Answer:
13
Step-by-step explanation:
Let the two parts are x and y
as per the question
x+y=24 -----------------(A)
Also 7 times first part (x) that is 7x ,
when added to
5 times second part (y ) that is 5y
it gives 146
Hence our second equation becomes
7x+5y=146 ------------ (B)
Now we have to solve these two equations (A) and (B) to find the values of x and y
[tex]x+y=24 \\7x+5y=146\\[/tex]
now multiplying equation A with 5 and subtracting it from B
[tex]7x+5y=146[/tex]
[tex]-5x-5y=-120[/tex]
we get
2x=26
dividing both sides by 2 we get
x = 13
And hence our first part is 13
Consider the differential equation x^2 y''-xy'-3y=0. If y1=x3 is one solution use redution of order formula to find a second linearly independent solution
Suppose [tex]y_2(x)=y_1(x)v(x)[/tex] is another solution. Then
[tex]\begin{cases}y_2=vx^3\\{y_2}'=v'x^3+3vx^2//{y_2}''=v''x^3+6v'x^2+6vx\end{cases}[/tex]
Substituting these derivatives into the ODE gives
[tex]x^2(v''x^3+6v'x^2+6vx)-x(v'x^3+3vx^2)-3vx^3=0[/tex]
[tex]x^5v''+5x^4v'=0[/tex]
Let [tex]u(x)=v'(x)[/tex], so that
[tex]\begin{cases}u=v'\\u'=v''\end{cases}[/tex]
Then the ODE becomes
[tex]x^5u'+5x^4u=0[/tex]
and we can condense the left hand side as a derivative of a product,
[tex]\dfrac{\mathrm d}{\mathrm dx}[x^5u]=0[/tex]
Integrate both sides with respect to [tex]x[/tex]:
[tex]\displaystyle\int\frac{\mathrm d}{\mathrm dx}[x^5u]\,\mathrm dx=C[/tex]
[tex]x^5u=C\implies u=Cx^{-5}[/tex]
Solve for [tex]v[/tex]:
[tex]v'=Cx^{-5}\implies v=-\dfrac{C_1}4x^{-4}+C_2[/tex]
Solve for [tex]y_2[/tex]:
[tex]\dfrac{y_2}{x^3}=-\dfrac{C_1}4x^{-4}+C_2\implies y_2=C_2x^3-\dfrac{C_1}{4x}[/tex]
So another linearly independent solution is [tex]y_2=\dfrac1x[/tex].
Two Cars Start at a Given point and travel in the Same Direction at an Average Speeds of 45 Mph ,, and 52 Mph. So, The Question is How Far Apart Will they Be in 4 hours ???
Answer:
28 mi
Step-by-step explanation:
The cars are separating at the rate of 52 mi/h - 45 mi/h = 7 mi/h. Then after 4 hours, their separation distance will be ...
(7 mi/h)(4 h) = 28 mi
The two cars will be 28 miles apart after 4 hours.
Explanation:To find the distance between the two cars after 4 hours, we need to calculate the distance traveled by each car. The formula to find distance is speed multiplied by time. The first car travels at an average speed of 45 mph for 4 hours, so its distance traveled is 45 mph * 4 hours = 180 miles.
The second car travels at an average speed of 52 mph for 4 hours, so its distance traveled is 52 mph * 4 hours = 208 miles. Therefore, the two cars will be 208 miles - 180 miles = 28 miles apart after 4 hours.
Learn more about Distance between two cars here:https://brainly.com/question/31138331
#SPJ2
8 x 10^-3 is how many times as great as 4 x 10^-6
Answer: The first number is 2000 times greater than second number.
Step-by-step explanation:
Let the first number be 'x' and second number be 'y'
We are given:
x = [tex]8\times 10^{-3}[/tex]
y = [tex]4\times 10^{-6}[/tex]
To calculate the times, number 'x' is greater than number 'y', we divide the two numbers:
[tex]\frac{x}{y}=\frac{8\times 10^{-3}}{4\times 10^{-6}}\\\\\frac{x}{y}=2\times 10^3\\\\x=2000y[/tex]
Hence, the first number is 2000 times greater than second number.
The number [tex]8\times 10^{-3}[/tex] is [tex]2000[/tex] times grater than the number [tex]4\times 10^{-6}[/tex].
Given information:
The number [tex]8 \times 10^{-3}[/tex]
And number [tex]4\times 10^{-6}[/tex]
Now , consider the first number as [tex]x[/tex] and number second as [tex]y[/tex].
So, according to the information given in the question we can write as:
[tex]\frac{x}{y} =\frac{8\times 10^{-3}}{4\times 10^{-6}}[/tex]
[tex]\frac{x}{y} = 2\times 10^3\\x=2000y[/tex]
Hence, We can conclude that the number [tex]8\times 10^{-3}[/tex] is [tex]2000[/tex] times the number [tex]4\times 10^{-6}[/tex].
For more information visit:
https://brainly.com/question/17104957
please help, Drag the values to order them from least to greatest, with the least at top
Step-by-step explanation:
The square root of 17 is 4.12. Minus one equals 3.12
The square root of 5 is 2.23.
pi+7 equals 10.142. Divided by five equals around 2.
so you end up with, 3.12, 2.23, and 2.1
6x - 8 = 16
Solve the following equation. Then place the correct number in the box provided.
Answer:
x = 4
Step-by-step explanation:
Add 8 to both sides of the equation:
6x -8 +8 = 16 +8
6x = 24
Divide both sides of the equation by 6:
6x/6 = 24/6
x = 4
For this case we have the following equation:
[tex]6x-8 = 16[/tex]
We must find the value of the variable "x":
Adding 8 to both sides of the equation we have:
[tex]6x = 16 + 8\\6x = 24[/tex]
Dividing between 6 on both sides of the equation we have:
[tex]x = \frac {24} {6}\\x = 4[/tex]
Thus, the solution of the equation is[tex]x = 4[/tex]
Answer:
[tex]x = 4[/tex]
Evaluate: LaTeX: \int^8_6\frac{4}{\left(x-6\right)^3}dx ∫ 6 8 4 ( x − 6 ) 3 d x a. Diverges LaTeX: \left(\infty\right) ( ∞ ) b. Diverges LaTeX: \left(-\infty\right) ( − ∞ ) c. 0 d. LaTeX: \frac{1}{4} 1 4 e. LaTeX: \frac{2}{9} 2 9
Answer:
It diverges to positive infinity
Step-by-step explanation:
I see it was 4/(x-6)^3 not 4(x-6)^3... but still can't make out everything else.
[tex] \int_6^8 \frac{4}{(x-6)^3} dx [/tex]
The integrand does not exist at x=6.
[tex] \int_6^8 \frac{4}{(x-6)^3} dx [/tex]
[tex] \lim_{z \rightarrow 6^{+} } \int_z^8 4(x-6)^{-3} dx [/tex]
[tex] \lim_{z \rightarrow 6^{+} }\frac{4(x-6)^{-2}}{-2} |_z^8dx [/tex]
[tex] \lim_{z \rightarrow 6^{+} }[\frac{4(8-6)^{-2}}{-2} -\frac{4(z-6)^{-2}}{-2} ] [/tex]
[tex] \frac{1}{-2} - -\infty [/tex]
[tex] \infty [/tex]
So it diverges
Answer:
I could not properly read this but here was what I could make out
Step-by-step explanation:
Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)Find the difference.
LaTeX: -\frac{5}{6}-\frac{17}{18}-\left(-\frac{2}{9}\right)
home this helped ;)
Which value below is included in the solution set for the inequality statement?
-3(x - 4) > 6(x - 1)
3
-1
7
2
Answer:
Step-by-step explanation:
Anwer -1
Answer:
-1
Step-by-step explanation:
You could solve for x... or just plug those values in to see which would make the inequality true
Let's check x=3
-3(3-4)>6(3-1)
-3(-1)>6(2)
3>12 this is false so not x cannot be 3
Let's check x=-1
-3(-1-4)>6(-1-1)
-3(-5)>6(-2)
15>-12 this is true so x can take on the value -1
Let's check x=7
-3(7-4)>6(7-1)
-3(3)>6(6)
-9>36 is false so x cannot be 7
Let's check x=2
-3(2-4)>6(2-1)
-3(-2)>6(1)
6>6 is false so x cannot be 2
a) You want to put down hard wood floors in your master bedroom. How much hard wood flooring would you need to buy?
Amount of hardwood floor =
Round your answer to 2 decimal places as needed.
b) You also want to put a trim on the bottom of each wall, except in front of the french doors, sliding doors, or hallway. How much trim should you buy?
Amount of trim to buy =
Round your answer to 2 decimal places as needed.
c) You want to paint your new bedroom. How much paintable space is there in the room?
We will assume the following:
- You are painting all walls and the inside of your french doors.
- You want to paint the ceiling as well.
- Your windows and sliding doors account for 73 square feet of surface that does not get painted (i.e. you will be painting above your sliding doors and above/below your window)
Amount of paintable space =
Round your answer to 2 decimal places as needed.
d) How many gallons of paint would you need to buy?
We will assume the following:
- The builder already put primer on all the paintable surfaces.
- One gallon of paint covers 350 square feet.
- You want to put on two coats of paint on every paintable surface.
Amount of paint needed = gallons.
Round your answer to 2 decimal places as needed.
Note: Paint is obviously not bought in hundredths of gallons, but we are still going to answer accordingly!
Answer:
Part a) The amount of hardwood floor is [tex]480\ ft^{2}[/tex]
Part b) The amount of trim to buy is [tex]78\ ft[/tex]
Part c) The amount of paintable space is [tex]1,297\ ft^{2}[/tex]
Part d) The amount of paint needed is [tex]7.41\ gallons[/tex]
Step-by-step explanation:
Part a) You want to put down hard wood floors in your master bedroom. How much hard wood flooring would you need to buy?
Find the area of the floor
[tex]A=(10+5+3)(10+5+10)+(2+6+2)(3)[/tex]
[tex]A=(18)(25)+(10)(3)[/tex]
[tex]A=480\ ft^{2}[/tex]
Part b) You also want to put a trim on the bottom of each wall, except in front of the french doors, sliding doors, or hallway. How much trim should you buy?
step 1
Find the perimeter of the master bedroom
[tex]P=2(25)+2(18)+2(3)[/tex]
[tex]P=50+36+6[/tex]
[tex]P=92\ ft[/tex]
step 2
Subtract the front of the french doors, sliding doors and hallway from the perimeter
[tex]92-(5+6+3)=78\ ft[/tex]
Part c) You want to paint your new bedroom. How much paintable space is there in the room?
step 1
Find the area of the ceiling
we know that
The area of the floor is equal to the area of the ceiling
so
The area of the ceiling is equal to [tex]A=480\ ft^{2}[/tex]
step 2
Find the area of the walls
Multiply the perimeter by the height
[tex]92*10=920\ ft^{2}[/tex]
step 3
Subtract 73 square feet of surface that does not get painted (windows and sliding doors ) and the area of the hallway
The amount of paintable space is equal to
[tex]A=480+920-73-3(10)=1,297\ ft^{2}[/tex]
Part d) How many gallons of paint would you need to buy?
we know that
One gallon of paint covers 350 square feet
Multiply the area by two (because You want to put on two coats of paint on every paintable surface)
so
[tex]1,297*(2)=2,594\ ft^{2}[/tex]
using proportion
[tex]1/350=x/2,594[/tex]
[tex]x=2,594/350[/tex]
[tex]x=7.41\ gallons[/tex]
. Two algorithms takes n 2 days and 2 n seconds respectively, to solve an instance of size n. What is the size of the smallest instance on which the former algorithm outperforms the latter algorithm? Approximately how long does such an instance take to solve?
Answer:
n = 11 dayStep-by-step explanation:
n^2 is less than 2^n for n < 2 and for n > 4. The smallest size of n that is of interest is n=1. For that, n^2 = 1^1 = 1.
The n^2 algorithm will outperform the 2^n algorithm for n = 1. That problem size will take 1 day to solve.
_____
Please note that there are no algebraic methods for solving an inequality of the form x^2 < 2^x. We have solved it using a graphing calculator.
Final answer:
The smallest instance size where the n² days algorithm outperforms the 2n seconds algorithm is n=43200. However, it's not practical, as this size leads to a computation time of approximately 1.86496 × 10⁹ days for the first algorithm, showing that for any realistic value of n, the second algorithm is more efficient.
Explanation:
The student's question is about the comparison of the performance of two different algorithms. Specifically, the question asks at what size the algorithm, which takes n² days to solve an instance of size n, will outperform the 2n seconds algorithm.
To determine the smallest instance size at which the first algorithm outperforms the second, we must set the two times equal and solve for n. Let's denote the time taken by the first algorithm as T1 and the second algorithm as T2, where T1 = n² days and T2 = 2n seconds. We should convert both times to a common unit, which typically is seconds, as follows:
1 day = 24 hours = 86400 seconds
T1 in seconds: n² times 86400 seconds/day
T2 is already in seconds: 2n seconds
Now equate the two to find the smallest n:
n² times 86400 = 2n
n² times 86400 / 2 = n
n = 86400 / 2 = 43200
Thus, the smallest instance size n is 43200. To find how long this instance takes to solve by the first algorithm:
T1 = 43200² days
T1 ≈ 1.86496 × 109 days
This is impractically large, indicating that for any realistic value of n, the second algorithm is more efficient.
You want to estimate the proportion of students at your college or university who are employed for 10 or more hours per week while classes are in session. You plan to present your results by a 95% confidence interval. Using the guessed value p* = 0.33, find the sample size required if the interval is to have an approximate margin of error of m = 0.06.
Answer: Hello your in college please help me with my latest problem please :(
Step-by-step explanation:
PVC pipe is manufactured with mean diameter of 1.01 inch and a standard deviation of 0.003 inch. Find the probability that a random sample of n = 9 sections of pipe will have a sample mean diameter greater than 1.009 inch and less than 1.012 inch.
Answer: 0.8186
Step-by-step explanation:
Given: Mean : [tex]\mu=1.01\text{ inch}[/tex]
Standard deviation : [tex]\sigma=0.003\text{ inch}[/tex]
Sample size : [tex]n=9[/tex]
The formula to calculate z-score :-
[tex]z=\dfrac{X-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
For x=1.009 inch
[tex]z=\dfrac{1.009-1.01}{\dfrac{0.003}{\sqrt{9}}}=-1[/tex]
For x=1.012 inch
[tex]z=\dfrac{1.012-1.01}{\dfrac{0.003}{\sqrt{9}}}=2[/tex]
Now, The p-value =[tex]P(-1<z<2)=P(2)-P(-1)=0.9772498-0.1586553=0.8185945\approx0.8186[/tex]
Hence, the required probability = 0.8186
In a certain country, the true probability of a baby being a boy is 0.527. Among the next seven randomly selected births in the country, what is the probability that at least one of them is a girl?
Answer: 0.9887
Step-by-step explanation:
Given : The true probability of a baby being a boy : [tex]0.527[/tex]
The number of selected births : [tex]7[/tex]
Now, the when next seven randomly selected births in the country, then the probability that at least one of them is a girl is given by :_
[tex]\text{P(at least one girl)=1-P(none of them girl)}\\\\=1-(0.527)^7=0.988710510435\approx0.9887[/tex]
Hence, the probability that at least one of them is a girl =0.9887
Final answer:
The probability of at least one girl being born among seven births in a country where a boy has a 0.527 chance of being born is calculated by subtracting the probability of all seven being boys from 1.
Explanation:
The question asks about the probability of at least one girl being born among the next seven randomly selected births in a country where the true probability of a baby being a boy is 0.527. To find this, we can use the complement rule, which focuses on the probability that all seven births will be boys, the opposite of what we want to find.
First, we find the probability of all seven being boys:
P(all boys) = (0.527)⁷
Next, we subtract this from 1 to get the probability of at least one girl:
P(at least one girl) = 1 - P(all boys)
This gives us the probability that at least one of the next seven births will be a girl.
Under the onslaught of the College Algebra second period class, a pile of homework problems decreased exponentially. It decreased from 1400 to 1000 problems in only 25 minutes. How long would it take until only 500 problems remained?
Step-by-step explanation:
Well it is simple.If he was able to solve 400 problems in just 25 ' then how long would it take him to solve 100(1/4 of 400)?It would take him 6.25' to solve 100 problems(1/4 of 25).So if he had to do another 500 (because 1000 -500=500) it would take him 31.25' (5*6.25) to complete them.If you have any further questions please contact me.
Yours sincerely,
Manos
Prove that for all real numbers x, if 2x+1 is rational then x is rational
Answer with explanation:
It is given that, for all real numbers x, if 2 x+1 is rational .
When you will look at the expression ,2 x +1
⇒1 is rational
⇒2 x will be rational, because the expression , 2 x+1, is rational.
⇒2 x is rational, it means , x will be rational,because 2 is rational.
Some important rules considering rational and irrational
1.⇒Product of rational and rational is Rational.
2.⇒Product of Irrational and Rational is Irrational.
3.⇒Product of Irrational and Irrational may be irrational or rational.
≡2 x →is rational, 2 is rational number ,so x will be rational also.
If 2x+1 is rational, hence 2x is rational subtracting 1 which is also rational. Assuming 2x is expressible as a/b, then x is a/2b, again showing x is rational.
Explanation:To prove that if 2x+1 is rational, then x must also be rational, we must understand the definition of rational numbers and basic properties of arithmetic operations involving rational numbers. A number is considered rational if it can be written as the quotient of two integers (where the denominator is not zero). Given that the sum of two rational numbers is also rational, if 2x+1 is rational, and we know that 1 is rational (since 1 can be written as 1/1), then 2x must be rational because rational minus rational yields a rational result.
Now, assuming 2x is rational, we can express it as a fraction [tex]\frac{a}{b}[/tex], with a and b being integers and b non-zero. Since the multiplication of a rational number by an integer is also rational, and knowing that 2 is an integer, we can then say that x, which is [tex]\frac{a}{2b}[/tex], is also rational. This is because we can express the result of [tex]\frac{a}{2b}[/tex] with integers in the numerator and the denominator.
A mile-runner’s times for the mile are normally distributed with a mean of 4 min. 3 sec. (This would have to be expressed in decimal minutes -- 4.05 minutes), and a standard deviation of 2 seconds (0.0333333··· minutes (the three dots indicate a repeating decimal)). What is the probability that on a given run, the time will be 4 minutes or less?
Answer: 0.0668
Step-by-step explanation:
Given: Mean : [tex]\mu=\text{4 min. 3 sec.=4.05 minutes}[/tex]
Standard deviation : [tex]\sigma = \text{2 seconds=0.033333 minutes }[/tex]
The formula to calculate z-score is given by :_
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x= 4 minutes , we have
[tex]z=\dfrac{4-4.05}{0.03333}\approx-1.5[/tex]
The P-value = [tex]P(z\leq-1.5)=0.0668072\approx0.0668[/tex]
Hence, the probability that on a given run, the time will be 4 minutes or less = 0.0668
The probability that on a given run, the time will be 4 minutes or less is approximately 6.68%.
Explanation:To find the probability that on a given run, the time will be 4 minutes or less, we need to calculate the z-score for 4 minutes and then use the standard normal distribution table to find the probability. The z-score can be calculated using the formula (x - mean) / standard deviation. In this case, the z-score is (4 - 4.05) / 0.0333333⋯ = -1.50. Looking up the z-score in the standard normal distribution table, we find that the probability is approximately 0.0668 or 6.68%.
Learn more about Probability here:https://brainly.com/question/32117953
#SPJ11
Suppose you have just received a shipment of 16 modems. Although you don't know this, 4 of the modems are defective. To determine whether you will accept the shipment, you randomly select 5 modems and test them. If all 5 modems work, you accept the shipment. Otherwise, the shipment is rejected. What is the probability of accepting the shipment?
[tex]|\Omega|={_{16}C_5}=\dfrac{16!}{5!11!}=\dfrac{12\cdot13\cdot14\cdot15\cdot16}{120}=4368\\|A|={_{12}C_5}=\dfrac{12!}{5!7!}=\dfrac{8\cdot9\cdot10\cdot11\cdot12}{120}=792\\\\P(A)=\dfrac{792}{4368}=\dfrac{33}{182}\approx18\%[/tex]
The probability of the event is defined as the ratio of the number of cases favourable to an occurrence, and the further calculation can be defined as follows:
4 of the 16 modems are defective, while the remaining 12 are not.
P(accepting shipment) = P (all 5 modems work)
[tex]\bold{^{12}C_{5}}[/tex] methods could be used to choose 5 non-defective modems from a pool of 12 non-defective modems.
[tex]\to \bold{^{12}C_{5} = \frac{12!}{ (12 -5)! \times 5! }}[/tex]
[tex]\bold{ = \frac{12!}{ 7! \times 5!}}\\\\\bold{ = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7!}{ 7! \times 5!}}\\\\\bold{ = \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1}}\\\\\bold{ =11 \times 9 \times 8}\\\\\bold{=792}[/tex]
The total number of methods to choose 5 modems from a pool of 16 modems is [tex]\bold{^{16}C_{5}}[/tex].
[tex]\to \bold{^{16}C_{5} = \frac{16!}{ (16 -5)! \times 5! }}[/tex]
[tex]\bold{ = \frac{16!}{ 11! \times 5!}}\\\\\bold{ = \frac{16 \times 15 \times 14 \times 13 \times 12 \times 11 !}{ 11! \times 5!}}\\\\\bold{ = \frac{16 \times 15 \times 14 \times 13 \times 12}{ 5!}}\\\\\bold{ = \frac{16 \times 15 \times 14 \times 13 \times 12}{ 5\times 4\times 3 \times 2 \times 1}}\\\\\bold{ = 8 \times 3 \times 14 \times 13 }\\\\\bold{ = 4368 }\\\\[/tex]
P(accepting shipment) = P(all 5 modems work):
[tex]= \bold{\frac{^{12}C_5}{ ^{16}C_{5}}}[/tex]
[tex]\bold{=\frac{792}{4368}}\\\\\bold{=0.18131}\\\\\bold{=0.18131 \times 100= 18.131 \approx 18.131\%}\\\\[/tex]
Therefore, the final answer is "18.131%".
Learn more:
brainly.com/question/9356325
can someone please explain how to get the answer to number 50?!!
Answer:
use a suitable calculator
Step-by-step explanation:
For finding values related to a normal probability distribution function, it is convenient to use a suitable calculator or spreadsheet. (See below)
___
If all you have is a z-table, you must calculate the corresponding z-value and look it up in the table.
z = (X -µ)/σ = (56 -54)/8 = 1/4
You are interested in the area above z=1/4. The table in the second attachment gives the area between z=0 and z=1/4. So, the area of interest is the table value subtracted from 0.5 (the total area above z=0.):
0.5000 -0.0987 = 0.4013
What is 3 root 17 in a decimal
Answer:
[tex]\sqrt[3]{17}= 2.57128=257128[/tex]×[tex]10^{-5}[/tex]
Step-by-step explanation:
We need to find: [tex]\sqrt[3]{17}[/tex] in decimals. To do this, we are going to need the help of a calculator. After plugging the values, we get that:
[tex]\sqrt[3]{17}= 2.57128 = 257128[/tex]×[tex]10^{-5}[/tex]
In this case, I just considered 5 significant figures!
The weights of broilers (commercially raised chickens) are approximately normally distributed with mean 1387 grams and standard deviation 161 grams. What is the probability that a randomly selected broiler weighs more than 1,454 grams?
Answer:
Probability that a randomly selected broiler weighs more than 1454 g is 0.3372 or 34% (approx.)
Step-by-step explanation:
Given:
Weights of Broilers are normally distributed.
Mean = 1387 g
Standard Deviation = 161 g
To find: Probability that a randomly selected broiler weighs more than 1454 g.
we have ,
[tex]Mean,\,\mu=1387[/tex]
[tex]Standard\,deviation,\,\sigma=161[/tex]
X = 1454
We use z-score to find this probability.
we know that
[tex]z=\frac{X-\mu}{\sigma}[/tex]
[tex]z=\frac{1454-1387}{161}=0.416=0.42[/tex]
P( z = 0.42 ) = 0.6628 (from z-score table)
Thus, P( X ≥ 1454 ) = P( z ≥ 0.42 ) = 1 - 0.6628 = 0.3372
Therefore, Probability that a randomly selected broiler weighs more than 1454 g is 0.3372 or 34% (approx.)
The equation P=31+1.75w models the relation between the amount of Tuyet’s monthly water bill payment, P, in dollars, and the number of units of water, w, used. Find Tuyet’s payment for a month when 12 units of water are used.
Answer: [tex]P = \$\ 52[/tex]
Step-by-step explanation:
We have the equation [tex]P = 31 + 1.75w[/tex] where P represents the payment and w represents the amount of water used.
To calculate the monthly payment that corresponds to 12 units of water you must do [tex]w = 12[/tex] in the main equation and solve for the variable P.
[tex]P = 31 + 1.75w[/tex]
[tex]P = 31 + 1.75(12)[/tex]
[tex]P = 31 + 21[/tex]
[tex]P = 52[/tex]
Tuyet's payment for a month when 12 units of water are used is $52.
Explanation:To find Tuyet's payment for a month when 12 units of water are used, we can substitute 12 for 'w' in the equation P = 31 + 1.75w and solve for P.
P = 31 + 1.75(12)
P = 31 + 21
P = 52
Therefore, Tuyet's payment for a month when 12 units of water are used is $52.
Learn more about water bill payment here:https://brainly.com/question/33583861
#SPJ3
Help me ! Please for summer school
Answer:
The correct answer option is C. [tex]\frac{y_4-y_3}{x_4-x_3} \times \frac{y_2-y_1}{x_2-x_1} = -1[/tex].
Step-by-step explanation:
We are given that two line segments AB and CD are formed from the points A ([tex](x_1, y_1)[/tex], B ([tex](x_2, y_2)[/tex], C ([tex](x_3, y_3)[/tex] and D ([tex](x_4, y_4)[/tex].
We are to determine which condition needs to be met in order to prove that AB is perpendicular to CD.
When slopes of two perpendicular lines are multiplied, they give a product of -1.
Hence option C. [tex]\frac{y_4-y_3}{x_4-x_3} \times \frac{y_2-y_1}{x_2-x_1} = -1[/tex] is the correct answer.
Liz earns a salary of $2,500 per month, plus a commission of 7% of her sales. She wants to earn at least $2,900 this month. Enter an inequality to find amounts of sales that will meet her goal. Identify what your variable represents. Enter the commission rate as a decimal.
Answer:
The minimum amount in sales this month to meet her goal is [tex]\$5,714.29[/tex]
Step-by-step explanation:
Let
x----> amount in sales this month
we know that
[tex]7\%=7/100=0.07[/tex]
The inequality that represent this situation is equal to
[tex]2,500+0.07x\geq2,900[/tex]
Solve for x
Subtract 2,500 both sides
[tex]0.07x\geq2,900-2,500[/tex]
[tex]0.07x\geq400[/tex]
Divide by 0.07 both sides
[tex]x\geq400/0.07[/tex]
[tex]x\geq \$5,714.29[/tex]
therefore
The minimum amount in sales this month to meet her goal is [tex]\$5,714.29[/tex]
How many equivalence relations are there on the set 1, 2, 3]?
Answer:
We need to find how many number of equivalence relations are on the set {1,2,3}
A relation is an equivalence relation if it is reflexive, transitive and symmetric.
equivalence relation R on {1,2,3}
1.For reflexive, it must contain (1,1),(2,2),(3,3)
2.For transitive, it must satisfy: if (x,y)∈R then (y,x)∈R
3. For symmetric, it must satisfy: if (x,y)∈R,(y,z)∈R then (x,z)∈R
Since (1,1),(2,2),(3,3) must be there is R, (1,2),(2,1),(2,3),(3,2),(1,3),(3,1). By symmetry,
we just need to count the number of ways in which we can use the pairs (1,2),(2,3),(1,3) to construct equivalence relations.
This is because if (1,2) is in the relation then (2,1) must be there in the relation.
the relation will be an equivalence relation if we use none of these pairs (1,2),(2,3),(1,3) . There is only one such relation: {(1,1),(2,2),(3,3)}
we can have three possible equivalence relations:
{(1,1),(2,2),(3,3),(1,2),(2,1)}
{(1,1),(2,2),(3,3),(1,3),(3,1)}
{(1,1),(2,2),(3,3),(2,3),(3,2)}
Equivalence relations on a set satisfy conditions of reflexivity, symmetry, and transitivity. The Bell number counts the number of partitions, or equivalence relations, on a set. Hence, for the set {1, 2, 3}, there are five equivalence relations.
Explanation:The subject of this question relates to equivalence relations on a set which is an important topic in discrete mathematics and set theory. In simple terms, an equivalence relation is a relation on a set that equates certain pair of elements. In your set {1, 2, 3}, an equivalence relation must meet three conditions: reflexivity (each number is equal to itself), symmetry (if 1 is related to 2, then 2 is related to 1), and transitivity (if 1 is related to 2 and 2 is related to 3, then 1 is related to 3).
To find the number of equivalence relations on a set, we refer to the Bell number. Bell numbers count the number of partitions of a set. For a set with 3 elements like yours, the third Bell number gives the number of equivalence relations, which is 5. Therefore, there are 5 equivalence relations on the set {1, 2, 3}.
Learn more about equivalence relations here:https://brainly.com/question/35260937
#SPJ12
The patient recovery time from a particular surgical procedure is normally distributed with a mean of 5.2 days and a standard deviation of 1.7 days. What is the probability of spending more than 2 days in recovery? (Round your answer to four decimal places.)
Answer: 0.9713
Step-by-step explanation:
Given : Mean : [tex]\mu = 5.2\text{ day}[/tex]
Standard deviation : [tex]\sigma = 1.7\text{ days}[/tex]
The formula of z -score :-
[tex]z=\dfrac{X-\mu}{\sigma}[/tex]
At X = 2 days
[tex]z=\dfrac{2-5.2}{1.7}=-1.88235294118\approx-1.9[/tex]
Now, [tex]P(X>2)=1-P(X\leq2)[/tex]
[tex]=1-P(z<-1.9)=1- 0.0287166=0.9712834\approx0.9713[/tex]
Hence, the probability of spending more than 2 days in recovery = 0.9713
Answer:
There is a 98.54% probability of spending more than 2 days in recovery.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 5.7, \sigma = 1.7[/tex]
What is the probability of spending more than 2 days in recovery?
This probability is 1 subtracted by the pvalue of Z when X = 2. So:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{2 - 5.7}{1.7}[/tex]
[tex]Z = -2.18[/tex]
[tex]Z = -2.18[/tex] has a pvalue of 0.0146.
This means that there is a 1-0.0146 = 0.9854 = 98.54% probability of spending more than 2 days in recovery.
According to the growth model, how many trees will there be after 50 years? Details below
Answer: Third Option
[tex]f(t)=21,386[/tex]
Step-by-step explanation:
We know that the equation that models the number of trees in the forest is:
[tex]f(t)=\frac{32,000}{1+12.8e^{-0.065t}}[/tex]
Where t represents the time elapsed in years
To calculate the number of trees after 50 years substitute [tex]t = 50[/tex] in the equation
[tex]f(t)=\frac{32,000}{1+12.8e^{-0.065(50)}}[/tex]
[tex]f(t)=21,386[/tex]
XYZ Corp makes widgets 1% of the widgets are defective XYZ manufacturers 100000 widgets the number of defective widgets is expected to be
Answer:
the number to be expected is 1,000
Step-by-step explanation:
you multiply 100,000 by 1% which give you 1,000
Answer: 1000
Step-by-step explanation:
Given : The proportion of the defective widgets manufactured by XYZ corp= 1%
= 0.01 [we divide a percent by 100 to convert it into decimal to perform further calculations]
If the total number of widgets manufactured by XYZ = 100000
Then, the number of defective widgets is expected to be
(proportion of defective widgets) x (number of widgets manufactured by XYZ)
= 0.01 x 100000
= 1000
Hence, the number of defective widgets is expected to be 1000 .
Which of the following graphs could represent a quartic function?
Answer:
Graph A
Basically a graph of a function will have no turns if linear, 1 turn if quadratic, 2 turns if cubic, and 3 terms if quartic.
Graph A has a small turn on its right side.
Step-by-step explanation:
I love the way this other guy explained it, basically you count the turns that it says. i.e quartic = 4, so 4 turns, so A in this case
This was so confusing and I've been learning it for over a week and never understood it but literally took me 2 seconds to read his answer and understand it perfectly
A programmer plans to develop a new software system. In planning for the operating system that he will use, he needs to estimate the percentage of computers that use a new operating system. How many computers must be surveyed in order to be 95% confident that his estimate is in error by no more than two percentage points? a)Assume that nothing is known about the percentage of computers with new operating systems.
Answer:
n = 1067
Step-by-step explanation:
Since nothing is known, we would assume that 50% of the computers use the new operating system.
So, standard error = 0.5/SQRT(n)
Z-value for a 95% CI = 1.9596
So, margin of error = 1.9596 x 0.5 / SQRT(n) = 0.03
So, n = 1067 (approx.)
This will be your approximate answer : n = 1067
Answer: 2401
Step-by-step explanation:
Formula to find the sample size is given by :-
[tex]n= p(1-p)(\dfrac{z_{\alpha/2}}{E})^2[/tex]
, where p = prior population proportion.
[tex]z_{\alpha/2}[/tex] = Two -tailed z-value for [tex]{\alpha[/tex]
E= Margin of error.
As per given , we have
Confidence level : [tex]1-\alpha=0.95[/tex]
⇒[tex]\alpha=1-0.95=0.05[/tex]
Two -tailed z-value for [tex]\alpha=0.05 : z_{\alpha/2}=1.96[/tex]
E= 2%=0.02
We assume that nothing is known about the percentage of computers with new operating systems.
Let us take p=0.5 [we take p= 0.5 if prior estimate of proportion is unknown.]
Required sample size will be :-
[tex]n= 0.5(1-0.5)(\dfrac{1.96}{0.02})^2\\\\ 0.25(98)^2=2401[/tex]
Hence, the number of computer must be surveyed = 2401
new vintage 1965 convertible requires an ol change every 400 miles and replacement of all fBuids every 13,000 mles If these services have pust been performed by the dealer, how many mles from now will both be due at the same tme? The services will both be due at the same ime agan in mdes (Type a whole rumber)
Answer: There are 26000 miles that will both be due at the same time.
Step-by-step explanation:
Since we have given that
Number of miles required by new vintage = 400
Number of miles if these services have must been performed by the dealer = 13000
We need to find the number of miles from now that will both be due at the same time.
We would use "LCM of 400 and 13000":
As we know that LCM of 400 and 13000 is 26000.
So, there are 26000 miles that will both be due at the same time.
Length of a rectangle is four times its width if the area of the rectangle is 196 yards find its perimeter
Answer:
22 yd
Step-by-step explanation:
Length is four times its width -----> L=4W
area of rectangle is 196 -----> 196=LW
Plug L=4W into 196=LW giving you 196=(4W)W
Simplify a bit 196=4W^2
Divide both sides by 4: 196/4=W^2
Simplify a bit: 49=W^2
Square root both sides: 7 or -7=W
The width is 7 yd
The length is 4(7)=28 yd
Now its final part is for you to find the perimeter of this rectangle. The rectangle is a 7 yd by 4 yd rectangle.
Double both then add.. 14+8=22 yd
Answer:
21 yd
Step-by-step explanation:
Length of a rectangle is four times its width =
L = 4 × w
The area of the rectangle is 196
L = 4W
A = L*W = 196
---
4W*W = 196
W*W = 196/4
W*W = 49
W = 7
L = 28
---
Answer:
P = 2(L + W)
P = 2(28 + 7)
P = 14 + 7
P = 21 yd