius, which would be half the diameter.
The equation is: (x+1)^2 + (y-2)^2 = 36
PLEASE HELP ME ASAP
(x-3)(x+3) this is the answer
Answer:
(x + 3)(x - 3)
Step-by-step explanation:
x² - 9 ← is a difference of squares and factors as
x² - 9 = (x + 3)(x - 3)