[tex]\bf \qquad \qquad \textit{sum of a finite geometric sequence} \\\\ S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio}\\ \cline{1-1} a_1=21\\ r=2\\ n=25 \end{cases} \\\\\\ S_{25}=21\left( \cfrac{1-2^{25}}{1-2} \right)\implies S_{25}=21\left( \cfrac{-33554431}{-1} \right) \\\\\\ S_{25}=21(33554431)\implies S_{25}=704643051[/tex]
Jeff can weed the garden twice as fast as his sister Julia. Together they can weed the garden in 3 hours. How long would it take each of them working alone?
A) 4.5 hours; Julia 9 hours
B) 7.5 hours; Julia 15 hours
C) 4.5 hours; Julia 2.25 hours
D) 0.5 hours; Julia 1 hours
The answer is:
The correct option is:
A) Jeff, 4.5 hours; Julia 9 hours.
Why?To solve the problem, we need to write two equations using the given information.
So, writing the first equation we have:
We know that Jeff can weed the garden twice as fas as his sister Julia, so:
[tex]JeffRate=2JuliaRate[/tex]
Also, from the statement we know that they can weed the garden in 3 hours, so, writing the second equation we have:
[tex]JeffRate+JuliaRate=\frac{1garden}{3hours}[/tex]
Then, we need to substitute the first equation into the second equation in order to isolate Julia's rate, so, solving we have:
[tex]JeffRate+JuliaRate=\frac{1garden}{3hours}[/tex]
[tex]2JuliaRate+JuliaRate=\frac{1garden}{3hours}[/tex]
[tex]2JuliaRate+JuliaRate=\frac{1garden}{3hours}[/tex]
[tex]3JuliaRate=\frac{1garden}{3hours}[/tex]
[tex]JuliaRate=\frac{1garden}{3hours*3}=\frac{1garden}{9hours}[/tex]
We have that Julia could weed the garden by herself in 9 hours.
So, calculating how long will it take to Jeff, we have:
[tex]JeffRate=2*JuliaRate\\\\JeffRate=2*\frac{1garden}{9hours}=\frac{2garden}{9hours}=\frac{1garden}{4.5hours}[/tex]
We have that Jeff could weed the same garden by himself in 4.5 hours.
Hence, the correct option is:
A) Jeff, 4.5 hours; Julia 9 hours.
Have a nice day!
Answer:
A
Step-by-step explanation:
Ray is buying some ginger roots to brew some fresh ginger ale. The price of the ginger roots is G, and Ray has a coupon for 10%, percent off.
The expression 0.9G0, point, 9, G represents the price Ray pays for the ginger roots after using the coupon.
What does 0.90, point, 9 represent in this context?
Final answer:
The value 0.9 represents the 90% of the original price a customer pays after applying a 10% discount. It is used to calculate the discounted price by multiplying the original price by 0.9.
Explanation:
In the context of this question, 0.9 (or 0.90) represents the remainder of the original price G after a 10% discount is applied. When Ray uses his coupon for 10% off the price of ginger roots, this discount factors out 10% of the cost, leaving him to pay just 90% of the original price. This is why the price he pays can be represented as 0.9G, which is the same as saying 90% of G.
The 0.9 is a decimal representation of the percentage that remains after the discount. So, if the original price G is, for example, $10.00, with a 10% discount Ray would be saving $1.00, and thereby paying 90% of the original price, or $9.00. So, 0.9 in this calculation effectively means 90% of the original price.
Representing changes in price using decimals and percentages is a common method in mathematics to describe percentage change or discounts succinctly.
Find the surface area
Answer:251.2m^2
Step-by-step explanation:
8^2+2*8*11.7
Question 3(Multiple Choice Worth 4 points) (08.06) An unknown number y is 10 more than an unknown number x. The number y is also x less than 3. The equations to find x and y are shown below. y = x + 10 y = −x + 3 Which of the following statements is a correct step to find x and y?
Add the equation to eliminate x.
Multiply the equations to eliminate y.
Write the points where the graphs of the equations intersect the x-axis.
Write the points where the graphs of the equation intersect the y-axis.
Answer:
Add the equations to eliminate x
Step-by-step explanation:
Let's go through each of these statements
1) Add the equations to eliminate x
y = x + 10
+
y = -x + 3
_______
2y = 13
This works!
Answer:
Add the equation to eliminate x.
Step-by-step explanation:
Add the equation to eliminate x.
Let's actually do the work!
y = x + 10
y = −x + 3
------------------
2y = 13, so y = 6.5.
Subbing 6.5 for y in either of the equations above lets us calculate y. For example, in the second equation, 6.5 = -x + 3, or 3.5 = -x, or x = -3.5.
The solution is (-3.5, 6.5).
Write the equation of the line passing through (−1, 0) and (0, −3).
A) 3x - y = 3
B) x - 3y = 3
C) 3x + y = −3
D) x + 3y = −3
Answer:
C
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (- 1, 0) and (x₂, y₂ ) = (0, - 3)
m = [tex]\frac{-3-0}{0+1}[/tex] = - 3
note the line crosses the y- axis at (0, - 3) ⇒ c = - 3
y = - 3x - 3 ← in slope- intercept form
Add 3x to both sides
3x + y = - 3 ← in standard form → C
Use the table below to find (f o g)(1)
using the composition of the functions [tex]\(f\)[/tex] and [tex]\(g\)[/tex] as defined by the table, we get that [tex]\((f \circ g)(1) = 17\).[/tex]
To find [tex]\((f \circ g)(1)\)[/tex], we need to first find and then find the value of [tex]\(f\)[/tex] at that result.
1. Identify [tex]\(g(1)\)[/tex]: We need to evaluate the function [tex]\(g\)[/tex] at [tex]\(x = 1\)[/tex]. Looking at the table under the row for [tex]\(g(x)\)[/tex] and the column where \(x = 1\), we find that [tex]\(g(1) = 6\).[/tex]
2. Evaluate [tex]\(f\)[/tex] at [tex]\(g(1)\)[/tex]: Now that we have that [tex]\(g(1) = 6\)[/tex], we need to evaluate the function [tex]\(f\)[/tex] at [tex]\(x = 6\)[/tex]. Looking at the table under the row for [tex]f(x)\)[/tex] and the column where [tex]\(x = 6\)[/tex], we find that [tex]\(f(6) = 17\).[/tex]
3. **Combine the results**: We have [tex]\(f(g(1)) = f(6)\)[/tex]. Since we found out that [tex]\(f(6) = 17\)[/tex], we can conclude that [tex]\((f \circ g)(1) = 17\).[/tex]
So, using the composition of the functions [tex]\(f\)[/tex] and [tex]\(g\)[/tex] as defined by the table, we get that [tex]\((f \circ g)(1) = 17\).[/tex]
Evaluate 12C4 and 11P4
The values of 12C4 and 11P4 are 495 and 7920, respectively
The expressions are illustrations of permutation and combination, and they are calculated using:
[tex]^nC_r = \frac{n!}{(n -r)!r!}[/tex]
and
[tex]^nP_r = \frac{n!}{(n -r)!}[/tex]
So, we have:
[tex]^{12}C_4 = \frac{12!}{(12 -4)!4!}[/tex]
Evaluate the difference
[tex]^{12}C_4 = \frac{12!}{8!4!}[/tex]
Evaluate the factorials
[tex]^{12}C_4 = \frac{479001600}{967680}[/tex]
Divide
[tex]^{12}C_4 = 495[/tex]
Also, we have:
[tex]^{11}P_4 = \frac{11!}{(11 -4)!}[/tex]
Evaluate the difference
[tex]^{11}P_4 = \frac{11!}{7!}[/tex]
Evaluate the quotient
[tex]^{11}P_4 = 7920[/tex]
Hence, the values of 12C4 and 11P4 are 495 and 7920, respectively
Read more about combination and permutation at:
https://brainly.com/question/4658834
what is logical equivalence
Answer:
In logic, statements and are logically equivalent if they have the same logical content. That is, if they have the same truth value in every model. The logical equivalence of and is sometimes expressed as, or. However, these symbols are also used for material equivalence. Proper interpretation depends on the context.
Step-by-step explanation:
Answer:
they have the same logical content
Step-by-step explanation:
that is if they have the same truth
Classify the following as a fraction, expression, equation, or inequality 3b + 9y + 24
A.inequality
B.equation
C.expression
D.fraction
C. Expression
An inequality must contain a sign relating magnitude.
An equation must contain an equal sign.
An expression cannot have an equal sign or any symbols of inequality.
A fraction must contain a bar representing division.
Hope this helps!!
Please help me with this math question!
Answer:
[tex]-\frac{1}{32}[/tex]
Step-by-step explanation:
[tex]\frac{1}{2^{-2}*x^{-3}*y^{5} }[/tex]
Substitute x = 2 and y = -4 into [tex]\frac{1}{2^{-2}*x^{-3}*y^{5} }[/tex]
2⁻² = [tex]\frac{1}{4}[/tex]
2⁻³ = [tex]\frac{1}{8}[/tex]
-4⁵ = -1024
[tex]\frac{1}{4}[/tex] × [tex]\frac{1}{8}[/tex] × -1024 = -32
Tangent theta is undefined for theta equals
Answer:
The values of theta where cos(theta) is 0 is equal to π/2 or 3π/2 so, the value of tan(theta) will be zero.
Step-by-step explanation:
As we know,
tan(theta) = sin(theta)/ cos(theta)
tan(theta) will be undefined whenever cos(theta) = 0
as anything divided by zero is undefined.
We need to find the values of theta where cos(theta) is 0.
cos(0) = 1
cos (π/2) = 0
cos(π) = 1
cos(3π/2) = 0
The values of theta where cos(theta) is 0 is equal to π/2 or 3π/2 so, the value of tan(theta) will be zero.
These are triangles with congruent angles and proportional sides.
Answer:
similar triangles
Step-by-step explanation:
did it on usatestprep
Similar triangles are triangles with congruent angles and proportional sides.
Explanation:In mathematics, triangles with congruent angles and proportional sides are called similar triangles.
Similar triangles have the same shape, but their sides may have different lengths. Two triangles are similar if their corresponding angles are congruent and the lengths of their corresponding sides are proportional.
For example, if angle A in triangle ABC is congruent to angle X in triangle XYZ, and the ratio of the length of AB to XY is equal to the ratio of the length of BC to YZ, then triangle ABC is similar to triangle XYZ.
Learn more about Similar triangles here:https://brainly.com/question/34830045
#SPJ6
A line with a slope of 3 passes through the point (2, 5). Write an equation for this line in point-slope form.
Equation of line whose slope is 3 and passing point (2, 5) is y = 3x - 1.
What is Slope?The slope of a line is defined as the change in y coordinate with respect to the change in x coordinate of that line.
Here, Slope of line = 3
Passing point (2, 5)
Equation of line
(y - y₁) = m (x - x₁)
y - 5 = 3 (x - 2)
y - 5 = 3x - 6
y = 3x - 6 + 5
y = 3x - 1
Thus, equation of line whose slope is 3 and passing point (2, 5) is y = 3x - 1.
Learn more about Slope from:
https://brainly.com/question/3605446
#SPJ2
what is 18/20 as a decimal
Hello There!
[tex]\frac{18}{20}[/tex] as a decimal is 0.9
You can first reduce this fraction by dividing both the numerator and denominator by the Greatest Common Factor of 18 and 20 using 2.
18 ÷ 2 ≈ 9
20 ÷ 2 ≈ 10
We now have the fraction [tex]\frac{9}{10}[/tex]
Finally, we divide 9 by 10 and we get a quotient of 0.9
The equivalent value of the decimal is A = 18/20 = 0.9
Given data ,
Let the equation be represented as A
Now , the value of A is
Let the numerator of the fraction be p
where the value of p = 18
Let the denominator of the fraction be q
where q = 20
Now , the fraction is A = p/q
On simplifying the expression , we get
So , the left hand side of the equation is equated to the right hand side by the value of p/q
A = 18/20
A = 9/10
On further simplification , we get
A = 0.9
So , the decimal number is A = 0.9
Therefore , the value of A = 0.9
Hence , the expression is A = 0.9
To learn more about decimal numbers click :
https://brainly.com/question/18373225
#SPJ6
A 9-kilogram bag of cement costs $12.22. What is the unit price, rounded to the nearest cent
The unit price of the 9-kilogram cement bag, rounded to the nearest cent, is $1.36.
Here's the complete answer:
1. **Unit Price Formula: Unit price is calculated by dividing the total cost by the quantity. It represents the cost per unit of the item.
2. **Given Information**:
- Weight of cement bag = 9 kilograms
- Cost of cement bag = $12.22
3. **Calculation**:
- Unit price = Total cost / Quantity
- Unit price = $12.22 / 9 kilograms
4. **Calculate Unit Price**:
- Unit price = $1.358888... (dividing $12.22 by 9)
5. **Rounded to Nearest Cent**:
- Since we're asked to round to the nearest cent:
- $1.358888... is closer to $1.36 than $1.35.
6. **Final Answer**:
- The unit price of the cement bag, rounded to the nearest cent, is **$1.36**.
please help me...........
3q - 2p; all you are doing is simplifying straight across. I think you got confused by the parentheses unwrapped around 6p - 9q. Well, it is STILL the same process.
What is the multiplicative inverse of 2?
Answer:
[tex]\frac{1}{2}[/tex]
Step-by-step explanation:
Given a number n then the multiplicative inverse is [tex]\frac{1}{n}[/tex]
The product of a number and it's multiplicative inverse = 1
Given 2, then multiplicative inverse is [tex]\frac{1}{2}[/tex]
Ms. Angelino made 2 pans of lasagna and cut
each pan into twelfths. Her family ate
1 1/12 pans of lasagna for dinner. How many pans
of lasagna were left?
please explain!!
I need to find the measure of each angle indicated. Please help with number 17 and 18!
Answer:
17) Ф = 57.99 ≅ 58°
18) Ф = 20.10 ≅ 21°
Step-by-step explanation:
* Lets revise the trigonometry functions
- In any right angle triangle:
# The side opposite to the right angle is called the hypotenuse
# The other two sides are called the legs of the right angle
* If the name of the triangle is ABC, where B is the right angle
∴ The hypotenuse is AC
∴ AB and BC are the legs of the right angle
- ∠A and ∠C are two acute angles
- For angle A
# sin(A) = opposite/hypotenuse
∵ The opposite to ∠A is BC
∵ The hypotenuse is AC
∴ sin(A) = BC/AC
# cos(A) = adjacent/hypotenuse
∵ The adjacent to ∠A is AB
∵ The hypotenuse is AC
∴ cos(A) = AB/AC
# tan(A) = opposite/adjacent
∵ The opposite to ∠A is BC
∵ The adjacent to ∠A is AB
∴ tan(A) = BC/AB
* Now lets solve the problems
17) In Δ ACB
∵ m∠C = 90°
∵ BC = 16 units ⇒ opposite to angle Ф
∵ AC = 10 units ⇒ adjacent to angle Ф
∵ tanФ = opposite/adjacent
∴ tanФ = BC/AC
∴ tanФ = 16/10 = 8/5
- To find angle Ф find the inverse of tan (tan^-1)
∴ Ф = tan^-1 8/5 = 57.99 ≅ 58°
18) In Δ ACB
∵ m∠C = 90°
∵ BC = 5.6 units ⇒ opposite to angle Ф
∵ AC = 15.3 units ⇒ adjacent to angle Ф
∵ tanФ = opposite/adjacent
∴ tanФ = BC/AC
∴ tanФ = 5.6/15.3 = 56/153
- To find angle Ф find the inverse of tan (tan^-1)
∴ Ф = tan^-1 56/153 = 20.10 ≅ 21°
Answer:
17). θ = 57.99°
18). θ =20.10°
Step-by-step explanation:
Points to remember
Trigonometric ratios
Sin θ = Opposite side/Hypotenuse
Cos θ = Adjacent side/Hypotenuse
Tan θ = Opposite side/Adjacent side
Question (17).
From the figure we can write,
Tan θ = Opposite side/Adjacent side
= BC/AC = 16/10 = 1.6
θ = Tan⁻¹ (1.6) = 57.99°
Question 18)
From the figure we can write,
Tan θ = Opposite side/Adjacent side
= BC/AC = 5.6/15.3 = 0.366
θ = Tan⁻¹ (0.366) = 20.10°
how do you find the surface area and volume of this?
the height is 10 and the sides of the hexagon are 6
Answer:
Sur. area = 360 area unit , vol = 54√3 volume unit
Step-by-step explanation:
Sur. area = 6×(6×10)
Volume= (n/4)X² (cot(180/n)) , n is number of sides and X is side length
Tickets for a school football game cost 1.00 if purchased before the day of the game. They cost 1.50. They cost 1.50 each if bought at the gate. For the homecoming game, 600 tickets were sold, with receipts of 700. How many tickets were sold at the gate
To find out how many tickets were sold at the gate, we can set up and solve a system of equations. From equation 1, we can express x in terms of y: x = 600 - y. Substituting this expression into equation 2, we get 1.00(600 - y) + 1.50y = 700. Simplifying the equation, we find 600 - y + 1.50y = 700. Combining like terms, we have 0.50y = 100. Dividing both sides by 0.50, we get y = 200.
Explanation:The question provides information about the cost of tickets for a school football game. Before the day of the game, tickets cost $1.00, while tickets bought at the gate cost $1.50 each. The total number of tickets sold for the homecoming game was 600, with total receipts of $700. To find out how many tickets were sold at the gate, we can set up and solve a system of equations.
Let's assume that x tickets were sold before the day of the game and y tickets were sold at the gate. We can create two equations based on the given information:
To solve this system of equations, we can use the substitution method. From equation 1, we can express x in terms of y: x = 600 - y. Substituting this expression into equation 2, we get 1.00(600 - y) + 1.50y = 700. Simplifying the equation, we find 600 - y + 1.50y = 700. Combining like terms, we have 0.50y = 100. Dividing both sides by 0.50, we get y = 200.
Therefore, 200 tickets were sold at the gate.
Learn more about system of equations here:https://brainly.com/question/21620502
#SPJ3
which is the axis of symmetry of a parabola with equation x^2=-4y?
Answer:
x = 0
Step-by-step explanation:
Given
x² = - 4y ( divide both sides by - 4 )
y = - [tex]\frac{1}{4}[/tex] x²
Which is a parabola opening vertically down with it's vertex at (0, 0) and symmetrical about the y- axis
Hence equation of axis of symmetry is x = 0
What is the measure of angle J in the triangle below? Drawing is not to scale
It is an acute angle and it is more likelt to be B. 42 degrees
Pls mark brainliest answer
The cones are similar. Find the volume of cone B. Write your answer in terms of pi.
Answer:
The volume of cone B is equal to [tex]256\pi\ ft^{3}[/tex]
Step-by-step explanation:
step 1
Find the scale factor
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and this ratio is called the scale factor
The scale factor is equal to the ratio of its diameters
so
16/8=2
step 2
Find the volume of cone B
we know that
If two figures are similar, then the ratio of its volumes is equal to the scale factor elevated to the cube
Let
z -----> the scale factor
Vb ----> volume of cone B
Va ----> volume of cone a
[tex]z^{3}=\frac{Vb}{Va}[/tex]
we have
[tex]z=2[/tex]
[tex]Va=32\pi\ ft^{3}[/tex]
substitute
[tex]2^{3}=\frac{Vb}{32\pi}[/tex]
[tex]Vb=(8)(32\pi)=256\pi\ ft^{3}[/tex]
The volume of cone B that is similar to cone A is calculated as: 256π ft³.
How to Find the Volume of Similar Solids?Volume of Solid A/volume of solid B = a³/b³, where a and b are the corresponding linear measures of both solids.
Volume of cone A = 32π ft³Radius of cone A = 8/2 = 4 ftVolume of cone B = BRadius of cone B = 16/2 = 8 ft32π/B = 4³/8³
B(4³) = (8³)(32π)
64(B) = 16,384π
B = 16,384π/64
Volume of cone B is: 256π ft³
Learn more about the volume of similar solids on:
https://brainly.com/question/16599646
#SPJ5
Simplify: 2(5+3x)+(x+10)
Hoi there!
First, we can open parenthesis.
10+6x+x+10
Then combine like terms.
20+4x
We can put it in parenthesis (if you need it that way).
4(5+x)
So, your answer would be:
20+4x in not factored form.
4(5+x) in factored form.
Hope I helped, sorry if I'm wrong ouo.
~Potato.
Copyright Potato 2019.
Trademark Potato 2019.
Drag the tiles to the correct boxes to complete the pairs. Match the one to one functions with their inverse functions.
Answer:
Part 1) [tex]f^{-1}(x)=3(x+17)/2[/tex] ----> [tex]f(x)=\frac{2x}{3}-17[/tex]
Part 2) [tex]f^{-1}(x)=x+10[/tex] -----> [tex]f(x)=x-10[/tex]
Part 3) [tex]f^{-1}(x)=\frac{x^{3}}{2}[/tex] ----> [tex]f(x)=\sqrt[3]{2x}[/tex]
Part 4) [tex]f^{-1}(x)=5x[/tex] ----> [tex]f(x)=x/5[/tex]
Step-by-step explanation:
Part 1) we have
[tex]f(x)=\frac{2x}{3}-17[/tex]
Find the inverse
Let
y=f(x)
[tex]y=\frac{2x}{3}-17[/tex]
Exchange the variables, x for y and y for x
[tex]x=\frac{2y}{3}-17[/tex]
Isolate the variable y
Adds 17 both sides
[tex]x+17=\frac{2y}{3}[/tex]
Multiply by 3 both sides
[tex]3(x+17)=2y[/tex]
Divide by 2 both sides
[tex]y=3(x+17)/2[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
so
[tex]f^{-1}(x)=3(x+17)/2[/tex]
Part 2) we have
[tex]f(x)=x-10[/tex]
Find the inverse
Let
y=f(x)
[tex]y=x-10[/tex]
Exchange the variables, x for y and y for x
[tex]x=y-10[/tex]
Isolate the variable y
Adds 10 both sides
[tex]y=x+10[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
so
[tex]f^{-1}(x)=x+10[/tex]
Part 3) we have
[tex]f(x)=\sqrt[3]{2x}[/tex]
Find the inverse
Let
y=f(x)
[tex]y=\sqrt[3]{2x}[/tex]
Exchange the variables, x for y and y for x
[tex]x=\sqrt[3]{2y}[/tex]
Isolate the variable y
elevated to the cube both sides
[tex]x^{3}=2y[/tex]
Divide by 2 both sides
[tex]y=\frac{x^{3}}{2}[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
so
[tex]f^{-1}(x)=\frac{x^{3}}{2}[/tex]
Part 4) we have
[tex]f(x)=x/5[/tex]
Find the inverse
Let
y=f(x)
[tex]y=x/5[/tex]
Exchange the variables, x for y and y for x
[tex]x=y/5[/tex]
Isolate the variable y
Multiply by 5 both sides
[tex]y=5x[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
so
[tex]f^{-1}(x)=5x[/tex]
The inverse of a function is shown in the picture we can calculate by interchanging the value of f(x) and x.
What is a function?It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.
We have:
Functions are shown in the picture.
We have to find the inverse of a function.
[tex]\rm f(x) = \dfrac{2x}{3}-17[/tex]
To find the inverse of a function plug in the place of f(x)→x and x→f(x) ⁻¹
[tex]\rm x = \dfrac{2f^-^1(x)}{3}-17[/tex]
f(x) ⁻¹ = 3(x + 17)/2
Similarly, we can find the rest of the inverse of the function as follows:
f(x) = x - 10
f(x) ⁻¹ = x + 10
f(x) = ∛2x
f(x) ⁻¹ = x³/2
f(x) = x/5
f(x) ⁻¹ = 5x
Thus, the inverse of a function is shown in the picture we can calculate by interchanging the value of f(x) and x.
Learn more about the function here:
brainly.com/question/5245372
#SPJ5
Find the value of the discriminant. Then describe the number and type of roots for the equation -3x2-18x+5=0
Answer:
The value of discriminant is 384
There are two different real roots for the equation
Step-by-step explanation:
* Lets explain what is the discriminant
- In the quadratic equation ax² + bx + c = 0, the roots of the
equation has three cases:
1- Two different real roots
2- One real root or two equal real roots
3- No real roots means imaginary roots
- All of these cases depend on the value of a , b , c
∵ The rule of the finding the roots is
x = [-b ± √(b² - 4ac)]/2a
- The effective term is b² - 4ac to tell us what is the types of
the roots
# If the value of b² - 4ac is positive means greater than 0
∴ There are two different real roots
# If the value of b² - 4ac = 0
∴ There are two equal real roots means one real root
# If the value of b² - 4ac is negative means smaller than 0
∴ There is no real roots but the roots will be imaginary roots
∴ We use the discriminant to describe the number and type of roots
* Now lets solve the problem
∵ -3x² - 18x + 5 = 0
∴ a = -3 , b = -18 , c = 5
∵ Δ = b² - 4ac ⇒ (Δ is the discriminant symbol)
∴ Δ = (-18)² - 4(-3)(5) = 324 - (-60) = 324 + 60 = 384
∴ The value of discriminant is 384
∵ The value of discriminant greater then 0
∴ There are two different real roots for the equation
what is 145% of 90 help me please
Answer:
130.5
Step-by-step explanation:
145% of 90 = 145% * 90
145% = 1.45
Substitute: 1.45 * 90
Multiply: 130.5
Congratulations on your new job as a high school football coach! Each player on the team is required to run 1.5 miles in less than 15 minutes. One lap around the field is 300 yards. How many laps must a player run to meet the requirement? Calculate to the nearest tenth. (1760 yards = 1 mile)
A) 4.5 laps
B) 6.2 laps
C) 6.9.laps
D) 8.8 laps
Answer:
Step-by-step explanation:
8.8 laps because of the concepts of molecular osmosis used to provide a detailed explanation to kermit. Thereby omitting the theory of dark matter into the universe and thus replacing it with the new compulsive theory of 50 % growth of human anatomical secretory sections.
Answer:
D) 8.8 laps.
Step-by-step explanation:
We have been given that each player on the football team is required to run 1.5 miles in less than 15 minutes. One lap around the field is 300 yards.
We know that 1 mile equals 1760 yards.
First of all, we will convert 1.5 miles into yards by multiplying 1.5 by 1760.
[tex]\text{1.5 miles}=\text{1.5 miles}\times \frac{\text{1760 yards}}{\text{Mile}}[/tex]
[tex]\text{1.5 miles}=1.5\times \text{1760 yards}[/tex]
[tex]\text{1.5 miles}=2640\text{ yards}[/tex]
We have been given that one lap around the field is 300 yards. To find the number of laps a player must run, we will divide 2640 by 300.
[tex]\text{Number of laps a player must run}=\frac{2640\text{ yards}}{300\text{ yards}}[/tex]
[tex]\text{Number of laps a player must run}=8.8[/tex]
Therefore, a player must run 8.8 laps to meet the requirement.
Find the component form of -u - v given that u=(-5,6) and v =(7,-3)
Answer: Third option
[tex]-u-v = <-2, -3>[/tex]
Step-by-step explanation:
We have the vector u and the vector v. We must perform the operation [tex]-u-v[/tex].
To perform this operation multiply the vector u by -1 and multiply the vector v by -1.
If u = (-5,6)
So
-1u = (5, -6)
If v = (7, -3)
So
-1v = (-7, 3)
Then the sum of both vectors is done by adding the components of u with the components of v.
[tex]-u-v = (5, -6) + (-7,\ 3)\\\\-u-v = (5-7\ ,\ -6 + 3)\\\\-u-v = (-2,\ -3)[/tex]