Answer:
95%
Step-by-step explanation:
Three tests worth 100 points each = 3 X 100 = 300 points
Three quizzes worth 50 points each = 3 X 50 =150 points
Final exam worth 200 points
Total Obtainable Points=300+150+200=650
Total of test grades obtained (91, 82, and 88)=91+82+88=261
Total of quiz grades (50, 42, and 42) obtained = 50+42+42=134
Let x be the exam score for the student to obtain 90%
Therefore:
[tex]\frac{261+134+x}{650} X 100 \geq 90\\\frac{100(395+x)}{650} \geq 90\\39500+100x \geq 90X650\\39500+100x \geq 58500\\100x \geq 58500-39500\\100x \geq19000\\x \geq190\\[/tex]
The lowest score a student can score is 190.
Expressed as a percentage of 200,
[tex]\frac{190}{200}X100=95[/tex] per cent
The student must score a minimum of 95% in order to make an A.
The mean of the sampling distribution of the sample mean is: Select one: a. equal to the population mean b. greater than the population mean c. less than the population mean d. not equal to the population mean but the direction cannot be determined
Answer:
Correct option is (a) equal to the population mean.
Step-by-step explanation:
According to the Central limit theorem if a large sample is selected from an unknown population with mean μ and standard deviation σ then the sampling distribution of sample means follows a normal distribution.
The mean and standard deviation of this sampling distribution is:
[tex]\mu_{\bar x}=\mu[/tex]
[tex]\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}[/tex]
This standard deviation of the sampling distribution of mean is known as the standard error.
Thus, the correct option is (a) equal to the population mean.
The mean of the sampling distribution of the sample mean is equal to the population mean, as stated by the Central Limit Theorem, when the sample size is sufficiently large.
Explanation:The correct answer to the student's question is: a. equal to the population mean. This principle is a key concept in statistics, known as the Central Limit Theorem. According to the theorem, if the size (n) of the sample is sufficiently large, the distribution of the sample means will be approximately normal, with the mean of these sample means equalling the population mean. Another important point to note is that the standard deviation of this distribution, called the standard error of the mean, is the population standard deviation divided by the square root of the sample size (n). Therefore, as the sample size increases, the standard deviation of the sampling distribution of the means decreases, leading to more precise estimations of the population mean.
Andy is thinking of a number that has a digit less than 5 in the tens place. It has a digit greater than 7 in the ones place. Fill in the bubble next to all the numbers that could be Andy's number
Step-by-step explanation:
Here, given:
Let us assume the number on Tens place = M
The number in Units place = N
So, the actual value of the number = 10 M + N
The number can be written as MN.
Now, The value of M ( Tens digit) is Less than 5.
So, M = 1, 2 , 3 or 4 ( 0 not included)
Also, The value of N(Unit digit) is greater than 7.
So, N = 8, 9 or 0 ( 0 included)
So, by combining all possibilities for M and N , the possible number chosen by Andy can be expressed as MN :
Number = {18,19,10,28,29,20,38,39,30,48,49 or 40}
Any number can be chosen from the above set as all the numbers match the given restrictions.
The data shown represent the number of runs made each year during Bill Mazeroski’s career. Check for normality.
30 59 69 50 58 71 55 43 3
66 52 56 62 36 13 29 17 31
Answer:
The given data is not normal.
Step-by-step explanation:
We are given the following data:
30, 59, 69, 50, 58, 71, 55, 43, 3, 66, 52, 56, 62, 36, 13, 29, 17, 31
Condition for normality:
Mean = Mode = Median
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{800}{18} = 44.44[/tex]
Mode is the most frequent observation of the data.
Since all the value appeared once, there is no mode.
[tex]Median:\\\text{If n is odd, then}\\\\Median = \displaystyle\frac{n+1}{2}th ~term \\\\\text{If n is even, then}\\\\Median = \displaystyle\frac{\frac{n}{2}th~term + (\frac{n}{2}+1)th~term}{2}[/tex]
Sorted data: 3, 13, 17, 29, 30, 31, 36, 43, 50, 52, 55, 56, 58, 59, 62, 66, 69, 71
Median =
[tex]=\dfrac{9^{th}+10^{th}}{2} = \dfrac{50+52}{2}=51[/tex]
Since the mean, mode and median of data are not equal, the data is not normal.
What is the distance between point (6, -1) and point (5, 3) rounded to the nearest tenth?
4.6 units
1.4 units
17 units
4.1 units
Answer:
4.6
Step-by-step explanation:
Use the distance formula:
d = [tex]\sqrt{(x-x)^{2}-(y-y)^{2} }[/tex]
plug in the numbers
[tex]\sqrt{(6-1)^{2} -(5-3)^{2} }\\[/tex]
PEMDAS says do parenthisee first
[tex]\sqrt{(5)^{2} -(2)^{2} }[/tex]
now square it
[tex]\sqrt{25-4}[/tex]
subtract
[tex]\sqrt{21}[/tex]
do the calculator for this part
4.582575695
round it to get
4.6
WILL MARK 1ST RIGHT ANSWER AS BRAINIEST
Bob placed three regular pentagons together at a vertex, thinking he might be able to form a tessellation. However, they left a gap. What is the number of degrees in the measure indicated?
Answer:
36
Step-by-step explanation:
The angles of a pentagon sum to 180(5-2) = 540 degrees, so each angle of a regular pentagon is 540/5 = 108. Therefore, three of these angles sum to $3 * 108 = 324, which means the indicated angle measures 360 - 324 = 36.
Answer:
36
Step-by-step explanation:
The angles of a pentagon sum to 180(5-2) = 540 degrees, so each angle of a regular pentagon is 540/5 = 108. Therefore, three of these angles sum to 3* 108 = 324, which means the indicated angle measures 360 - 324 = 36
Give a big-O estimate for the number of operations, where an operation is a comparison or a multiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions in the for loops, where a1, a2, ..., an are positive real numbers). m :
Answer:
O(n2)
Step-by-step explanation:
the first iteration algorithm of the i-for loop (the outer loop), the j-for loop (the inner loop) will run 2 to
n times which is represented as
(n − 1 times).
the second iteration algorithm of the i-for loop, the j-for loop will run 3 to n times represented as
(n − 2 times).
the third to the last iteration algorithm of the i-for loop, the j-for loop will run n − 1 to n times (2 times).
And the second to the last iteration of the i-for loop, the j-for loop will run from n to n times (1 time)
For the last iteration of the i-for loop, the j-for loop will run 0 times because i + 1 > n.
Now we know that the number of times the loops are run is
1 + 2 + 3 + . . . + (n − 2) + (n − 1) = n(n − 1)/2
So we can express the number of total iterations as n(n − 1)/2.
Since we have two operations per loop (one comparison and one multiplication), we have
2 ·n(n−1)/2 = n
2 − n operations.
So f(n) = n2 − n
f(n) ≤ n2
for n > 1.
Therefore, the algorithm is O(n2) with
C = 1 and k = 1.
Gina's literacy bucket weighs 6 pounds. Her novel weighs 1 4/6 pounds, and her chrome book weighs 2 1/6 how much would her bucket weigh if she took out the two items.
Answer:
[tex]2\frac{1}{6}[/tex] pounds.
Step-by-step explanation:
We have been given that Gina's literacy bucket weighs 6 pounds. Her novel weighs 1 4/6 pounds, and her chrome book weighs 2 1/6.
To find weight of bucket after taking out the two items, we will subtract weight of each item from 6 pounds as:
[tex]\text{Weight of bucket}=6-1\frac{4}{6}-2\frac{1}{6}[/tex]
Let us convert mixed fractions into improper fractions as:
[tex]1\frac{4}{6}=\frac{6\cdot 1+4}{6}=\frac{10}{6}\\\\2\frac{1}{6}=\frac{6\cdot 2+1}{6}=\frac{12+1}{6}=\frac{13}{6}[/tex]
[tex]\text{Weight of bucket}=6-\frac{10}{6}-\frac{13}{6}[/tex]
[tex]\text{Weight of bucket}=\frac{6\cdot 6}{6}-\frac{10}{6}-\frac{13}{6}[/tex]
[tex]\text{Weight of bucket}=\frac{36}{6}-\frac{10}{6}-\frac{13}{6}[/tex]
Combine numerators:
[tex]\text{Weight of bucket}=\frac{36-10-13}{6}[/tex]
[tex]\text{Weight of bucket}=\frac{13}{6}[/tex]
[tex]\text{Weight of bucket}=2\frac{1}{6}[/tex]
Therefore, the weight of the bucket is [tex]2\frac{1}{6}[/tex] pounds.
Find the value of variable x. If your answer is not an integer, write it in simplest radical form with the denominator rationalized.
Answer:
the answer is 7
Step-by-step explanation:
angle 30°
x=14/2
x=7
The value of x is 7 cm.
How to solve the variable?If you have the hypotenuse, multiply it by sin(θ) to get the length of the side opposite to the angle.
y = 14* sin 30°
y = 14* 0.5
y = 7
y = 7cm
What's the base of a triangle?
The bottom line of a triangle is the base of the triangle, and it can be one of the three sides of the triangle. In a triangle, one side is the base side and the remaining two sides can be the height or the hypotenuse side.
Learn more about triangles here: brainly.com/question/17335144
#SPJ2
1. The difference of a number and 3 equals 5
added to twice the number. Find the number.
Answer:
-8
Step-by-step explanation:
Let n represent the number. Then we have ...
n -3 . . . . the difference of a number and 3
= . . . . . . equals
5 +2n . . . 5 added to twice the number
Adding -n-5 to both sides of the equation gives ...
n -3 -n -5 = 5 +2n -n -5
-8 = n . . . . . simplify
The number is -8.
What is the answer to this question??
Option B:
Point R on the number line best represents [tex]\frac{-6}{2}[/tex]
Solution:
In the number line,
The numbers which are left side of 0 are -1, -2, -3, -4, -5, -6, -7, -8.
The numbers which are right side of 0 are 1, 2, 3, 4, 5, 6, 7, 8.
Q is 6 points left of 0. That is Q = -6
R is 3 points left of 0. That is R = -3
S is 2 points left of 0. That is s = -2
T is 3 points right of 0. That is T = 3
[tex]$\frac{-6}{2}=-3[/tex]
In the number line -3 is the point of R.
Therefore point R on the number line best represents [tex]\frac{-6}{2}[/tex].
Option B is the correct answer.
I really need help oof-
Angle α lies in quadrant II, and tanα=−12/5 . Angle β lies in quadrant IV, and cosβ=3/5.
What is the exact value of cos(α−β) ?
Enter your answer in the box.
cos(α−β) = __
From the given info (and the linked question) we find
[tex]\cos\alpha=-\dfrac5{13}[/tex]
[tex]\sin\alpha=\dfrac{12}{13}[/tex]
[tex]\sin\beta=-\dfrac45[/tex]
Then using the angle-sum identity for cosine, we have
[tex]\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta[/tex]
[tex]\cos(\alpha-\beta)=\left(-\dfrac5{13}\right)\dfrac35+\dfrac{12}{13}\left(-\dfrac45\right)=-\dfrac{63}{65}[/tex]
Final answer:
To find the exact value of cos(α-β), we use the cosine sum and difference identity and the respective sine and cosine values calculated from the given tangent and cosine values for angles α and β. Using this approach, we find that cos(α-β) equals 63/65.
Explanation:
The exact value of cos(α-β) can be found by using the sum and difference identities for cosine. Since tanα = -12/5, in quadrant II, we can find the corresponding sine and cosine values for α using the Pythagorean identity sin²α + cos²α = 1. For cosβ = 3/5, in quadrant IV, we do a similar procedure to find the sine of β. With both sine and cosine for α and β, we use the identity cos(A-B) = cosA cosB + sinA sinB to find cos(α-β).
To find the sine and cosine for α, given that tanα = -12/5, we know that the opposite side is -12, and the adjacent side is 5, so the hypotenuse using the Pythagorean theorem is √(12² + 5²) = √(144+25) = √169 = 13. Thus sinα = -12/13 (negative because α lies in the second quadrant where sine is negative) and cosα = 5/13 (positive because cosine in the second quadrant is positive).
For β, we already have cosβ = 3/5. The sine can be found using the Pythagorean identity 1 - cos²β = sin²β, which gives sinβ = -√(1 - (3/5)�) = -√(1 - 9/25) = -√(16/25) = -4/5 (negative because β is in the fourth quadrant where sine is negative).
Now, we can find the exact value of cos(α-β) by plugging in the values:
cos(α-β) = cosα cosβ + sinα sinβ = (5/13)*(3/5) + (-12/13)*(-4/5)
= 15/65 + 48/65 = 63/65.
Therefore, the exact value of cos(α-β) is 63/65.
Find the indicated sum for each sequence. S9 of –9, 36, –144, 576, ...
Answer:
-471,861
Step-by-step explanation:
The sum of 9 terms in the sequence –9, 36, –144, 576, ... is -471861.
What is a sequence?An ordered collection of objects that allows repetitions is referred to as a sequence. It has members, just like a set does. The length of the sequence is determined by the number of items.
Given:
–9, 36, –144, 576, ...
Calculate the ratio of the sequence as shown below,
ratio = 36 / -9
ratio = -4
Calculate the sum of 9 terms as shown below,
S₉ = -9 (1 - (-4)⁹) / (1 - (-4))
S₉ = -9 (1 + 262144) / 5
S₉ = -9 (262145) / 5
S₉ = -2359305 / 5
S₉ = -471861
To know more about the sequence:
https://brainly.com/question/28615767
#SPJ2
Which equations represent the line that is parallel to 3x − 4y = 7 and passes through the point (−4, −2)? Select two options.
y = 3/4x + 1
3x − 4y = −4
4x − 3y = −3
y – 2 = –3/4(x – 4)
y + 2 = 3/4 (x+4)
Option A: [tex]y=\frac{3}{4}x+1[/tex] is the equation of the line.
Option E: [tex]y+2=\frac{3}{4}(x+4)[/tex] is the equation of the line.
Explanation:
Given that the line is [tex]3 x-4 y=7[/tex] and passes through the point [tex](-4,-2)[/tex]
We need to determine the equation of the line.
Formula:
The equation of the line can be determined using the formula,
[tex]y-y_1=m(x-x_1)[/tex]
Slope:
Since, the lines are parallel, from the equation [tex]3 x-4 y=7[/tex], we shall determine the slope.
Thus, we have,
[tex]-4 y=-3x+7[/tex]
[tex]y=\frac{3}{4} x+\frac{7}{4}[/tex]
Thus, the slope of the equation is [tex]m=\frac{3}{4}[/tex]
Equation of line:
Substituting [tex]m=\frac{3}{4}[/tex] and the point [tex](-4,-2)[/tex] in the formula, we get,
[tex]y+2=\frac{3}{4}(x+4)[/tex]
Hence, the equation of line is [tex]y+2=\frac{3}{4}(x+4)[/tex]
Thus, Option E is the correct answer.
Let us write the equation of line [tex]y+2=\frac{3}{4}(x+4)[/tex] in slope - intercept form.
Thus, we have,
[tex]y+2=\frac{3}{4}x+3[/tex]
[tex]y=\frac{3}{4}x+3-2[/tex]
[tex]y=\frac{3}{4}x+1[/tex]
Thus, the equation of the line is [tex]y=\frac{3}{4}x+1[/tex]
Hence, Option A is the correct answer.
9-114. While setting up a mathematical sentence to solve a problem, Paulina and Aliya came up with the equations below. Since the equations did not look alike, the girls turned to you for help. Paulina: 4x+2y=6 Aliya: 12x+6y=18
Step-by-step explanation:
Below is an attachment containing the solution.
Paulina and Aliya's equations, 4x+2y=6 and 12x+6y=18, are multiples of each other. This means they represent the same line and indicate an infinite number of solutions rather than a single intersection point typically sought after in a system of distinct linear equations.
Explanation:Paulina and Aliya have created linear equations to solve a mathematical problem. Paulina has the equation 4x+2y=6 and Aliya has 12x+6y=18. At a glance, these equations may look different, but upon closer inspection, Aliya's equation is actually just Paulina's equation multiplied by 3. This realization is pertinent because it suggests both equations represent the same line. Therefore, these two equations should have the same solution set.
To analytically solve simultaneous equations, one could use methods such as substitution, elimination, or matrix and determinant-based approaches. Using elimination or substitution, we aim to isolate one variable and solve for it. For example, because Aliya's equation is a multiple of Paulina's, if they were meant to be a system of separate lines, one way to solve them would be to simplify Aliya's equation by dividing by 3, revealing it to be identical to Paulina's, which indicates that this system has an infinite number of solutions (all points on the line represented by the equation).
If a system has two distinct equations, elimination involves adding or subtracting equations from one another to eliminate one of the variables, and substitution involves solving for one variable in terms of the other and then substituting this expression into the other equation. When equations are actually multiples of each other, this indicates either an infinite number of solutions or no solutions dependant if the equations are consistent or inconsistent respectively.
X-1 0 1 2 fx 18 6 2 2/3 what is the decay factor of the exponential function represented by the table 1/3 2/3 2 6
The decay factor of the exponential function represented by the provided table is 1/3 as the ratio of the consecutive y-values of the function is consistently 1/3.
Explanation:The decay factor of an exponential function can be found by comparing the ratio of the y-values of the function.
In the given question, a table of x/f(x) values is provided.
A decay happens if the ratios of the consecutive y-values (outputs) are consistently less than 1.
Let's find the ratio between successive y-values. Between 18 and 6, the ratio is 6/18 = 1/3. Going from 6 to 2, the ratio is 2/6 = 1/3. Lastly, transitioning from 2 to 2/3, the ratio is (2/3)/2 = 1/3.
Since we find the ratio of successive outputs (y-values) to consistently be 1/3, it is safe to say that 1/3 is the decay factor for the exponential function represented by the given table.
Learn more about Decay Factor here:https://brainly.com/question/32873861
#SPJ2
Steve, an entrepreneur, decides to open a flower shop and looks for an appropriate location for his shop. He wants to use the center-of-gravity method for the purpose. He researches the zip codes in his area and finds the following information: Identify a true statement about the best center of gravity for the possible shop location.
A) The x-axis and the y-axis are less than 5.0.
B) The x-axis is less than 7.0 and the y-axis is more than 7.0.
C) The x-axis is more than 7.0 and the y-axis is less than 7.0.
D) The x-axis and the y-axis are more than 7.0.
Answer:
C
Step-by-step explanation:
The x-axis is more than 7.0 and the y-axis is less than 7.0.
Cheers
A plastic rod 1.5 m long is rubbed all over with wool, and acquires a charge of -9e-08 coulombs. We choose the center of the rod to be the origin of our coordinate system, with the x-axis extending to the right, the y-axis extending up, and the z-axis out of the page. In order to calculate the electric field at location A = < 0.7, 0, 0 > m, we divide the rod into 8 pieces, and approximate each piece as a point charge located at the center of the piece. 1. What is the length of one of these pieces? 2. What is the location of the center of piece number 2? 3. How much charge is on piece number 2?
Answer:
Answer:
a) k = 0.1875 m
b) r2 = 0.46875 m
c) q = -1.125*10^-8 C
Step-by-step explanation:
Given:
- The total Length of rod L = 1.5 m
- The total charge of the rod Q = -9 * 10^8 C
- Total section of a rod n = 8
Find:
1. What is the length of one of these pieces?
2. What is the location of the center of piece number 2?
3. How much charge is on piece number 2?
Solution:
- The entire rod is divided into 8 pieces, so the length of each piece would be k:
k = L / n
k = 1.5 / 8
k = 0.1875 m
- The distance from center of entire rod and center of section 2 is 2.5 times the section length
r2 = 2.5*k
r2 = 2.5*(0.1875)
r2 = 0.46875 m
- Assuming the charge on the rod is uniformly distributed. The the charge for each section of rod is given by q:
q = Q / n
q = -9 * 10^8 / 8
q = -1.125*10^-8 C
The length of one of the eight pieces of the rod is 0.1875 m. The center of piece number 2 is at <0.28125, 0, 0> m. The charge on piece number 2 is -1.125e-08 Coulombs.
Explanation:The problem involves the concepts of electric field, charge distribution, and coordinate system in Physics. Let's answer the question part by part:
The length of one of these pieces is the total length divided by the number of pieces. That is, 1.5 m / 8 = 0.1875 m.The center of piece number 2 would be one and a half times the length of one piece, to the right of the origin in the x-direction; hence, it is at <0.28125, 0, 0> m.The charge on piece number 2 is the total charge divided by the number of pieces. That is, -9e-08 C / 8 = -1.125e-08 Coulombs.Learn more about Electric Field Calculation here:https://brainly.com/question/34817608
#SPJ3
tickets for a harlem globetrotter show cost $28 general admission, $43 courtside, or $173 bench seats. Nine times as many general admission tickets were sold as bench tickets, & the number of general admission tickets sold was 55 more than the sum of the number of courtside tickets & bench tickets. Sales of all three kinds of ticks totaled $97,605. How many of each kind of ticket were sold algebra
Answer:
general admission tickets 1170
courtside tickets 985
tickets bench seats. 130
Step-by-step explanation:
To solve the problem, it is necessary to generate a system of equations with the information provided by the statement.
First be
x = # general admission tickets
y = # courtside tickets
z = # tickets bench seats.
The first equation would be that they sold nine times more general admission tickets than bench seats tickets.
That is: x = 9 * z (1)
And the second equation is that the number of general admission tickets sold was 55 more than the sum of the number of courtside tickets and bench seats tickets.
That is: x = 55 + y + z (2)
Now the third equation would be the money raised.
28 * x + 43 * y + 173 * z = 97605 (3)
Now if I replace I rearrange (1):
z = x / 9 (4) and replacement in 2, I have:
x = 55 + y + x / 9, rearranging:
y = (8/9) * x - 55 (5)
Now replacing (4) and (5) in 3, we have:
28 * x + 43 * ((8/9) * x - 55) + 173 * (x / 9) = 97605
Solving the above:
x = 1170, therefore
y = (8/9) * 1170 55 = 985
z = 1170/9 = 130
We can confirm this with equation (3)
28 * x + 43 * y + 173 * z = 97605
28 * 1170 + 43 * 985 + 173 * 130 = 97605
450 general admission tickets, 171 courtside tickets, and 50 bench tickets were sold for the Harlem Globetrotter show.
Explanation:Let's assign variables to represent the number of tickets sold for each category:
Lets x = number of general admission tickets sold
Lets y = number of courtside tickets sold
Lets z = number of bench tickets sold
According to the given information:
The cost of the general admission ticket = $28
The cost of the courtside ticket = $43
The cost of the bench ticket = $173
There were 9 times as many general admission tickets sold as bench tickets: x = 9z
The number of general admission tickets sold was 55 more than the sum of the courtside and bench tickets: x = y + z + 55
The total sales for all three types of tickets was $97,605: 28x + 43y + 173z = 97605
Now, we have a system of three equations with three variables:
x = 9z
x = y + z + 55
28x + 43y + 173z = 97605
We can use substitution or elimination method to solve this system of equations. Solving this system, we find that x = 450, y = 171, and z = 50. Therefore, 450 general admission tickets, 171 courtside tickets, and 50 bench tickets were sold for the Harlem Globetrotter show.
Learn more about ticket sales here:https://brainly.com/question/2777438
#SPJ3
Jesse takes his dog and cat for Their annual vet visit. Jesse's dog weigh's 23 pounds. The vet tells him his cat weighs 5/8 as much as his dogs weighs. How much does his cat weigh
Answer:
14.375 pounds
Step-by-step explanation:
Jesse's dog: 23 lb
Cat: 5/8*23=115/8
Therefore, Jesse's cat weighs 14.375 pounds
hey, help me with this pls i only have 10 minutes. 30 points each :)
Answer:
y=-2x
Step-by-step explanation:
First you want to remember rise over run. Your rise is -2 and your run is 1. So -2/1 is your answer. And -2/1 is equal to -2.
Answer:
[tex]\frac{2} {-1}[/tex]=-2
Step-by-step explanation:
find the area of a rectangle that has a base of (4a) cm and a height (2a + b)
Answer:
area = 8a^2 +4ab
Step-by-step explanation:
Area = (4a)(2a + b)
= 8a^2 +4ab
Step-by-step explanation:
[tex]Area of rectangle \\ = base \times height \\ = (4a) \times (2a + b) \\ = 4a \times 2a + 4a \times b \\ = 8 {a}^{2} + 4ab \\ [/tex]
Line l is parallel to line m. The slope of line l is . What is the slope of line m? 4/9
The slope of Line m that is parallel to Line l is also 4/9.
Explanation:The slope of a line determines its steepness and direction. When two lines are parallel, they have the same slope. In this case, Line l is parallel to Line m, and the slope of Line l is 4/9. Therefore, the slope of Line m is also 4/9.
A telemarketer calls people and tries to sell them a subscription to a daily newspaper. On 22% of her calls, there is no answer or the line is busy. She sells subscriptions to 10% of the remaining calls. For what proportion of calls does she make a sale? Give your answer as a decimal, and do not round.
Answer:
She makes 7.8% portion of sales collectively.
Step-by-step explanation:
Let us assume she makes total of 100 calls.
The percentage of calls which are busy or unanswered = 22 %
So, now calculating 22% of 100 , we get:
[tex]\frac{22}{100} \times 100 = 22[/tex]
So, 22 of her calls are UNANSWERED.
Now, let us find out the number of calls successfully made by telemarketer.
Total successful calls = Total Calls made - Number of unanswered calls
= 100 - 22 = 78
So, she makes a total of 78 calls successfully.
Now, he sells subscriptions to 10% of the 78 calls made successfully.
So, now calculating 10% of 78 , we get:
[tex]\frac{10}{100} \times 78 = 7.8[/tex]
So, she sold 7.8 subscriptions in total out of 100 attempts.
Also, as we know 7.8 out of 100 = 7.8% of 100.
Hence, she makes 7.8% portion of sales collectively.
The coordinates for the L-shaped are given to you. And number one. Where will the L shape be if it is. . .(find the new coordinates and then draw the image of the L-Shape)
Answer:
see below
Step-by-step explanation:
As always, the coordinate transformations are ...
a. 180° — (x, y) ⇒ (-x, -y)
b. 270° CCW or 90° CW — (x, y) ⇒ (y, -x)
c. 90° CCW or 270° CW — (x, y) ⇒ (-y, x)
___
It can be quick and easy to use a transparency or tracing paper to locate the rotated position of the image.
To find the depth of a well, a farmer lowers a 50-foot rope vertically into the well. If 15 feet of rope remain above the well, how deep (in feet) is the well?
The well is 35 feet deep.
Step-by-step explanation:
Given,
Length of rope = 50 feet
Length of remaining rope = 15 feet
Let,
x be the depth of well.
Total length of rope = Length of remaining + Depth of well
[tex]50=15+x\\50-15=x\\x=35[/tex]
The well is 35 feet deep.
The second side of a triangular deck is 3 feet longer than the shortest side, and the third side is 3 feet shorter than twice the length of the shortest side. If the perimeter of the deck is 80 feet, what are the lengths of the three sides?
Answer: the lengths are 20 feet, 23 feet and 37 feet
Step-by-step explanation:
Let x represent the length of the shorter side of the triangular deck.
The second side of a triangular deck is 3 feet longer than the shortest side. This means that the length of the second side is (x + 3) feet.
The third side is 3 feet shorter than twice the length of the shortest side. This means that the length of the third of the triangle is (2x - 3) feet.
If the perimeter of the deck is 80 feet, it means that
x + x + 3 + 2x - 3 = 80
4x = 80
x = 80/4
x = 20
The length of the second side is
20 + 3 = 23 feet
The length of the third side is
20 × 2 - 3 = 40 - 3 = 37 feet
Help ASAP Please
The following two-way frequency table shows information collected from a survey of students regarding their grade level and how they spend their screen time.
Grade vs.
Screen Time Uses the
Internet Watches
TV Plays Video
Games Total
7th Grader 6 3 6 15
8th Grader 8 3 2 13
Total 14 6 8 28
What is the probability that a student uses the Internet, given that he or she is in eighth grade?
Enter your answer rounded to two decimal places, like this: 0.42
Enter your answer as a fraction in simplest form, formatted like this: 3/14
The probability of an eighth-grade student using the Internet, based on the data provided, is approximately 0.62, or simply 8/13 as a fraction.
Explanation:To calculate the probability that a student uses the Internet given he or she is in eighth grade, we look at the eight graders' behaviors in the table. There are 13 students in total in the eighth grade, and 8 of these use the Internet.
So, the probability can be expressed as P(Internet|8th grader) = number of internet users in 8th grade / total number of 8th graders = 8 / 13.
When rounded to two decimal places, this probability would be approximately 0.62. In terms of fractions, it can simply be left as 8/13.
Learn more about Probability here:https://brainly.com/question/32117953
#SPJ12
The probability that a student uses the Internet, given that he or she is in eighth grade, is 2/3.
We are asked for the probability that a student uses the Internet, given that he or she is in eighth grade. This is the conditional probability [tex]$P({\text{Internet}} | {\text{8th Grade}})$[/tex], which can be calculated using Bayes' Theorem: \begin{align*}
[tex]P({\text{Internet}} | {\text{8th Grade}}) &= \frac{P({\text{8th Grade}} | {\text{Internet}})P({\text{Internet}})} {P({\text{8th Grade}})} \\&= \frac{\frac{8}{28} \cdot \frac{14}{28}} {\frac{13}{28}} \\&= \frac{2}{3}[/tex]
\end{align*}
Therefore, the probability that a student uses the Internet, given that he or she is in eighth grade, is [tex]$\boxed{\frac{2}{3}}$[/tex].
Here is a more detailed explanation of how we arrived at our answer:
Step 1: Calculate the probability of being in eighth grade, given that the student uses the Internet. This is the conditional probability [tex]$P({\text{8th Grade}} | {\text{Internet}})$[/tex], which can be calculated from the table as follows: [tex]$P({\text{8th Grade}} | {\text{Internet}}) = \frac{8}{14}$[/tex]
Step 2: Calculate the probability of using the Internet.** This is the marginal probability [tex]$P({\text{Internet}})$[/tex], which can be calculated from the table as follows: [tex]$P({\text{Internet}}) = \frac{14}{28}$[/tex].
Step 3: Calculate the probability of being in eighth grade.This is the marginal probability [tex]$P({\text{8th Grade}})$[/tex], which can be calculated from the table as follows: [tex]$P({\text{8th Grade}}) = \frac{13}{28}$[/tex].
Step 4: Apply Bayes' Theorem to calculate the conditional probability [tex]$P({\text{Internet}} | {\text{8th Grade}})$[/tex].
Therefore, the probability that a student uses the Internet, given that he or she is in eighth grade, is[tex]$\boxed{\frac{2}{3}}$[/tex].
For such more questions on probability
https://brainly.com/question/23417919
#SPJ6
A boat is spotted in the water with an angle of depression of 25° from the top of a lighthouse that is 89 feet tall. To the nearest foot, how far away is the boat from the base of the lighthouse?A)37 feetB)42 feetC)98 feetD)191 feet
Answer:
D)191 feet
Step-by-step explanation:
Let the height of the light house be |AB| and the Boat be at point C as shown in the diagram.
The angle of depression of the boat from the top A of the lighthouse is given as 25 degrees
Angle BCA = 25 degrees (Alternate Angles are Equal)
We want to determine the distance of the boat C from the base of the lighthouse B i.e. |BC|
[tex]Tan\alpha =\frac{opposite}{adjacent}[/tex]
Tan 25=[tex]\frac{89}{|BC|}[/tex]
Cross multiply
|BC| X tan 25 =89
|BC| = [tex]\frac{89}{tan 25}[/tex]=190.86 feet
The distance of the boat C from the base of the lighthouse B is 191 feet (to the nearest feet).
If a standard dartboard's diameter is 17.75 inches, what is the area of once sector?
Answer:
12.37 square inches
Step-by-step explanation:
The area of the dartboard can be figured from the diameter as ...
A = (π/4)d² = (π/4)(17.75 in)² ≈ 247.4495 in²
There are 20 sectors, all the same size, so the area of one of them is ...
sector area = (1/2)(247.4495 in²) ≈ 12.37 in²
Is the product of 25 and 3/5 more or less than 14? Explain your answer. Write the product of 3/5 and 25.
Answer:
More. The product of 25 and 3/5 is 15 which is greater than 14.
Step-by-step explanation: