Answer:
A scientific experiment is divided into two sample groups: control and the experimental. The control group lacks the key variable to be studied while the experimental group contains the sample to be studied.
The experiment contains three experiments: the variable to be studied (dependent variable), the variable which can be changed and influence the dependent variable (independent variable) and the variable which do not change in the experiment (constant variable).
In the given experiment,
1. Hypothesis: when the height changes in soil, the content of the fossil in the soil also changes.
2. Independent Variable: the height of the bank from surface
3. Dependent Variable: the number and type of fossil.
4. Constant variable: the amount of soil in the bucket
5. Control: the soil at the surface (0 cm)
6. Number of groups: 5 groups
7. Number of trials per group: should be 3
you push a sled of mass 15 kg across the snow with a force of 180 N for a distance of 2.5 m. There is no friction. if the sled started at rest. what is the velocity of the sled after you push it?
The velocity of the sled after being pushed is determined through the application of the work-energy theorem, calculating the work done as the force times distance and equating this to the change in kinetic energy. This results in a velocity of approximately 7.9 m/s.
Explanation:The subject of this problem pertains to the area of physics known as kinematics, specifically the forces and acceleration involved when an object is set into motion. To solve this problem, we can utilize the work-energy theorem. The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy.
In this case, the work done is the force applied to the sled times the distance the sled is pushed or W = Fd. Substituting the given values into the equation, we get W = 180 N * 2.5 m = 450 Joules.
The work done on the sled results in a change in the sled's kinetic energy. The kinetic energy (KE) of an object is given by KE = 0.5*m*v^2, where m is the mass of the object and v is its velocity.
Setting the work equal to the change in kinetic energy (since the sled starts at rest, the change in kinetic energy is just its final kinetic energy), we get 450 J = 0.5*15 kg*v^2. Solving for v gives a velocity of approximately 7.9 m/s.
Learn more about the Work-Energy Theorem here:https://brainly.com/question/30560150
#SPJ12
Scientific models A. help to predict future events B. Prove that an object exists C.determine the distance to far off stars D. Show that the scientific method works
Which value is equivalent to 178 centimeters?
1.78 millimeters
17.8 millimeters
1.78 meters
1.78 × 10-2 micrometers
1.78 × 10-5 kilometers
Answer:
1 centimetres = 10 millimetres
178 centimetres = 10 × 178 = 1780 millimetres
1 meters = 100 centimeters
178 centimeters = 178 ÷ 100 = 1.78 meters Plato answer
1 cm = 10 mm
1 mm = 1000 micrometers
1 cm = 10000 micrometers
178 cm = 178 × 10⁴ micrometers
1 kilometre = 1000 metres
1 metre = 100 cm178 cm = 178 ÷ 100 = 1.78 metres
1.78 metres = 1.78÷1000 = 1.78 × 10⁻³ kilometres
Explanation:
How is sound detected by the brain? A.electromagnetic waves
B. Bones amplifying sound
C. Vibrations
D. Electrical impulses from the ear
What important attitudes do successful scientists possess?
Curiousity. - A scientist shows interest and pays particular attentions to objects or events.
Honesty. - A scientist gives a truthful report of observations.
Open-Mindedness. - A scientist listens to and respects the ideas of others
A(n) _____ is a mass of living protoplasm.
amoeba
paramecium
euglena
virus
Answer: The correct answer for the blank is-
amoeba.
Protoplasm is considered as the living part of cell, which includes cell membrane, cytoplasm, and the nucleus.
Amoeba ( it is a protozoan, which is a group of kingdom protista) is the simplest living form of unicellular eukaryotic organisms. It does not have any specified shape. All the cellular activities that are essential for its life, takes place in the protoplasm. As all the properties of protoplasm can be readily observed in this simple organic form ( Amoeba), therefore, it is considered as the mass of living protoplasm.
The theory of global warming states that the average temperature of the earth has been increasing over time.
a.allow the measurement of the earth’s temperatures at the poles.
b.reveal how the earth’s temperature has fluctuated in the past.
c.reveal how the earth’s temperature varies from location to location.
d.allow the measurement of the earth’s temperature with greater precision.
HELP ASAP!!
Which of the following actions will decrease the gravitational force between two objects?
Increasing the mass of the objects
Increasing the density of the objects
Increasing the distance between the objects
Increasing the temperature of the objects
the answer would be c
Increasing the distance between the objects will decrease the gravitational force between two objects. So, the correct option is C.
What is Gravitational force?According to Newton's universal law of gravitation, the force of attraction between any two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
It is defined as the fundamental interaction which causes mutual attraction between all things that have mass or energy. It is represented as :
[tex]F = G * [M_1M_2]/r^2[/tex]
Where, f(r) is a variable denoting a Conservative Force, The f(r) here is the inverse law force because it varies inversely as a square of ‘r’. In the above equation, ‘G’ is the Gravitational Constant. According to this formula, when distance increases then the gravitational force decreases.
Therefore, the correct option is C.
Learn more about Gravitational force, here:
https://brainly.com/question/12528243
#SPJ2
Can you help me with number 4 plz
The process of heat radiation is the ONLY method of heat transfer that can occur
B.through space
Radiation is the process of heat transfer through electromagnetic waves, which does not require a medium. This is the only method of heat transfer in space, as heat from the Sun reaches Earth and space suits maintain astronaut body temperature. Highly reflective materials are often used to harness or minimize heat transfer by radiation.
Heat transfer by radiation
Heat transfer by radiation is a fundamental concept in physics where electromagnetic waves carry energy through space without the need for a medium. This method of heat transfer is especially relevant in space, where there is a lack of matter to support conduction or convection. A familiar example of radiation is the heat from the Sun reaching the Earth, despite the vast emptiness of space in between. Objects that absorb radiation, such as humans or the Earth itself, will eventually emit that energy, mostly as infrared radiation which is a form of electromagnetic waves with longer wavelengths compared to visible light.
Space suits, for example, combat the cold of space not through thick insulation, but by reflecting the infrared radiation that would otherwise escape from the astronaut's body. Since no material medium exists in space, heat cannot be transferred by conduction or convection, making radiation the only viable method of heat transfer in such environments. The effectiveness of radiation as a heat transfer method is harnessed and minimized using highly reflective materials.
Radiation is thus crucial for understanding how heat is transferred in situations where the other forms of heat transfer - convection and conduction - cannot occur. Learning about these modes of heat transfer is essential for fields ranging from engineering to environmental science.
The elements helium, neon, and xenon are all part of the same _____ on the periodic table.
A. Diagonal
B. Period
C. Row
D. Group
the answer is D.group
hope this helps
D. Group
Explanation:
Helium, Neon and Xenon are all located under the same column in the periodic table. Elements within the same column in the periodic table are said to be in the same group, because they share similar chemical property: this is due to the fact that they have the same number of valence electrons (number of electrons in the outest shell).
Helium, neon and xenon are said to be part of the 'noble gas group'. The main property of these elements is that they do not react with other elements, because they have the outest energy shell completely filled with electrons, so they do not give/accept electrons to other atoms to form chemical bonds.
A truck with 0.420 m radius tires travels at 32 m/s. What is the angular velocity of the rotating tires in radians per second? What is the angular velocity of the rotating tires in rev/min?
Answer : [tex]\omega=76.19\ radians/second[/tex] and [tex]\omega=727.55\ rev/min[/tex]
Explanation :
It is given that,
The radius of the truck, r = 0.420 m
Velocity of the truck, v = 32 m/s
We have to find the angular velocity of the rotating tires.
The relation between the angular velocity and the linear velocity is :
[tex]v=r\omega[/tex]
[tex]\omega[/tex] is the angular velocity
[tex]\omega=\dfrac{v}{r}[/tex]
[tex]\omega=\dfrac{32\ m/s}{0.420\ m}[/tex]
[tex]\omega=76.19\ radians/second[/tex]
We know that, 1 revolution = 2π radian
So, [tex]\omega=727.55\ rev/min[/tex]
Hence, this is the required solution.
The x-coordinates of two objects moving along the x-axis are given as a function of time (t). x1= (4m/s)t x2= -(161m) + (48m/s)t - (4 m/s^2)t^2 Calculate the magnitude of the distance of closest approach of the two objects. x1 and x2 never have the same value.
To calculate the magnitude of the distance of closest approach of the two objects, we need to find the minimum distance between the x1 and x2 functions. The minimum distance occurs when the derivative of the difference between x1 and x2 is zero. We can find this point by equating the derivatives of x1 and x2 and solving for t.
Explanation:To calculate the magnitude of the distance of closest approach of the two objects, we need to find the minimum distance between the x1 and x2 functions. The minimum distance occurs when the derivative of the difference between x1 and x2 is zero. We can find this point by equating the derivatives of x1 and x2 and solving for t. Once we have the value of t, we can substitute it back into either x1 or x2 to find the minimum distance.
Take the derivative of x1 with respect to t: x1'(t) = 4 m/sTake the derivative of x2 with respect to t: x2'(t) = 48 m/s - 8 m/s^2 * tSet x1'(t) = x2'(t) and solve for t: 4 m/s = 48 m/s - 8 m/s^2 * tSolve the equation: t = 5 sSubstitute t=5s into x1 or x2 to find the minimum distance: x1(5s) = 20 mTherefore, the magnitude of the distance of closest approach of the two objects is 20 meters.
what best describes the degree to which a material can transmit heat
- melting point
- boiling point
- thermal conductivity
- electrical conductivity
Answer:
thermal conductivity
What is one positive ecological impact of switching to biological farming?
julia throws a ball vertically upward from the ground with a speed of 5.89m/s. Andrew catches it when it is on its way down at a height of 1.27m from the ground. After how much time does Andrew catch the ball?
Answer:
0.92
Explanation:
Adding energy or increasing the speed of the particles at very low pressure in a solid would cause
A) boiling.
B) condensation.
C) melting.
D) sublimation.
A biologist formulates a hypothesis, performs experiments to test his hypothesis, makes careful observations, and keeps accurate records of his findings. In order to complete this process, the biologist should?
When a psychologist is making a determination regarding whether or not a study is ethical, one should first consider __________ versus the demand or desire for increased knowledge in a particular field of study.
Answer:
c
Explanation:
A 400g sample of water absorbs 500j of energy. how did the water temperature change if the specific heat of water is 4.18j/g©. Show your work. please help me.
In general, the quantity of heat energy, Q, required to raise a mass m kg of a substance with a specific heat capacity of c J/(kg °C), from temperature t1 °C to t2 °C is given by:
Q = mc(t2 – t1) joules
So:
(t2-t1) =Q / mc
As we know:
Q = 500 J
m = 0.4 kg
c = 4180 J/Kg °c
We can take t1 to be 0°c
t2 - 0 = 500 / ( 0.4 * 4180 )
t2 - 0 = 0.30°c
A neutral atom of an element has the same number of __________ and ________. Question 6 options: Neutrons and electrons Protons and neutrons Protons and electrons Save
Exactly 3.0s after a projectile is fired into the air from the ground, it is observed to have a velocity v = (8.4 i^ + 4.9 j^)m/s, where the x axis is horizontal and the y axis is positive upward. Determine the horizontal range of the projectile. Determine its maximum height above the ground. Determine the speed of motion just before the projectile strikes the ground. Determine the angle of motion just before the projectile strikes the ground.
The problem requires understanding of projectile motion in Physics. One calculates multiple parameters of projectile's path by understanding vertical and horizontal motions independently. The given information can be used to calculate the horizontal range, maximum height, and angle of motion.
Explanation:The subject of this question involves understanding projectile motion. In physics, projectile motion is the motion of an object that is subject only to the acceleration of gravity. It involves two independent one-dimensional motions, one along the vertical axis and one along the horizontal axis.
To solve this problem, we observe the given initial vertical and horizontal velocities after a time 3.0s. Using the equations of motion, we can calculate different parameters asked in the question. The horizontal range of the projectile can be calculated by multiplying the horizontal velocity by the total time the projectile is in the air. The maximum height, speed of motion and the angle of motion just before the projectile strikes the ground can also be calculated using these principles.
Remember, the x and y motions in a projectile are independent, so we must handle them separately. The vertical motion will determine the total time spent in the air, and it will reach zero velocity at its highest point. The horizontal motion, under the absence of air resistance, remains constant.
Learn more about Projectile Motion here:https://brainly.com/question/29545516
#SPJ3
The horizontal range of the projectile is 25.2 m. The maximum height above the ground is 7.35 m. The speed of motion just before the projectile strikes the ground is 9.7 m/s. The angle of motion just before the projectile strikes the ground is 29.3 degrees.
Explanation:Using the given information, we can calculate the horizontal range, maximum height, speed of motion just before the projectile strikes the ground, and the angle of motion just before the projectile strikes the ground.
To determine the horizontal range, we need to find the time it takes for the projectile to reach the ground. Since the projectile is observed to have a velocity of (8.4 i^ + 4.9 j^) m/s after 3.0 seconds, we can assume that the time of flight is 3.0 seconds. The horizontal range is then given by multiplying the horizontal component of the velocity by the time of flight, which is R = vx * t = 8.4 m/s * 3.0 s = 25.2 m.
To determine the maximum height, we need to find the time it takes for the projectile to reach its peak. Since the projectile is at ground level initially and at its peak after 3.0 seconds, the time it takes to reach the peak is half of the total time of flight, which is t/2 = 3.0 s / 2 = 1.5 s. The maximum height above the ground is then given by multiplying the vertical component of the velocity at the peak by the time it takes to reach the peak, which is H = vy * t/2 = 4.9 m/s * 1.5 s = 7.35 m.
To determine the speed of motion just before the projectile strikes the ground, we can use the Pythagorean theorem to find the magnitude of the velocity vector. The speed of motion is given by the magnitude of the velocity vector, which is v = sqrt(vx^2 + vy^2) = sqrt((8.4 m/s)^2 + (4.9 m/s)^2) = 9.7 m/s.
To determine the angle of motion just before the projectile strikes the ground, we can use the inverse tangent function to find the angle. The angle of motion is given by the inverse tangent of the vertical component of the velocity divided by the horizontal component of the velocity, which is angle = tan^(-1)(vy / vx) = tan^(-1)(4.9 m/s / 8.4 m/s) = 29.3 degrees.
Learn more about Projectile Motion here:https://brainly.com/question/29545516
#SPJ3
8. How does inertia act on an object that is moving in a circle? A. It causes the object to speed up as it moves. B. It causes the object to move along a straight path. C. It directs the object toward the center of the curve.
Answer: its D
Explanation:
took on study island
How is chemical activity used to separate copper from its ore?
What is the value of -2 + 100 - (-50)?
Which of the following has mechanical energy? Car battery Compressed spring Glowing incandescent lightbulb Nucleus of uranium atom
Answer:
the correct answer is the lightbulb
Explanation:
i took the assighnment and got it correct
what are two pieces of information that the sunscreen manufacturer might include on the label to help you decide if thhe sunscreen will be effective
what is the total displacement of the car after five h?
0km
15km
20km
40km
The total displacement of the car after five hours - 0km.
Displacement -
Displacement is a vector quantity that refers to the object's overall change in position.change in final position from its initial positioncalculating the distance between an object's initial position and its final position.In physics terms, displacement is referred to as the variable s. The official displacement formula is as follows:s = sf – si.
where, s = displacement.
In the given graph there is a change in distance covered with the time that are:
after two hours it reaches 15 km away from the initial pointafter 4 hours car reaches 20 km away from the initial pointAfter 5 hours it returns back to the initial point.Thus, the displacement would be 0 km as the final point and initial point are the same.
Learn more about:
https://brainly.com/question/11934397
Which is a common unit of density?
A. The g
B. G/ml
C. Cm3
D. G/s
3. After studying about recycling, members of John’s biology class investigated the effects of various recycled products on plant growth. John’s lab group compared the effect of different aged grass compost on bean plants. Because decomposition is necessary for the release of nutrients, the group hypothesized that older grass compost would produce taller bean plants. Three flats of bean plants (25 per flat) were grown for 5 days. The plants were then fertilized as follows: flat A = 450. g of 3 month old compost; flat B = 450. g of 6 month old compost; flat C = 0 g of compost. The plants received the same amount of sunlight and water each day. At the end of 30 days, the group recorded the height of the plants in cm.
Hypothesis:
Independent Variable:
Dependent Variable:
Constant (at least one):
Control:
Number of groups:
Number of trials per group: